VS Series PLC Programming Manual

Version:2.1

Date: October, 2019

Preface

The purpose of this book is to give programming inspires for the VS series PLC. For the installation, wiring, maintenance and safety precautions of VS series PLC, please refer to the VS Series PLC Product Manual.

Name of Manual	Content
VS Series PLC Programming Manual (This book)	 Descriptions of VS series PLC components Functions of basic instructions and application instruction Precautions regarding programming
VS Series PLC Product Manual	 Introduction to VS series PLC Environment, wiring and installation cautions of VS series PLC Precautions of environment, wiring and installment Instructions of optional devices

– Trademark –

- **VIGOR** is a registered trademark of **VIGOR ELECTRIC CORP.** in Taiwan.
- WINDOWS[®] is a registered trademark of Microsoft Corporation in the United States.
- Other products or service names appeared in this book are the property of their companies .

Table of Contents

1. Introduction of VS Series PLC	· 1
1-1 The Basic Concept of PLC Users	1
1-1-1 Introduction of PLC	1
1-1-2 Configuration of PLC	1
1-1-3 PLC Operation and Scan Time	3
1-1-4 PLC Input Signals	• 4
1-1-5 PLC Output Signals ······	• 5
1-1-6 Some Improper Diagrams at a PLC Program	5
1-1-7 Double Coil Output	· 6
	. 0
1-2 The VS Series PLC Products Overview	7
1-3 Specification Table of All the VS Series Main Units	· 8
1-4 Overview of VS Series PLC Models	• 10
2. Component Descriptions	· 13
2-1 Table of Components	13
2-2 External Input (X) and External Output (Y)	· 14
2-2-1 External Input (X)······	• 14
2-2-2 External Output (Y)·····	15
2-2-3 External Input/Output Assigned Numbers	16
2-3 Auxiliary Relay (M)	· 18
2-4 Step Relay (S)	· 19
2-5 Timer (T)	20
2-5-1 General Timers	· 20
2-5-2 Retentive Timers ······	· 20
2-5-3 Using a Timer in a Subroutine	21
2-5-4 Methods to Appoint the Set Value of a Timer	21
2-5-5 Detailed Description about the Output Action and Accuracy of a Timer	21
2-6 Counter (C)	· 22
2-6-1 16- bit Counter	22
2-6-2 32- bit Counter	23
2-6-3 Methods to Appoint the Set value of a Counter	24
2-7 Software High Speed Counter	25
2-7-1 1-Phase High Speed Counter	26
2-7-2 2-Miase High Speed Counter	27
2-7-3 A/D Filase Figh Speed Counter	20 . 20
2.9 Dete Degister (D) and Expansion Degister (D)	23
2-8 Data Register (D) and Expansion Register (R)	· 31

2-9 Index Register (V and Z)	· 32
2-9-1 Using Index Register in Basic Instruction	· 32
2-9-2 Using Index Register in Application Instruction	· 33
2-9-3 Demonstration Program Using Index Register	· 33
2-10 Mark Pointer and Branch Pointer (P)	· 35
2-11 Table Nickname and Table Code (Q)	· 36
2-12 Interrupt Pointer (I)	· 37
2-13 Numerical System	. 39
2-14 Special Relay and Special Register	• 42
2-14-1 Table of Special Relay ······	· 42
2-14-2 Instruction Table of Special Register	•• 47
2-14-3 Error Code Description	52
2-15 The X0~X7 High Speed Input Function Description	· 53
2-15-1 External Interrupt	• 54
2-15-2 Pulse Capture	· 55
2-15-3 Pulse Measurement ······	·· 56
2-15-4 Hardware High Speed Counter	. 58
2-16 Expansion Card Related Components	· 61
2-16-1 The DIO Expansion Card Related Components	• 62
2-16-2 The Communication Expansion Card Related Components	· 63
2-16-3 The Special Function Expansion Card Related Components	• 65
2-17 Special Function Module	·· 70
2-17-1 Buffer Memory BFM in the VS-4AD Module	·· 71
2-17-2 Buffer Memory BFM in the VS-2DA Module	·· 72
2-17-3 Buffer Memory BFM in the VS-3A Module	• 73
2-17-4 Butter Memory BFM in the VS-6A Module	• 74
2-17-5 Buffer Memory BFM in the VS-41C Module	• 75
2-17-0 Bullet Memory BEM in the VS-2PT Module	· /0
2-17-8 Buffer Memory BEM in the VS-4PT Module	. 78
2-17-9 Buffer Memory BFM in the VS-2PG / VS-4PG Module	· 79
3. Basic Instruction	· 83
3-1 Basic Instruction Table	. 02
2 2 The LD L DI AND AND OP OPLINY OUT and END instructions	00
3-2 THE LD, LDI, AND, ANI, UK, UKI, INV, UUT and END INSTRUCTIONS	• 85
3-3 THE LUP, LUP, ANDP, ANDP, OKP, OPP, MEP and MEP Instructions	86
3-4 The ANB and ORB Instructions	· 87
3-5 The MPS, MRD and MPP Instructions	· 88
3-6 The MC and MCR Instructions	· 89
3-7 The SET and RST Instructions	· 90

3-8 The PLS and PLF Instructions	
3-9 The OUT and RST Instructions for the Timer or Counter	
3-10 Significant Notes for Programming	
3-10-1 Convert the Ladder Diagram to the Instruction List	
3-10-2 Programming Techniques	
4. Sequential Function Chart (SFC) and Step Ladder (STL)	
4-1 What is the Sequential Function Chart (SFC)	
4-1-1 The Framework of SFC ······	
4-1-2 Basic Components of SFC	
4-1-3 State and Action of SFC	
4-1-4 Types of SFC	
4-2 Compliing the Sequential Function Chart (SFC)	
4-2-2 Convert the Flowchart to the SEC	
4-2-3 Use the Ladder Master S to Edit the SFC	
4-3 Description the Application Types of SFC	100
4-3-1 Single Flow, Jump and Repeat Flow During the Flowchart Transfer	100
4-3-2 Selective Branch and Merge	101
4-3-3 Simultaneously Parallel Branch and Merge	101
4-3-4 Special Notices About the SFC	102
4-4 Precautions About the Composition of the SFC	103
4-5 STL / SFC Relevant Special Components	
4-6 The Relationship Between the SFC and STL	
4-6-1 The Step Ladder Instruction (STL)	······ 106
4-7 Examples of SEC Applications	
4-7-1 Construct the Repeat / Single Run / Single Step Control Modes for a Park Founta	in 109
4-7-2 Filling Bottles	111
4-7-3 Traffic Lights ·····	114
4-7-4 Mechanical Double-Decked Parking Space	123
5 General Rules of Application Instructions	125
5-1 The Formats of Application Instructions	125
5-2 Data Process of Application Instructions	127
5-3 Precautions of Using Application Instruction	128
6. Application Instructions	129
6-1 Application Instruction Table	129
6-2 Program Flow Instructions	135

53 51 59 51
51 59 51
9 1
1
17
)9
21
17
59
35
<i>•</i> 7
)7
5
21
25
39
5
7
57
;9
;9 ;9
;9 ;9 ;9
59 59 59 59
59 59 59 59 50 50
59 59 59 50 52 56
59 59 59 50 52 56 57
59 59 59 59 50 52 56 57 58 59
59 59 59 59 50 52 56 57 58 59 70
59 59 59 50 52 56 57 58 59 0 1
59 59 59 59 59 50 52 56 57 58 59 70 71 2
2 4 5 8 9 0 0 2 2 8 4 4

7-3 Communication Types	374
7-3-1 Selections of Communication Types	374
7-3-2 VS Computer Link Slave	375
7-3-3 VS Computer Link Master ······	379
7-3-4 VB Computer Link Slave	386
7-3-5 MODBUS Slave	387
7-3-6 MODBUS Master ·····	388
7-3-7 CPU Link	395
7-3-8 Non Protocol	401
	112
7-4 VS Series PLC Communication Protocol	412
7-4 VS Series PLC Communication Protocol	412
7-4 VS Series PLC Communication Protocol 8. Statement of Positioning Control Functions	421
7-4 VS Series PLC Communication Protocol 8. Statement of Positioning Control Functions 8-1 Positioning Parameter Setup	421 422
7-4 VS Series PLC Communication Protocol 8. Statement of Positioning Control Functions 8-1 Positioning Parameter Setup 8-1-1 Basic Parameters	421 422 423
7-4 VS Series PLC Communication Protocol 8. Statement of Positioning Control Functions 8-1 Positioning Parameter Setup 8-1-1 Basic Parameters 8-1-2 Positioning Operation Setting Up	421 422 423 425
7-4 VS Series PLC Communication Protocol 8. Statement of Positioning Control Functions 8-1 Positioning Parameter Setup 8-1-1 Basic Parameters 8-1-2 Positioning Operation Setting Up 8-2 Special Components Related to Positioning Control Instructions	421 422 423 425 429
7-4 VS Series PLC Communication Protocol 8. Statement of Positioning Control Functions 8-1 Positioning Parameter Setup 8-1-1 Basic Parameters 8-1-2 Positioning Operation Setting Up 8-2 Special Components Related to Positioning Control Instructions 8-3 Positioning Control Instructions	421 422 423 425 429 433
7-4 VS Series PLC Communication Protocol 8. Statement of Positioning Control Functions 8-1 Positioning Parameter Setup 8-1-1 Basic Parameters 8-1-2 Positioning Operation Setting Up 8-2 Special Components Related to Positioning Control Instructions 8-3 Positioning Control Instructions 8-4 Positioning Program Example	421 422 423 425 429 433 472
7-4 VS Series PLC Communication Protocol 8. Statement of Positioning Control Functions 8-1 Positioning Parameter Setup 8-1-1 Basic Parameters 8-1-2 Positioning Operation Setting Up 8-2 Special Components Related to Positioning Control Instructions 8-3 Positioning Control Instructions 8-4 Positioning Program Example 8-4-1 Positioning Program Example for the VS1 or VS2 Series PLC	421 422 423 425 429 433 472 472
7-4 VS Series PLC Communication Protocol 8. Statement of Positioning Control Functions 8-1 Positioning Parameter Setup 8-1-1 Basic Parameters 8-1-2 Positioning Operation Setting Up 8-2 Special Components Related to Positioning Control Instructions 8-3 Positioning Control Instructions 8-4 Positioning Program Example 8-4-1 Positioning Program Example for the VS1 or VS2 Series PLC 8-4-2 Positioning Program Example for the VSM or VS3 Series PLC	421 422 423 425 429 433 472 472 472

1. Introduction of VS Series PLC

1-1 The Basic Concept of PLC Users

1-1-1 Introduction of PLC

The programmable Logic Controller (PLC) is an industrial computer control system that is easy to maintain, low cost and saves space. In addition to its programmable features, because it is used in the field of industrial control, PLC is also required to have high reliability and resistance to climate.

The concept of PLC was introduced by General Motors in 1968. It has been developed by decades. The initial PLC only had the simple logic control ability, and thus was named as a programmable logic controller. Since Today's PLC functions have covered the scopes of mathematical operations, servo control and communication links, the more correct name for it should be programmable controller (referred to as PC), which means a controller that is programmable. Due to the fact that it shares the same English abbreviation with the personal computer (referred to as PC). Therefore, in order to distinguish, the programmable controller is referred to as PLC.

PLC has micro controller at its core. The rapid development of semiconductor technology has substantially increased PLC's computing speed, program capacity and communication connectivity and decreased its prices. Coupled with the demands on high reliability and resistance to climate the design requirements, PLC is widely used in the field of automatic control, and has become an extremely important part.

1-1-2 Configuration of PLC

Fig.1-1 Processing Architecture of PLC

The configuration of programmable controller is shown in Fig. 1-1. Below describes the elements of a PLC briefly:

• Power supply — Inside of a PLC consists of ordinary electronic circuit that must use low voltage DC power. Currently, a PLC manufacturer provides with the AC or DC power input model for the customer to choose from. The AC power model has a power supply circuit within the PLC to convert AC to DC. The DC power model needs to provide its power from an external DC source (usually DC 24V) then the PLC uses the internal DC to DC circuit to convert the power to supply the internal circuit require.

In the past, user prefers to use the AC power input models. However, since there are many related equipments inside the control panel also required DC power, the use of an external DC power supply to provide all DC consumptions is popular in recent years.

This is because the use of external DC power supply can avoid the event of unstable AC power input to damage the controller (this problem is easy to handle if an external DC power supply is used); This is because the use of external DC power supply can avoid the event of unstable AC power input to damage the controller (this problem is easy to handle if an external DC power supply is used); therefore, the use of external power supply increases the stability of control systems. On the other hand, it lowers the general cost of control systems. It is to kill two birds with one stone.

• Program processing unit — The CPU is the core of a PLC, that is responsible for interpreting the user programs and calculating the results to achieve the purpose of control.

Small PLCs usually use microcontrollers as the core. Now the semiconductor technology has been able to integrate CPU, memory and a variety of peripheral circuits into a SOC (System On Chip). This not only improves the overall performance, but also reduces costs. So now, even small PLCs use high-performance 32-bit CPU chip to produce controllers with fast execution, large program capacity and diverse functions, the real value for money.

• **Program memory** — The memory for the PLC user to store the compiled control program, can let the CPU to interpret and compute then produces the control procedures.

The program memory must have the ability to preserve its contents, in order to continue work after the power is resumption. At present, there are two ways.

The first way is to use the SRAM (static random access memory) cooperated with a lithium battery. The advantages of this method are more flexible and less restrictive. But, the disadvantage is once the battery is exhausted, all the program and settings will disastrously disappear.

The second method is to use non-volatile memory (such as EEPROM, Flash ROM, FRAM, etc.). By the no battery required characteristic of those semiconductor components to preserve the program. Its advantages are stable and reliable; but usually with higher cost, has the restriction on the number of writing times and slower in writing. A control system which is composed by a small PLC usually got less care from the owner. Therefore, it is a better choice to use battery-free non-volatile memory to store the user program.

• Data memory — The data memory in PLC is responsible for storing the data.

Both the operating system and the user program must have data workspace. Typically, SRAM (static random access memory) is used as the data work area.

However, a part of the PLC data memory area must have latched feature to preserve the relevant parameter settings and specific operating results when power is missing. There are two components can cooperate with the SRAM to latch, one is the lithium battery, the other is the non-volatile (such as EEPROM, Flash ROM, FRAM, etc.) memory. Regarding their advantages and disadvantages, please refer to the description of program memory.

• Input interface — The PLC reads external signals through its input interface to in order to operate as a reference for the program.

In general, in order to prevent noise interference, the internal circuit of PLC inputs will isolate by photocouplers. The acceptable voltage of the input photocoupler is not high, so special attention should be paid to the external wiring. High voltage will damage the photocoupler and cause the input interface break down.

• Output interface — The PLC sends the computed result to its output interface, then to drive components and reach the control action concretely.

In order to avoid interference from noises, at the output interface of a PLC has the isolation circuit. Typically, the outputs are relays (by mechanically magnetic isolation) or transistors with photocouplers.

The relay output is the dry contact of switch which with the advantage of intuitive no current direction limit and accepts AC or DC signal. The disadvantages are shorter life of contact, which is not a durable part and will affect the controller's life. Also, the movement of its contact is slow (about $5 \sim 10$ ms) which is not suited for the fast response output.

The transistor is a semiconductor contactless switch, which has advantages and disadvantages just opposite to a relay.

According to the characteristics of the control objectives, should choose an appropriate output type when designing the control system. In addition, for the purpose of the system reliability, may choose the transistor output type if it is possible.

• Programming interface — The communication interface for to link the programming device with the PLC.

The user uses the programming device to write a control program and through the programming interface to load to the PLC. Furthermore, monitoring and debugging to complete the program's calibration test. Generally, the programming interface is a serial communication interface, the RS-232, RS-422 or RS-485 port is popular. Recently there have been some PLC introduced with the USB interface to provide faster communication link.

• Communication interface — An interface which is responsible for linking PLC with the surrounding equipment for data transmission.

Nowadays, the common communication interfaces are the RS-232, RS-422 and RS-485, also the use of Ethernet is gradually increased.

In addition to protocol with their own products, the PLC manufacturers usually provide communication protocol with MODICON's MODBUS to facilitate connecting with peripherals.

With the increasing complexity of automatic control systems, PLC manufacturers also pay attention to the communication capacity to link with more peripherals. Therefore, higher level of PLC can provide several communication interfaces to make it work with more peripherals and complete complex control demands.

• **Programming device** — The PLC manufacturer provides a device for users to program and debug.

Common programming devices include handheld programming device and PC programming software. The handheld programming device usually uses the simple-text of Instruction List (IL), in fact it is an important part in the programming development of a PLC. However, with the progress of the times and the popularity of personal computers. The software at PC which can provide graphical interface and has become the best choice for PLC programming.

• Peripheral equipment — Various devices are linked with the PLC to complete the control system together.

A PLC is often linked with peripheral equipments, such as the computer, human-machine interface (HMI), inverter, thermostat, servo drive, power meter and other PLC.

The most commonly peripheral equipment which PLC operates with are:

- 1. A computer or human-machine interface connected to a PLC for machine settings and monitoring
- 2. A computer or human-machine interface connected with multiple PLCs that becomes a local network team and its monitor.
- 3. Linking several PLCs for proceeding decentralized control.

4 Linking PLC to a variety of peripheral equipment of specific use, for extending control areas.

1-1-3 PLC Operation and Scan Time

The PLC systems use microcomputer technology to achieve the purpose of simulating traditional relay control panel. The microcomputer first reads the external inputs and then sequentially scans and executes the user program, so as to calculate the control result that the user wants to achieve. Finally, it outputs the result to drive the external loads and performs the real control action. The PLC execution order is shown in Fig. 1-2.

The PLC will sequentially execute the cycle (① receive external inputs; ② process the user program; ③ output the computed results). Then, the time spent for one cycle is called a "Scan Time".

Fig. 1-2 PLC operation order and scan time

The PLC processes user program by the Sequential Scan (in the Ladder Diagram scans from left to right then from top to bottom), as shown in Fig. 1-3. Therefore, must pay extra attention to the procedural order of the program.

Fig. 1-3 PLC makes the sequential scan at the Ladder Diagram

The "Scan Time" and "Sequential Scan" are the basic and the most important concepts. A PLC user must fully understand those meanings, and pay attention about the influences when designing the PLC program.

1-1-4 PLC Input Signals

PLC's input endpoint is a window for PLC to accept control signals from outside, and is used to interface with a variety of switches and sensing elements. In recent years, the PLC functions have been tending to more developed diversification, detecting elements connected with the input points are also more diverse. Therefore, it is necessary for users to further understand the interface of PLC input point. Here are a few things to note:

- 1. As the PLC's work environment is often filled with a variety of noises and interfering sources, in order to work properly, photocouplers are often used at input endpoint to isolate noises.
- 2. The reaction speeds of different photocouplers are varied. The High-speed photocouplers can transmit signals faster, but the cost is higher. Therefore, high-speed photocouplers are often used at the input points of PLC which need high-speed responses. In the rest of case, general photocouplers are used.
- 3. In order to prevent noise interferences, the input circuit of a PLC in addition to photocouplers, also added with filters. Filters are divided into analog filters (composed of RC circuit) and digital filters (filter time is adjustable). According to functional requirements the PLC inputs can be divided into high-speed and general inputs. The general inputs are usually used in receiving signals which are not too fast, and often connected to the mechanical switchs (signal may have bounce in action). Thus, approximately 10ms filter circuits are added with in the general inputs. The high-speed inputs are usually designed for multiple functional inputs, those can be used as general inputs (need longer filter time) and can also process high-speed signals (need tiny filter time). Therefore, digital filters are used with high-speed inputs, they adjust filter time according to different needs (higher speed does not always mean better).
- 4. There is a time delay between the PLC's CPU received and the external signal input. The delay time is accumulated with the aforementioned photocoupler and added filter.
- 5. In order to meet multiple requirements, the current PLCs are usually designed with some high-speed input endpoints to execute some functions which require high speeds, such as high-speed counting, external interruption, pulse capture, frequency meter and pulse measurement. These signals usually require rapid responses and are relatively susceptible to noises. Therefore, in use, extra attention should be paid to its wiring. To avoid interfering sources, isolation cables can be used to avoid any interference.
- 6. There is certain amount of drive current at the PLC input endpoint, when using sensing elements, one must pay attention, especially when using two-wire sensing elements.
- 7. PLC cannot read input signals which change too fast. For PLC, regardless of input signals, ON or OFF, its duration must be longer than the scan time; otherwise, PLC is likely failed to read correct signals, as shown in Fig.1-4. When input signal changes too fast to be read normally, the interrupt input function or pulse wave capture function can be employed.

This ON signal is ur \oint	nreadable		This ON signal is readable \bigvee	Tł	his OFF signal is unreadable ψ	Ð	
Input signalON	OFF		ON		OFF		
	User program processing		User program processing		User program processing		
Output the computed results	Receive the external inputs	<	One cycle of "Scan Time"	>	Tir	ne -	>

Fig. 1-4 PLC cannot read input signal which is swap over too fast

1-1-5 PLC Output Signals

The PLC's output endpoint is a window for PLC to send out the computed results, and is used to interface with a variety of loads. Since the output signals are to drive external loads and to complete machine's actions, must pay extra attention about the safety. Please note the following points:

- 1. Never ignore the possibility of the PLC failure. It is required to design an external safety circuit and safety mechanism to avoid accidents.
- 2. PLCs typically push external loads through relays or transistors. The difference between the characteristics of two is great, with each advantages and disadvantages. In designing, one should select properly.

The advantages of using a relay are that its contact switch has no current polarity and promotes more current (about 2A), and AC or DC power supply can be used. Its shortcomings are that the contact switch is mechanical, with mechanical life and electrical life limits. Basically, the relay is not a durable product, and becomes the unreliable factor in a control system.

The advantages of using a transistor are since it switches by the semiconductor. The number of swap times is unlimited and the speed of switch is fast, depending on demands could reach hundreds kHz. Its shortcomings are has current polarity, can only be used for DC load, below 30V and with less current (about $0.1A \sim 0.5A$).

When using a relay output, must pay attention to the frequency of action then to calculate the machine's life. That is for to avoid controller breakdown due to the damage of the relay. Therefore, most control panels take the approach of attaching a relay externally. Using external relays to promote loads can be considered as the most correct way to assemble panels. At this point, a transistor output controller can be used to enhance the panel's reliability.

- 3. In order to prevent interference from noises, the PLC outputs must take isolation measures. The relay output is magnetically isolated and this can cause an output delay of about 10 ms. The transistor output is isolated by a photocoupler, the output delay is below 1ms for the general output but only several μs delay for high-speed output.
- 4. There is a specification of output capability for the load and should be taken seriously. Do not use excessively. In general, the output specification of the relay is AC220V 2A or less; the transistor is DC30V 0.1A ~ 0.5A or less. For the unsuitable load to push excessive output at a short time may not have a problem. However, it will certainly affect the service life of PLC.

1-1-6 Some Improper Diagrams at a PLC Program

Some conventional circuits of relay switchboards cannot be directly replaced by the Ladder Diagrams at PLC. The following diagrams indicate such circuit loops on the left and the alternative for PLC are on the right.

1-1-7 Double Coil Output

The PLC program with the following characteristic will affect the operation result, please pay special attention.

- 1. When executing the user program PLC follows sequential scan (from left to right, up to down).
- In the PLC executing process, only the contents of the data memory will be used and changed. Actually to drive the external loads are performed after the execution of the program and there is a procedure to output the computing results.

As the figure below shows, Y0 is set as OUT twice, which is referred to as double coil output In this case, it is the state of X1 that actually drives external loads.

To resolve the confusion of double coil output, methods are recommended as follows:

- Parallel connect the driving conditions and then output once.
- Use the SET, RST instructions.
- Use the CJ instruction.
- Use the Step Ladder (STL) instruction or Sequential Function Chart (SFC)

1-1-8 Conclusion

A PLC usually performs the important part in the automatic control system. Appropriate protection of the PLC can improve the reliability of the system.

Traditional PLCs which we are familiar with usually use AC power supply, relay output and terminal block wiring. The AC power supply unit is susceptible to damage due to the instability of the power system (especially in non-industrial advanced countries). The relay output has the lifespan limit because of mechanical contact. Also, to disassemble the wiring at terminal blocks is time-consuming, inconvenient to fault repair (although has separable terminal products but with higher price).

The best configuration for the new generation of PLCs should be the combination of DC power supply, transistor output and connector wiring to exclude factors which affect the reliability from PLC systems as far as possible. In addition, this way makes it possible to reduce wiring time, reduce costs and improve maintenance convenience. It would be more p erfect if they are equipped with a memory card to store programs and data. When a PLC fails, the really important and difficult part is to transfer the program (which need system-related professionals to deal with), rather than the work of dissembling a terminal block (what a general electromechanical person can handle). With a memory card, the PLC replacement work can become easy.

Before using a PLC, you should really understand the specifications of each elements and avoid excessive use (with particular attention to power capacity and output specifications). Also, choose the right products according to your needs in order to design a high cost-effective control system.

PLC is the core of a control system!

Having correct knowledge and ideas helps you establish a stable and reliable control system.

VS Series Controller Provides [Comprehensive] Control Application

More Effective

The VS Series is base on high performance 32-bit 96 MHz processor, the overall efficiency is 10 times more then the VB or VH series PLC.

The size of project memory is enlarged from $4 \sim 16$ K to $16 \sim 64$ K words, also the number of data registers is greatly increased.

The communication could expand up to 6 ports (USB and CP1 \sim CP5 multi-functional ports), fully support high-level control system.

The 4 pulse out points have various positioning functions. The 8 high-speed inputs provide plenty functions such as external interrupt, hardware / software high-speed counter, pulse capture, period measurement, handwheel...

More Fast

The new processor only takes 0.15μ s per basic instruction step, that performance is 2.5 times faster than before. Both the pulse inputs and outputs can reach 1 MHz, more powerful than similar competitor.

By superbly fast USB port to read or write the user project just spends in an instant, 16K Words less than 3 Sec. This progress far exceeds the past.

More Diverse

The VS Series has the VS1 (General), VS2 (Advanced), VSM (Motion Control) and VS3 (High Performance) Main Units. The applicable coverage is from simple to complicated control.

By various Main Units, Modules, Cards, Memory Cards and the modular design to produce a complete and flexible combination.

Remarkable add-on card structure with the DIO, Communication and Special Cards to provide a superb cost-effective, space saving and flexible expansion.

Simple to construct and maintain, this VS Series is the best choice of programmable logic controller.

More Competitive Advantage

The **VIGOR** R&D team has accumulated decades of experience for "More diverse combination" and "The most suitable product" design concepts. Carefully selected high quality CPU to develop the excellent and stable VS Series also with highly competitive price.

The VS Series is close to the automation market and demand by flexible combination. Can raise product level with expandability and more competitive.

Item Series	VS1 General	VS2 Advanced	VSM Motion Control	VS3 High Performance
Process Time of Basic Instruction	0.17µs/Step	0.17µs/Step	0.17µs/Step	0.15µs/Step
Memory Capacity of Project	16K Words	32K Words	32K Words	64K Words
Max. Input/Output Points	128 pt. + 24 (at Exp. Cards)	256 pt. + 24 (at Exp. Cards)	256 pt. + 24 (at Exp. Cards)	512 pt. + 24 (at Exp. Cards)
Programming Port	Built-in 12Mbps high-speed M	ini USB port		
Unit Built-In Comm. Port	CP1 (RS-485) provides various communication modes: Computer Link, MODBUS (Master / Slave), CPU Link, Non-pro			
Expandable Comm. Port	CP2~CP3 (abilities = CP1) CP2~CP5 (abil			
Multi-Func. High Speed In	8 points 10 kHz	8 points 50 kHz	4 points 200 kHz [≠]	⁷ & 4 points 50 kHz
Pulse Output	4 points (axes) 50 kHz*	4 points (axes) 50 kHz*	4 points (axe	es) 200 kHz [*]
Number of Special Modules		8	8	16
Number of Special Cards	1	3	3	3
Function of Expansion Card	EC1 \sim EC3 for the DIO, comm	nunication (RS-232, RS-485) or s	pecial card (e.g. Analog, Tempe	rature, Inverter Speed Control)
Function of Memory Card	Maintenance-free user project	& large data memory card provi	des the best subject transplantir	ng method for system maintain

☆ For the VSM-28ML-D Line Driver model, its two Hardware High-Speed Counters can count 1 MHz pulses respectively.

* Those 4 outputs are available generate 1 MHz pulses individually at the VSM-28-ML-D Line Driver model; 200 kHz at the VSM/VS3's NPN; 50 kHz at the VS1/VS2's NPN or 5 kHz at the PNP Main Unit. Not available in the relay output unit.

The VS Family has the VS1 General, VS2 Advanced, VSM Motion Control and VS3 High Performance series controllers, the complete product line can satisfy various applications from basic to high-end and the combination of the best balance between cost and performance. Also, based on the concept of "the most suitable product" to enhance the competitive power and achieve the value beyond price.

The VS1 General series is suitable for various easy auto-control systems to satisfy with simple sequence control functions, such as cargo lift, parking equipment, conveyor, shoe machinery, brick machinery, woodwork machinery, etc.

The VS2 Advanced series is suitable for general purpose auto-control systems to satisfy with analog or temperature demanded controls, such as passenger lift, rubber vulcanizer, plastic injection molding machine, metal stamping machine, packing machinery, etc.

The VSM Motion Control series is a good match for various industrial machinery needing precise positioning functions by servo/stepper motors, which including labeling machine, sleeving machine, dispenser, film laminating machine, pipe bending machine, cutting machine, bar feeder, etc.

The VS3 High Performance series is the solution for various control systems of complicated sequence or large scale, that including printing machinery, automatic production line, semiconductor peripheral device, automated storage/retrieval system, electroplating procedure control, etc.

1-3 Specification Table of All the VS Series Main Units

Item		VS1 Series	VS2 Series	VSM Series	VS3 Series				
Operation Control Method		Cyclic Operation by Stored Program							
Programming Language		Ladder Diagram + Sequential Function Chart (SFC) or Ladder Diagram + Step Ladder (STL)							
I/O Control Method		Batch Processing							
Process	Basic Instruc	tion	0.17 µs 0.15 µs						
Time	Application Ir	nstruction	A few μ s ~ Hundreds of μ s						
	Basic Instruc	tion	29						
Number of	SFC Instructi	on	2						
Instructions	STL Instructio	on	2						
	Application Ir	nstruction	169	171	171	209			
Project Mom	· · · · · · · · · · · · · · · · · · · ·		The project at the memory	y is including the parameter	area, user program, poin	ters, tables and comments.			
FIOJECLIMEITI			16k Words	32k Words	32k Words	64k Words			
Max. Input/C	Output Points		128 points + 24 at Expansion Card	256 points + 24 at Expansion Card	256 points + 24 at Expansion Card	512 points + 24 at Expansion Card			
Digital	External Inpu	t (X)	64 points: X0 ~ X77	128 points: X0 ~ X177	128 points: X0 ~ X177	256 points: X0 ~ X377			
Output	External Outp	out (Y)	64 points: Y0 ~ Y77	128 points: Y0 ~ Y177	128 points: Y0 ~ Y177	256 points: Y0 ~ Y377			
	Auxiliary	General	6192 points: M0 ~ M1999	and M4000 ~ M8191					
	Relay	Latched	2000 points: M2000 ~ M3	3999					
	(1V1)	Special	512 points: M9000 ~ M95	511					
Internal Relay		Initial	10 points: S0 ~ S9						
	Step Relay	General	3086 points: S10 ~ S499	δ points: S10 ~ S499 and S1500 ~ S4095					
	(S)	Latched	900 points: S500 ~ S899)0 points: S500 ~ S899 and S1000 ~ S1499					
		Annunciator	100 points: S900 ~ S999	(Latched)					
	100ms		200 points: T0 ~ T199 (T	imer range: 0.1 \sim 3,276.7 s	ec.)				
	10ms		46 points: T200 ~ T245 (Timer range: 0.01 ~ 327.67 sec.)						
Timer (T)	1ms (Retentiv	/e)	4 points: T246 ~ T249 (T	imer range: 0.001 ~ 32.767	'sec.)				
	100ms (Retentive)		6 points: T250 ~ T255 (Timer range: 0.1 ~ 3,276.7 sec.)						
	1ms		256 points: T256 ~ T511 (Timer range: 0.001 ~ 32.767 sec.)						
	16-bit Llp	General	100 points: C0 ~ C99 (Ra	ange: 0 ~ 32,767)					
Counter		Latched	100 points: C100 ~ C199	(Range: 0 ~ 32,767)					
(C)	32-bit	General	20 points: C200 ~ C219	(Range: -2,147,483,648 ~	2,147,483,647)				
	Up / Down	Latched	15 points: C220 ~ C234	(Range: -2,147,483,648 ~)	2,147,483,647)				
Software	32-bit	1-Phase	11 points: C235 ~ C245	(Range: -2,147,483,648 ~)	2,147,483,647)				
Counter	Up / Down,	2-Phase	5 points: C246 ~ C250 (F	Range: -2,147,483,648 ~ 2	,147,483,647)				
(C)	Latoneu	A / B Phase	5 points: C251 ~ C255 (Range: -2,147,483,648 ~ 2,147,483,647)						
Hardware Hi	gh Speed Cou	unter	2 points: HHSC1 ~ HHSC2 (Range: -2,147,483,648 ~ 2,147,483,647)						
	General (D)		7000 points: D0 ~ D6999						
Data	Latched (D)		2000 points: D7000 ~ D8999						
Register	Data Register Special (SD) Index Register (V / Z)		512 points: D9000 ~ D9511						
			16 points: V0 ~ V7 and Z0 ~ Z7						
	Extension Register (R)		10000 points: R0 ~ R9999 24000 points: R0~2399						
	Mark Pointer		1024 points: Each pointer can be named by P0 \sim P1023 or 16 characters						
	Branch Point	er (P)	1024 points: P0 ~ P1023						
Pointer	Table Nickna	me	32 points: Each table can be named by Q0 \sim Q31 or 16 characters						
1 Gintor	Table Code (Q)	32 points: Q0 ~ Q31						
	Interrupt Poin	ter (I)	21 points: 8 pt. for externa	al interrupt, 3 pt. for timer in	terrupt, 10 pt. for high spe	ed counter interrupt			
Nest Pointer (N)		8 points: N0 ~ N7							

Item			VS1 Series	VS2 Series	VSM Series	VS3 Series			
	Decimal 16-bit		K-32,768 ~ K32,767						
	(K) 32-1		K-2,147,483,648 ~ K2,14	7,483,647					
Range of Constant	Hexadecimal	16-bit	H0 ~ HFFFF						
	(H)	32-bit	H0 ~ HFFFFFFF						
	Real No. (E)	32-bit	E-3.402 + 38 ~ E3.402 +	$E-3.402 + 38 \sim E3.402 + 38$, decimal or exponent notation					
	Main Unit Programming		I2Mbps high-speed Mini USB communication port						
Comm.	Comm. Port	Multi-Func.	CP1 (RS-485) is available	P1 (RS-485) is available for the Computer Link, MODBUS, CPU Link, Non-Protocol, etc.					
Function	Expanded M	ulti-Euro Port		CP2~CP3 (at the EC1)		$\mbox{CP2} \sim \mbox{CP3}$ (at the EC1)			
			_		_	CP4 \sim CP5 (at the EC3)			
	Input Respon	se Frequency	$10 \text{kHz} \times 8 \text{ points}$	50kHz $ imes$ 8 points	200kHz \times 4 points \ddagger 50kHz \times 4 points	200kHz \times 4 points 50kHz \times 4 points			
	Input Respor	nse Time Adj.	8 points: X0 ~ X7 (0~60n	ns)					
	External Inter	rupt Input	8 points: X0 \sim X7 (with de	elay function)					
Multi-	Pulse Captur	e Input	8 points: X0 ~ X7						
Function	Pulse Measurement Input		4 points: X0, X1, X3, X4 (with width period measurement function)						
Input	Frequency Meter Input		8 points: X0 ~ X7						
	Software High Speed Counter		Support 1, 2 or AB phase counting mode, 1-phase 8 points or 2/AB phase 4 sets max.						
	Hardware Hig Counter	gh Speed	2 sets: HHSC1 and HHSC2. Support U, U/D+DIR, U+D, AB×1, AB×2 or AB×4 operating mode						
	Electronic Ha	andwheel	Cooperate with high speed pulse output to control positioning						
High Speed	Pulse Output		4 points 50kHz (4-axis positioning control)	4 points 50kHz (4-axis positioning control)	4 points 200kHz (4-axis po	ositioning control) 🕁			
Real Time Cl	ock (Optional)		By installing VS-MCR Mult	i-Function Memory Card to	indicate year, month, date	, hour, min., sec. & week			
Expansion M	emory (Option	nal)	By installing a VS-MCR/VS-MC card to expand no-battery required 16Mb latched memory for user projec and 655,360 Words data bank						
Special	Number of Sp Available	pecial Module	_	8	8	16			
Module	Module Type of Special Module		Analog I/O Module, Temperature Input Module, etc.						
	Expansion Card Socket at Unit		10/14M Main Unit (EC1), 20/24M Main Unit (EC1~EC2), 28/32M Main Unit (EC1~EC3)						
Expansion Card	Type of Expai	nsion Card	DI/DO, communication or	special function card (AI, A	O, temperature input, inver	ter speed control, etc.)			
	Number of S Available	pecial Card	1 (VS-3AV-EC won't occupy)	3	3	3			

☆ At the VSM-28ML model, the 4 line driver input points for the HHSC1 & HHSC2 can individually count 1 MHz pulses; also, the 4 line driver output points can individually generate 1MHz pulses.

1-4 Overview of VS Series PLC Models

Item	Model Name	Main Specification
	VS1-10M ★ -D	VS1 Main Unit: 6 DI (DC 24V, X0~X5 10 kHz); 4 DO ★; 16K words project memory; 1 Expansion Card socket;
VS1 Series	VS1-14M ★ -D	VS1 Main Unit: 8 DI (DC 24V, X0~X7 10 kHz); 6 DO ★; 16K words project memory; 1 Expansion Card socket; U/O by screw-clamp terminal
	VS1-20M ★ -D	VS1 Main Unit: 12 DI (DC 24V, X0~X7 10 kHz); 8 DO ★; 16K words project memory; 2 Expansion Card sockets; //O by screw-clamp terminal
	VS1-24M★-D	VS1 Main Unit: 14 DI (DC 24V, X0~X7 10 kHz); 10 DO ★; 16K words project memory; 2 Expansion Card sockets: 1/0 by screw-clamp terminal
Wain Onit	VS1-28M★-D	VS1 Main Unit: 16 DI (DC 24V, X0~X7 10 kHz); 12 DO ★; 16K words project memory; 3 Expansion Card sockets: DIO Expansion Module available: I/O by screw-clamp terminal
	VS1-32M ★ -D	VS1 Main Unit: 20 DI (DC 24V, X0~X7 10 kHz); 12 DO ★; 16K words project memory; 3 Expansion Card sockets: DIO Expansion Module available; I/O by screw-clamp terminal
	VS1-32MT-DI	VS1 Main Unit: 16 DI (DC 24V, X0~X7 10 kHz); 16 DO (100mA NPN transistor, Y0~Y3 50 kHz); 16K words project memory: 3 Expansion Card sockets: DIQ Expansion Module available: I/Q by IDC connector.
	VS2-24M★-D	VS2 Main Unit: 12 DI (DC 24V, X0~X7 50 kHz); 12 DO ★; 32K words project memory; 2 Expansion Card sockets; DIO Expansion & 8 Special Modules available; I/O by screw-clamp terminal
VS2 Series Main Unit	VS2-32M ★ -D	VS2 Main Unit: 16 DI (DC 24V, X0~X7 50 kHz); 16 DO ★; 32K words project memory; 3 Expansion Card sockets: DIO Expansion & 8 Special Modules available; I/O by screw-clamp terminal
Main Onit	VS2-32MT-DI	VS2 Main Unit: 16 DI (DC 24V, X0~X7 50 kHz); 16 DO (100mA NPN transistor, Y0~Y3 50 kHz); 32K words project memory: 3 EC sockets: DIO Expansion & 8 Special Modules available: I/O by IDC connector
	VSM-14MT-D	VSM Main Unit: 8 DI (DC 24V, 4×200 kHz + 4×50 kHz); 6 DO (500mA NPN transistor, Y0~Y3 200 kHz); 32K words project memory: 1 Expansion Card socket: I/O by screw-clamp terminal
	VSM-24MT-D	VSM Main Unit: 12 DI (DC 24V, 4×200 kHz + 4×50 kHz); 12 DO (500mA NPN transistor, Y0~Y3 200 kHz); 32K words project memory; 2 Expansion Card sockets; DIO Expansion & 8 Special Modules available;
VSM Series	VSM-32MT-D	VSM Main Unit: 16 DI (DC 24V, 4×200 kHz + 4×50 kHz); 16 DO (500mA NPN transistor, Y0~Y3 200 kHz); 32K words project memory; 3 Expansion Card sockets; DIO Expansion & 8 Special Modules available;
Main Unit	VSM-28ML-D	VSM Main Unit: 4 Line Driver DI (for 2 hardware counters up to 1 MHz) + 12 DI (DC 24V, 4×50 kHz & 8 normal); 8 Line Driver DO (4 × 1 MHz & 4 normal) + 4 DO (500mA NPN transistor); 32K words project memory;
	VSM-32MT-DI	VSM Main Unit: 16 DI (DC 24V, 4×200 kHz + 4×50 kHz); 16 DO (100mA NPN transistor, Y0~Y3 200 kHz); 32K words project memory; 3 Expansion Card sockets; DIO Expansion & 8 Special Modules available;
VS3 Series	VS3-32M★-D	VS3 Main Unit: 16 DI (DC 24V, 4×200 kHz + 4×50 kHz); 16 DO \star (Y0~Y3 200 kHz at NPN transistor model); 64K words project memory; 3 Expansion Card sockets; DIO Expansion & 16 Special Modules available;
Main Unit	VS3-32MT-DI	VS3 Main Unit: 16 DI (DC 24V, 4×200 kHz + 4×50 kHz); 16 DO (100mA NPN transistor, Y0~Y3 200 kHz); 64K words project memory: 3 EC sockets: DIO Expansion & 16 Special Modules available: 1/0 by IDC connector
	VS-8X	DI Expansion Module: 8 DI (DC 24V); input by screw-clamp terminal
	VS-16X	DI Expansion Module: 16 DI (DC 24V); input by screw-clamp terminal
	VS-8Y ★	DO Expansion Module: 8 DO \star ; output by screw-clamp terminal
	VS-16Y ★	DO Expansion Module: 16 DO ★; output by screw-clamp terminal
	VS-8XY ★	DIO Expansion Module: 4 DI (DC 24V); 4 DO ★; I/O by screw-clamp terminal
DIO	VS-16XY ★	DIO Expansion Module: 8 DI (DC 24V); 8 DO ★; I/O by screw-clamp terminal
Expansion	VS-28XYR	DIO Expansion Module: 16 DI (DC 24V); 12 DO (2A Relay); I/O by screw-clamp terminal
Module	VS-32XY ★	DIO Expansion Module: 16 DI (DC 24V); 16 DO \star ; I/O by screw-clamp terminal
	VS-16X-I	DI Expansion Module: 16 DI (DC 24V); input by IDC connector
	VS-16YT-I	DO Expansion Module: 16 DO (100mA NPN transistor); output by IDC connector
	VS-16XYT-I	DIO Expansion Module: 8 DI (DC 24V); 8 DO (100mA NPN transistor); I/O by IDC connector
	VS-32XYT-I	DIO Expansion Module: 16 DI (DC 24V); 16 DO (100mA NPN transistor); I/O by IDC connector
Power Module	VS-PSD	Power Repeater Module: DC 24V power input to transfer to DC 5V 500mA + DC 12V 800mA, those inner power outputs provide for the Modules behind
	VS-4AD	Analog Input Module: 4 channel (16-bit) inputs, each channel could input either –10~+10V, 4~20mA or –20~+20mA; isolated
	VS-2DA	Analog Output Module: 2 channel (16-bit) outputs, each channel could output either –10~+10V, 4~20mA or –20~+20mA; isolated
	VS-3A	Analog I/O Module: 2 channel (16-bit) inputs + 1 channel (16-bit) output, each channel could input/output either -10~+10V, 4~20mA or -20~+20mA; isolated
Special	VS-6A	Analog I/O Module: 4 channel (16-bit) inputs + 2 channel (16-bit) outputs, each channel could input/output either $-10 \sim +10V$, $4 \sim 20$ mA or $-20 \sim +20$ mA; isolated
Function	VS-4TC	Thermocouple Temperature Input Module: 4 channel thermocouple (K, J, R, S, T, E, B or N type) inputs, 0.1°C / 0.1°F resolution ; isolated
literatio	VS-8TC	Thermocouple Temperature Input Module: 8 channel thermocouple (K, J, R, S, T, E, B or N type) inputs, 0.1°C / 0.1°F resolution ; isolated
	VS-2PT	PT-100 Temperature Input Module: 2 channel (3-wire PT-100) inputs, 0.1°C / 0.1°F resolution ; isolated
	VS-4PT	PT-100 Temperature Input Module: 4 channel (3-wire PT-100) inputs, 0.1°C / 0.1°F resolution ; isolated
	VS-2PG	Pulse Generator Module: 2 sets of 200 kHz high speed pulse outputs for 2 axes position control
	VS-4PG	Pulse Generator Module: 4 sets of 200 kHz high speed pulse outputs for 4 axes position control

Item	Model Name	Main Specification
	VS-4X-EC	DI Expansion Card: 4 DI (DC 24V); output by screw-clamp terminal
	VS-8X-EC	DI Expansion Card: 8 DI (DC 24V); input by screw-clamp terminal
	VS-4Y★-EC	DO Expansion Card: 4 DO ★; output by screw-clamp terminal
	VS-8YT-EC	DO Expansion Card: 8 DO (DC 24V, 300mA NPN transistor); output by screw-clamp terminal
DIO	VS-4XY★-EC	DIO Expansion Card: 2 DI (DC 24V); 2 DO ★; I/O by screw-clamp terminal
Card	VS-8XY★-EC	DIO Expansion Card: 4 DI (DC 24V); 4 DO ★; I/O by screw-clamp terminal
	VS-8XI-EC	DI Expansion Card: 8 DI (DC 24V); input by IDC connector
	VS-8YTI-EC	DO Expansion Card: 8 DO (DC 24V, 100mA NPN transistor); output by IDC connector
	VS-E8X-EC	DI Expansion Card for VS-32XY★ module: 8 DI DC 24V, Sink/Source selectable; input by screw-clamp terminal
	VS-E8YT-EC	DO Expansion Card for VS-32XY * module: 8 DO (DC 24V, 0.3A NPN transistor); output by screw-clamp terminal
	VS-485-EC	RS-485 Communication Expansion Card: One non-isolated RS-485 port with TX / RX indicators; dist. 50m Max.
	VS-485A-EC	RS-485 Communication Expansion Card: One isolated RS-485 port with TX / RX indicators; dist. 1000m Max.
	VS-D485-EC	RS-485 Communication Expansion Card: Dual non-isolated RS-485 ports with TX / RX indicators; dist. 50m Max.
_Comm.	VS-D485A-EC	RS-485 Communication Expansion Card: Dual isolated RS-485 ports with TX / RX indicators; dist. 1000m Max.
Expansion Card	VS-D232-EC	RS-232C Communication Expansion Card: Dual non-isolated RS-232 ports with TX / RX indicators; dist. 15m Max.; wiring by the RX / TX / SG terminals
	VS-D52A-EC	RS-485 + RS-232C Communication Expansion Card: One isolated RS-485 port (1000m) & one non-isolated RS-232C port (15m), both with TX / RX indicators and wiring by terminals
	VS-ENET-EC	Ethernet + RS-485 Communication Expansion Card: One Ethernet port (with additional non-isolated RS-485, dist. 50m) & one non-isolated RS-485 port (dist. 50m), both with TX / RX indicators
	VS-3AV-EC	Brief Voltage I/O Card: 2 channel (0~10V, 12-bit) inputs; 1 channel (0~10V, 10-bit) output; with a calibrated DC 10V output; non-isolated
	VS-4AD-EC	Analog Input Card: 4 channel (12-bit) inputs, each channel could output either 0~10V, 4~20mA or 0~20mA; non-isolated
	VS-2DA-EC	Analog Output Card: 2 channel (12-bit) outputs, each channel could input either 0~10V, 4~20mA or 0~20mA; non-isolated
Special	VS-4A-EC	Analog I/O Card: 2 channel (12-bit) inputs + 2 channel (12-bit) outputs, each channel could input/output either 0~10V, 4~20mA or 0~20mA; non-isolated
Card	VS-3ISC-EC	Inverter Speed Control Card: 3 channel (0.1% resolution) voltage outputs; totally isolated for each channel
	VS-2TC-EC	Thermocouple Temperature Input Card: 2 channel (K, J, R, S, T, E, B or N type thermocouple, 0.2~0.3°C resolution) inputs; non-isolated
	VS-4TC-EC	Thermocouple Temperature Input Card: 4 channel (K, J, R, S, T, E, B or N type thermocouple, 0.2~0.3°C resolution) inputs; non-isolated
	VS-1PT-EC	PT-100 Temperature Input Card: 1 channel (3-wire PT-100, 0.1°C resolution) input; non-isolated
	VS-2PT-EC	PT-100 Temperature Input Card: 2 channel (3-wire PT-100, 0.1°C resolution) inputs; non-isolated
Memory	VS-MC	Memory Card: No battery required 16Mb Flash ROM for user's project and data-bank (655,360 words) storage
Card	VS-MCR	Multi-Function Memory Card: 16Mb Flash ROM for user's project and data-bank (655,360 words) storage; with the Real Time Clock function
Connection	VSPC-200A	USB Communication Cable: Between the PLC's Mini USB Programming Port and a computer's A-type USB; length: 200 cm
Cable	VSEC-	Extension Cable: For the Expansion Slot of the VS series; length
	VB-T8R	8 Relays Output Module: 16A 1c contact relays; with varistors and relay sockets
	VB-T8RS	8 Relays Output Module: 5A 1a contact relays; with 5mm removable screw-clamp terminals
	VB-T8M	8 MOSFETs Output Module: 2A current source MOSFETs; with flyback diodes
	VB-T16M	16 MOSFETs Output Module: 2A current source MOSFETs; with flyback diodes
IDC	VB-T16TB	16 Points Adapted Board: Transfer between the IDC connectors and screw-clamp terminals
Connector	VBIDC-	IDC Ribbon Cable: Assembled with two 10-pin female connectors; length□□□:50/100/150/200/250/300 cm
Related	VBIW-	IDC Dispersed Wires: An IDC female connector with 10 rainbow 22 AWG wire; length
7.0000001y	VBIDC-FC100	10-pin Ribbon Cable: Flat, Grey, 28 AWG; length: 100 foot
	VBIDC-FC250	10-pin Ribbon Cable: Flat, Grey, 28 AWG; length: 250 foot
	VBIDC-HD20	10-pin IDC Connector: Female connector with strain relief, Grey, 20 pcs.
	VBIDC-HD100	10-pin IDC Connector: Female connector with strain relief, Grey, 100 pcs.
	VB-HT214	A crimping tool of IDC ribbon cable

★ Selectable output:

R: 2A Relay;

T: 0.5A NPN transistor (EC cards are 0.3A); at Y0~3 could generate purse (VS1/2: 50kHz; VSM/3: 200kHz);
P: 0.5A PNP transistor, at Y0~3 could generate 1kHz purse

All Main Unit, Special Module and IDC's module are required DC 24V -15% / +20% power input

2. Component Descriptions

2-1 Table of Components

Item		Description				
	VS1 Series	X0~X77, 64 Pt.(named by the octal system)				
External Input	VS2 Series	X0~X177, 128 Pt.(named by the octal system)				
(X)	VSM Series	X0~X177, 128 Pt.(named by the octal system)				
	VS3 Series	X0~X377, 256 Pt.(named by the octal system)				
	VS1 Series	Y0~Y77, 64 Pt.(named by the octal system)				
External Output	VS2 Series	Y0~Y177, 128 Pt.(named by the octal system)				
(Y)	VSM Series	Y0~Y177, 128 Pt.(named by the octal system)				
	VS3 Series	Y0~Y377, 256 Pt.(named by the octal system)				
	Conserval I los	M0_M1000_M4000_M9101_Tot = 6102.Pt				
Auxiliary Relay		M2000 M2000 2000 Pt				
(M)	Special Line	M0000 M0511 512 Pt				
		N9000~N9311, 312 Ft.				
	General Use	50~59, 10 PL				
Step Relay	Latched	S10~S499, S1500~S4095, Iot.= 3086 Pt.				
(3)	Special Use	S500~S899, S1000~S1499 , Tot. = 900 Pt.				
	Annunciator	S900~S999, 100 Pt. latched				
	100ms	10~1199, 200 Pt.Range: 0.1~3,276.7 Sec.				
Timer	10ms	T200~T245, 46 Pt.Range: 0.01~327.67 Sec.				
(T)	1ms Retentive	T246~T249, 4 Pt.Range: 0.001~32.767 Sec.				
	100ms Retentive	T250~T255, 6 Pt. Range: 0.1~3,276.7 Sec.				
	1ms	T256~T511, 256 Pt. Range: 0.001~32.767 Sec.				
	16-bit Up	C0~C99, 100 Pt. Range: 0~32,767				
Counter		C100~C199, 100 Pt. (Range: 0~32,767; Latched)				
(C) 32-bit Up / Down		C200~C219, 20 Pt. (Range: -2,147,483,648~2,147,483,647)				
		C220~C234, 15 Pt. (Range: -2,147,483,648~2,147,483,647; Latche	ed)			
Software		C235~C245, 11 Pt. 1-phase counter	For the $X0 \sim X7$			
Counter	32-bit Up / Down, Latched	C246~C250, 5 Pt. 2-phase counter				
(C)		C251~C255, 5 Pt., AB-phase counter				
D	General Use	D0~D6999, 7000 Pt.				
(D)	Latched	D7000~D8999, 2000 Pt.				
	Special Use	D9000~D9511, 512 Pt.				
Index Register (V & 2	<u>Z</u>)	V0~V7, Z0~Z7, 16 Pt.				
Extension Register	VS1, VS2, VSM Series	R0~R9999, 10000 Pt.				
(R)	VS3 Series	R0~23999, 24000 Pt.				
Mark Pointer	·	1024 points: Each pointer can be named by P0~P1023 or 16 characters	1024 pointers in total			
Branch Pointer (P)		1024 points: P0~P1023				
Table Nickname		32 points: Each table can be named by Q0 \sim Q31 or 16 characters	32 tables in total			
Table Code (Q)		32 points: Q0~Q31	- 32 lables in lola			
	External Interrupt	8 points: IX0P/F~IX7P/F				
Interrupt Pointer	Timer Interrupt	3 points: ITA				
(I)	Software High Speed Counter	8 points: IHC0~IHC7				
	Hardware High Speed Counter	2 points: IHHC1~IHHC2				
Nested Pointer N		N0~N7, 8 Pt.				
Decimal	16-bit	K-32,768~K32,767				
(K)	32-bit	K-2,147,483,648~K2,147,483,647				
Hexadecimal	16-bit	H0~HFFFF				
(H)	32-bit	H0~HFFFFFFF				
Real Number (E)	32-bit	E-3.402 +38~E3.402 +38 decimal or exponent notation				

2-2 External Input (X) and External Output (Y)

2-2-1 External Input (X)

VS series PLCs read the ON/OFF status of various external switches and sensing elements as operating conditions through the input points. To prevent problems such as noise interference and switch bouncing, there is a filter of about 10ms equipped at each input point. Since the external input X0 \sim X7 of a Main unit are designated as multi-function input points to perform various high speed functions, therefore, the filter time of these 8 input points is adjustable.

Functions of these 8 output points are listed below.

Eunction	External Input Point								Ref.
1 difetion	X0	X1	X2	X3	X4	X5	X6	Х7	Page
Common Input	Use D9020	to adjust the	filter time as (0~60ms					183
Frequency Meter	Use the SPI	D instruction 1	o perform the	e speed deteo	tion function				190
Software High Speed Counter	Use C235~C255 1-phase/2-phase/AB phase counters, besides to generate IHC0~IHC7 interrupt					25			
External Interrupt	IX0P/F	IX1P/F	IX2P/F	IX3P/F	IX4P/F	IX5P/F	IX6P/F	IX7P/F	54
Pulse Capture	M9170	M9171	M9172	M9173	M9174	M9175	M9176	M9177	55
Hardware High Speed Counter	HHSC1, the IHHC	to make 1 interrupt	nterrupt HHSC2, to make the IHHC2 interrupt		_	_	_	58	
Pulse Measurement	Width / measu	' Period rement	_	Width / Period measurement		_	_	56	
Positioning Control	Can be the	input points o	of the position	ing control's l	DOG, PG0, IN	IT signals or	for the handw	heel.	422

• For the descriptions of each item, please refer to the page listed at the "Ref. Page " above.

- The contact of a common input point in the program is available to work with an other special function.
- When one of the X0~X7 performs a mentioned special function above, this input point is not reusable with another special function. However, the External Interrupt could cooperate with Pulse Measurement function. (For details, please see the specific function description.)
- When a mentioned special function above performs, the filter time of this input point will be automatically adjusted to Oms (deviates form D9020). To prevent noise interference, input points X0~X7 are also equipped with RC filters. Thus, the filter time of 0 ms is not true 0 ms. In addition, the response time of input points X0~X7 is varied depending on the series of VS1, VS2, VSM or VS3.

When filter time is adjusted as 0ms, the minimum pulse width required to transmit input signals to respective input points are listed as follows.

Series	External Input Point							
	X0	X1	X2	X3	X4	X5	X6	X7
VS1	50µs	50µs	50µs	50µs	50µs	50µs	50µs	50µs
VS2	10µs	10µs	10µs	10µs	10µs	10µs	10µs	10µs
VSM	2.5µs	2.5µs	10µs	2.5µs	2.5µs	10µs	10µs	10µs
VSM-28ML	0.5µs	0.5µs	10µs	0.5µs	0.5µs	10µs	10µs	10µs
VS3	2.5µs	2.5µs	10µs	2.5µs	2.5µs	10µs	10µs	10µs

• When a multi-function input point is performing a special function, the response of the point requires fast and relatively sensitive (the fast reaction, the more sensitive), contrarily susceptible to noise interference. Therefore, pay special attention to its external wiring, try to avoid interfering sources, and use isolation lines.

2-2-2 External Output (Y)

The contacts of external output in the VS series PLC are for the purpose of to drive external loads. By transmitting the operation results through its external output points, the PLC drives various loads, such as motors, electromagnetic valves, electromagnetic conductors, etc. and virtually perform control motions.

For various loading needs, the VS series PLCs have different output types, such as relay, NPN transistor and PNP transistor. Every relay has a coil and contact that uses magnetically coupled to separate the PLC internal circuit from the external, but a transistor output uses a photocoupler to prevent noise interference.

Relay outputs have approximately 10ms of output delay, while transistor outputs have approx. 1ms. These delays result that certain applications cannot be fully met. Therefore, the 4 output points of Y0 \sim Y3 are designated to be multi-function output points.

Function	External output point						
runction	YO	Y1	Y2	Y3	No.		
Common Output	The output type is select	The output type is selectable, that includes the relay, NPN transistor or PNP transistor.					
Paulse output	Use the PLSY or PLSR in	Use the PLSY or PLSR instruction to generate a pulse string to the driver of stepper or servo motor					
PWM Output	Use the PWM instruction	Use the PWM instruction to generate PWM signal					
Positioning Control	Use the Positioning Cont step motor or servo moto	rol instruction to generate or, by the method to execut	oositioning pulses directly e the accurate positioning	to the driver of the control	433		

- Except for the common output function, the other functions mentioned above can only available be used at a transistor output main unit.
- For the descriptions of each item, please refer to the page listed at the "Ref. Page No." above.
- At a time, each Y0~Y3 output point allows to execute one instruction of special function only. Also, cannot intermix different functional groups mentioned above.
- The frequency of the Y0~Y3 output at the VS1, VS2, VSM or VS3 series is different, the list below is the capability:

Series	External output point						
	YO	Y1	Y2	Y3			
VS1	50kHz	50kHz	50kHz	50kHz			
VS2	50kHz	50kHz	50kHz	50kHz			
VSM	200kHz	200kHz	200kHz	200kHz			
VSM-28ML	1MHz	1MHz	1MHz	1MHz			
VS3	200kHz	200kHz	200kHz	200kHz			

2-2-3 External Input/Output Assigned Numbers

• The identification numbers of the External Input / Output points are assigned by the octal numeral system.

• T	he table below	lists the assigned	d numbers o	f Input (X) ar	nd Output (Y)) in the VS1	Main Unit:
-----	----------------	--------------------	-------------	----------------	---------------	--------------	------------

Models	VS1-10M	VS1-14M	VS1-20M	VS1-24M	VS1-28M	VS1-32M	VS1-32MT-DI
Input No.	X0~X5	X0~X7	X0~X13	X0~X15	X0~X17	X0~X23	X0~X17
	6 Pt.	8 Pt.	12 Pt.	14 Pt.	16 Pt.	20 Pt.	16 Pt.
Output No.	Y0~Y3	Y0~Y5	Y0~Y7	Y0~Y11	Y0~Y13	Y0~Y13	Y0~Y17
	4 Pt.	6 Pt.	8 Pt.	10 Pt.	12 Pt.	12 Pt.	16 Pt.

• The table below lists the assigned numbers of Input (X) and Output (Y) in the VS2 Main Unit:

Models	VS2-24M	VS2-32M	VS2-32MT-DI
Input No.	X0~X13	X0~X17	X0~X17
	12 Pt.	16 Pt.	16 Pt.
Output No.	Y0~Y13	Y0~Y17	Y0~Y17
	12 Pt.	16 Pt.	16 Pt.

• The table below lists the assigned numbers of Input (X) and Output (Y) in the VSM Main Unit:

Models	VSM-14MT-D	VSM-24MT-D	VSM-32MT-D	VSM-32MT-DI	VSM-28ML-D
Input No.	X0~X7	X0~X13	X0~X17	X0~X17	X0~X17
	8 Pt.	12 Pt.	16 Pt.	16 Pt.	16 Pt.
Output No.	Y0~Y5	Y0~Y13	Y0~Y17	Y0~Y17	Y0~Y13
	6 Pt.	12 Pt.	16 Pt.	16 Pt.	12 Pt.

• The table below lists the assigned numbers of Input (X) and Output (Y) in the VS3 Main Unit:

Models	VS3-32M	VS3-32MT-DI
Input No.	X0~X17 16 Pt.	X0~X17 16 Pt.
Output No.	Y0~Y17 16 Pt.	Y0~Y17 16 Pt.

- Notes for the VS1 series PLC module expansion:
 - The Main Unit of VS1-10M / VS1-14M / VS1-20M / VS1-24M is not equipped with the module expansion slot.
 - The Main Unit of VS1-28M / VS1-32M is equipped with the module expansion slot, which can reach 64 inputs and 64 outputs (X0~X77, Y0~Y77), 128 points in total.
 - The module expansion slot of the VS1 series PLC can be equipped with DIO modules, but not allow special module.
 - The Main Unit of VS1-28M/VS1-32MT-DI occupies the assigned numbers of X0~X17 and Y0~Y17. Therefore, the first expansion module is started from X20 and Y20.
 - The Main Unit of VS1-32M occupies the assigned numbers of X0~X27 and Y0~Y17. Therefore, the first expansion
 module is started from X30 and Y20.

- The VS-8XY module occupies 8 input points and 8 output points.
- The VS-28XYR expansion module will occupy 16 input and 16 output points. Besides, it is unable to expand any module on its right side.

- Notes for VS2, VSM and VS3 series PLCs module expansion:
 - The Main Unit of VSM-14M is not equipped with the module expansion slot, cannot be connected with any DIO expansion module or special module.
 - The Main Unit of VS2, VSM or VS3 equips a module expansion slot, could connect with DIO expansion modules and special modules. (excluded the VSM-14M)
 - The Main Unit of VS2 or VSM can use expansion modules to handle up to 128 inputs (X0~X177) and 128 outputs (Y0~Y177), total 256 I/O points. And also available 8 special modules.
 - The Main Unit of VS3 can use expansion modules to handle up to 256 inputs (X0~X377) and 256 outputs (Y0~Y377), total 512 I/O points. And also available 16 special modules.
 - All the Special and DIO Expansion Modules are serial connected on the right side of the Main Unit, and the connection sequence is without reserved. The closest Special Module is designated as the 1^{st.} Special Module. After that, the followed Special Module is the 2^{nd.}, and so on. But, the DIO Expansion Module will not interfere with the ranking of Special Modules.
 - The Main Unit of VS2, VSM or VS3 will occupy the assigned numbers X0~X17 and Y0~Y17, thus the beginning I/O address of the first expansion unit/module are the X20 and Y20.

- The VS-8XY module occupies 8 input points and 8 output points.
- The VS-28XYR expansion module will occupy 16 input and 16 output points. Besides, it is unable to expand any module on its right side.
- The VS Main Unit has the circuit for inner power supplying but the expanded modules and cards do not have, all power is from the Main Unit Please be aware of power consumption. If the inner power is insufficient, add the VS-PSD power repeater module is required.

For the power consumption calculations of individual expansion modules and expansion cards, please refer to "1-8 Specifications of Power Supply" in the Product Manual.

2-3 Auxiliary Relay (M)

The PLC includes considerable internal Auxiliary Relays (M), the function of those are to store up plenty ON/OFF status, which provided data for the processing demand. The operating method of an Auxiliary Relay is the same way to operate the External Output Y, but the contact of Auxiliary Relay can not directly drive an external load. The identifier number of an Auxiliary Relay M uses the decimal method, and the functions can be divided into three different types:

(1) General Auxiliary Relay

When the input power is cut off during the PLC operation, the contents of this kind relay will be cleared. After the power resumes, the contents of this kind relay are all OFF.

(2) Latched Auxiliary Relay

When the input power is cut off during the PLC operation, the contents of this kind relay will be latched. After the power resumes, the contents still remain. That means, if the content of a latched relay is ON before power cut, its state will keep ON at the moment when the power is back.

• Below show some examples:

Suppose there is a platform that, when the motor rotates forward and backward, it drives the platform to move left and right. In addition, the left limit switch (X0) and the right limit switch (X1) are connected to the left and right limitations of the moving range. If the operation of the motor should finish the uncompleted movement after the power is returned, that must use a latched auxiliary relay.

Also, now there are many mechines using human-machine interface (HMI) as operation interface. In such cases, many setups to PLCs by HMI may need the latched function.

(3) Special Auxiliary Relay

Each special relay has its own specific function. Some special relay has only the readable contact of its status, but without the writable coil to be driven by the program. Do not use special relays which are not defined. For the details of special relays, please refer to the section 2-14 "Special Relay and Special Register".

• The auxiliary relays in the VS1, VS2, VSM and VS3 series share exactly the same ranges.:

General Auxiliary Relay	Latched Auxiliary Relay	Special Auxiliary Relay
M0~M1999, M4000~M8191 Total = 6192Pt.	M2000~M3999, Total = 2000 Pt.	M9000~M9511, Total = 512Pt.

2-4 Step Relay (S)

A Step Relay is the basic component in the Sequential Function Chart (SFC) or Step Ladder (STL). The identifier number of a Step Relay S uses the decimal method, and the functions can be divided into four different types:

(1) Initial Step Relay

It is used in the initial status of the Sequential Function Chart .

(2) General Step Relay

It is for general use in the Sequential Function Chart. When power cut off occurs during PLC operation, the status will be reverted to void (OFF).

(3) Latched Step Relay

When power cut off occurs during PLC operation, the status will be retained. When the power resumes, PLC can continue its work from the Latched Step Relay.

(4) Annunciator Step Relay

The annunciator with latched function. It is mainly driven by the ANS (FNC46) instruction as a contact of the annunciator, used to record the relevant warning messages to facilitate troubleshooting.

• The Step Relays in the VS1, VS2, VSM and VS3 series share exactly the same ranges.

Initial Step Relay	General Step Relay	Latched Step Relay	Annunciator Step Relay
S0~S9, 10 Pt.	S10~S499, S1500~S4095 Total = 3086 Pt.	S500~S899, S1000~S1499 Total = 900 Pt.	S900~S999, 100 Pt.

2-5 Timer (T)

- At the VS series PLC, all the timers are handling the time by increase counting. When the timer's Present Value (PV) = Set Value (SV, the value is designated to this timer), the timer's contact turns ON.
- The real set time of a timer = Designated Set Value \times Unit of this timer
- The Set Value of a timer can be set directly by using a constant number K or indirectly by using the content value in a Data Register D or R. Also, can be modified by using the Index Register V/Z.
- The definition of timers at the VS1, VS2, VSM and VS3 serie are exactly the same:

Ger	neral (non-retentive) Ti	Retentiv	ve Timer	
100ms timer	10ms timer	1ms timer	1ms timer	100ms timer
0.1~3276.7 Sec.	0.01~327.67 Sec.	0.001~32.767 Sec.	0.001~32.767 Sec.	0.1~3276.7 Sec.
T0~T199	T200~T245	T256~T511	T246~T249	T250~T255
200 Pt.	46 Pt.	256 Pt.	4 Pt.	6 Pt.

2-5-1 General Timers

2-5-2 Retentive Timers

- When X1 = ON, the Present Value of timer T246 starts to up count clock pulse by 1ms, and when its value reaches the Set Value K2000 (2 seconds), its contact will be activated.
- During the timer is counting, if the X1 turned OFF or power cut, the T246 will pause counting and retain the Present Value. After the X1 turned ON again, it will resume counting to increase its Present Value continually, until its Present Value = Set Value K2000 (2 seconds) and its contact will become ON.
- When X2 = ON, the Present Value of timer T246 returns to "0" and its contact will be OFF.

2-5-3 Using a Timer in a Subroutine

When the PLC scans to the coil of an general non-retentive timer (not includs T192~T199), it accumulates or clears the Present Value of this timer then controls the timer's contact. When the PLC scans to the END instruction, it accumulates or clears the Present Value of all the T192~T199 timers then

controls the contacts of T192~T199.

At the 1 ms system interrupt, it accumulates the Present Value of activated T246 \sim T249 timers. Then when the PLC scans to the timer's coil, it controls the contact of this timer.

To conclude, reminders for using timers in subroutine are shown below:

- (1) A subroutine which will be executed once during each scan time can adopt all types of timers.
- (2) A subroutine which will be executed several times during each scan time can adopt T192~T199 and T246~T249 timers.
- (3) The subroutine which may not be executed at every scan time can adopt T192~T199 timers.
- (4) An interrupt subroutine (which is only executed in interruption) must adopt T192~T199 timers.

2-5-4 Methods to Appoint the Set Value of a Timer

• Direct setting by using a constant number K

- T200 is a timer using a 10 ms as the time unit.
- When the setting constant K is 150, the Set Value of T200 is 1.5 Sec. $(150 \times 10 \text{ ms} = 1500 \text{ ms} = 1.5 \text{ s}).$
- Indirect setting by using a Data Register D

- T200 is a timer using a 10 ms as the time unit.
- If D0 = 200 , T200 = 2 Sec. timer.
- If D0 = 1000, T200 = 10 Sec. timer.
- The Set Value of T200 can be modified by to change the content value of D0.

2-5-5 Detailed Description about the Output Action and Accuracy of a Timer

Below shows the action procedures of a general non-retentive timer:

Since the scan of CPU already passed the coil of T0, so the contact of T0 would not be activated.

 For the T246~T249, which is using the system's 1ms interrupt to increase the Present Value if the coil of the timer has been triggered.

2-6 Counter (C)

- When one pulse input signal for a counter is turned from OFF to ON, by the up/down direction control and different type of the counter, the counter's Present Value (PV) will increase (+1, counting up) or decrease (-1, counting down) at the turning edge. If its Present Value (PV) is equal to Set Value (SV), this counter's contact will turn ON.
- The Set Value of a counter can be set directly by using a constant number K or indirectly by using the content value in a Data Register D or R. Also, can be modified by using the Index Register V/Z.
- The characteristics of the 16-bit and 32-bit counters are shown in the following table:

Item	16-bit Counter	32-bit Counter						
Counting Direction	Up only	Up or Down (selectable or control by inputs)						
Available Set Value	1~32,767 (equivalent to 1, if the Set Value exceeds the range)	-2,147,483,648~ + 2,147,483,647						
Set Value Appoint	Constant K or a data register	Constant K or data registers (a 32-bit data will occupy 2 continuous data registers)						
Changes of Present Value	Increase; retain if reaching the Set Value	Increase / Decrease (not involved to the Set Value)						
Status of Contact	Turns ON & retains if the Present Value reaches the Set Value	Up count: turns ON if reaches the Set Value Down count: turns OFF if passes through the Set Value						
Reset Action	When the RST instruction is executed, the Present Value bec	comes "0" and the contact will turn to be OFF.						
Present Value Register	16 bits	32 bits						

• The definition of counters at the VS1, VS2, VSM and VS3 serie are exactly the same:

16-bit 0	Counter	32-bit (Counter
General	Latched	General	Latched
C0~C99 100 Pt.	C100~C199 100 Pt.	C200~C219 20 Pt.	C220~C234 15 Pt.

2-6-1 16-bit Counter

• The Present Value of a general counter will be reset when a PLC encounters power cut off. However, the latched counter will retain its Present Value before the power is cut off and starts from there when it is powered.

- The contact signal X1 is to drive the C0 counter. When the signal X1 turns from OFF to ON once, the Present Value of C0 will increase by 1. Then, on the tenth input turning ON, C0's output contact is activated, turns ON. After that, the Present Value remains unchanged even the X1 changes.
- When reset signal X0 is ON, the RST instruction operates. The Present Value of C0 is reset to "0" and its contact will become OFF.

- The counter's Set Value can be set by using a constant K directly or a content value in the Data Register D, R indirectly. Also, this can be modified by the Index Register V/Z.
- When the MOV instruction transfers a new Present Value to the counter and which is greater than its Set Value, the counter's contact will turn to be ON promptly at the next input signal is ON, and meanwhile the Present Value will become the same as the Set Value.

2-6-2 32-bit Counter

• When the rest signal X1 is ON, the RST instruction is executed. The Present Value of this counter will reset to "0" and its contact will be OFF.

- Since the range of a 32-bit Present Value is between -2,147,483,648 to +2,147,483,647. If a counter up counts beyond +2,147,483,647, the Present Value will automatically change to -2,147,483,648. Similarly, the down counting below -2,147,483,648 will have the result +2,147,483,647. This is a typical "Ring Counter" technique.
- When the power is turned off, the latched counter will retain its Present Value and status of the contact.
- The 32-bit counter can be used as a 32-bit data register.
- If use the DMOV instruction to transfer a number to the counter's Present Value register and which is greater than its Set Value, then at the next input ON signal will let its Present Value accumulated but will not change the status of contact.
- The up/down direction control for a 32-bit counter C200~C234 is defined by the special relay M9200~M9234. The C200's direction is defined by M9200. If the M9200 is OFF, the C200 executes up counting; ON counts down. While the M9201 is to control the direction of the C201, and so on.
- The counter's Set Value can be set by using a constant number K directly or a content value in a pair of continuous Data Registers D, R indirectly. The value can be either a 32-bit positive or negative number.
- In the part of 32-bit counter's output coil, its component ID number is not available to modify by the Index Register V/Z. However, the Set Value can be modified by the V/Z.

2-6-3 Methods to Appoint the Set Value of a Counter

16-bit Counter -• Direct setting by a constant number K • Indirect setting by using a Data Register D K100 XΛ C0 MOV K50 D0 D0 • C0 becomes an up counter with 100 counts. C0 • When D0 = 50, C0 becomes a counter with 50 counts. • When D0 = 200, C0 becomes a counter with 200 counts. The set number of counts can be modified by changing the value of D0. 32-bit Counter -• Direct setting by a constant number K • Indirect setting by using a double word Data Register D K43210 X0 X0 C200 DMOV K-5 D0 X1 D0• C200 becomes an up/down counter C200 with the Set Value of K43210. • When the content's Set Value of a 32-bit register that composed by D1 and D0 is K-5, the C200 becomes an up/down counter with the Set Value of -5. (the D1 is for the upper 16-bit, D0 is for the lower 16-bit). • The Set Value of the C200 can be modified by to change the content value of the combined D1 and D0.

2-7 Software High Speed Counter

Each one of the input points $X0 \sim X7$ in the VS series PLC can be used for high speed function, such as the high speed counter, external interrupt or frequency meter. If a $X0 \sim X7$ is not designed for high speed function, it can still be used as a general input point.

For the purpose of the Software High Speed Counter, it uses the interrupt to receive and count every high speed input pulse, hence with a "Software" in the front of its name. The counter is a 32-bit up/down counter with latched function, and can be classified into three types. Their characteristics are shown in the table below:

Counter's ID No.	Counter Type	Count Direction	Range of Set Value	
C235~C245	1-phase high speed counter	Determined by M9235~M9245. OFF is defined as up count while ON as down count.		
C246~C250	2- phase high speed counter	The up and down count signals have their own input points. The direction can be identified from M9246~M9250. OFF means up counting; ON means down counting.	-2,147,483,648	
C251~C255	A/B phase high speed counter	Determined by the sequence of A/B phase input signals. Up counting if A-phase signal is ON then B-phase signal turns from OFF to ON. Down counting if A-phase signal is ON then B-phase signal turns from ON to OFF. The direction can be identified from M9251~M9255. OFF means up counting; ON means down counting.	} +2,147,483,647	

When input points X0~X7 are applied to perform the Software High Speed Counters (SHSC), there are two operation modes available. The setting page is at the "Project Parameter Setup" within the programming software.

CHCC	Mode	1
	INIUUE	

Inpi	1-phase High Speed Counter										2-phase High Speed Counter				er	A/B phase High Speed Counter					
Ħ	C235	C236	C237	C238	C239	C240	C241	C242	C243	C244	C245	C246	C247	C248	C249	C250	C251	C252	C253	C254	C255
X0	U/D						U/D			U/D		U	U		U		А	Α		Α	
X1		U/D					R			R		D	D		D		В	В		В	
X2			U/D					U/D			U/D		R		R			R		R	
Х3				U/D				R			R			U		U			А		А
X4					U/D				U/D					D		D			В		В
X5						U/D			R					R		R			R		R
X6										S					S					S	
X7											S					S					S

SHSC Mode 2

Inpi	1-phase High Speed Counter											2-phase High Speed Counter					A/B phase High Speed Counter				
Ħ	C235	C236	C237	C238	C239	C240	C241	C242	C243	C244	C245	C246	C247	C248	C249	C250	C251	C252	C253	C254	C255
X0	U/D								U/D			U				U	Α				А
X1		U/D							R			D				D	В				В
X2			U/D							U/D				U		R			Α		R
Х3				U/D						R			U					Α			
X4					U/D						U/D		D					В			
X5						U/D					R			D					В		
X6							U/D								U					A	
X7								U/D							D					В	

U: Up count input; D: Down count input; A: A-phrase input; B: B-phrase input; U/D: Up/Down count input; R: Built-in Reset input; S: Built-in Start-up input

- Since a PLC only has 8 high speed inputs X0~X7, once an input point is occupied then it cannot be used for other high speed functions. Therefore, users should plan carefully in order to make good use of these input points.
- This section only describes the software high speed counters; for planning the PLC program, please refer to other sections which are regarded more functions of high speed input points.
- In the sections 2-7-1~2-7-3, the descriptions of various counters are based on SHSC Mode 1.

2-7-1 1-Phase High Speed Counter

- When the start-up signal X22 is ON and there is pulse input from the X0 point, the Present Value of C235 will up/down change.
- When the Present Value of the C235 increases from -6 to -5, its output contact switches from OFF to ON. On the other hand, the Present Value of a counter decreases from -5 to -6, its output contact switches from ON to OFF.
- If the counter up counts accumulated beyond +2,147,483,647, the Present Value will automatically change to -2,147,483,648. Similarly, the down counting below -2,147,483,648 will have the result +2,147,483,647.
- When the rest signal X1 is ON, the RST instruction is executed. Meanwhile, the C235's Present Value is reset to "0" and its output contact becomes OFF.
- The direction of up/down count for an 1-phase counter C235~C245 is determined by the ON/OFF status of related M9235~M9245. If that special relay is OFF, the counter executes up counting; while ON is for down counting.

X20 M9242	• The X20 drives the M9242 to define the up/down count direction of the C242.
X21 RST C242	• When X22 is ON, C242 is activated to receive the counting signal from X2.
X22 C242 D0	 When X21 is ON, the RST instruction is executed. The C242's Present Value resets to "0" and its output contact becomes OFF. If the application of C242 is not demanded to reset by the program, could ignore this line.
	• When X3 (the designated built-in reset signal of C242) is ON, the Present Value of C242 will be reset to "0" and its contact will become OFF.
	• The Set Value of C242 is provided by the content value of D1 and D0.
	 The C241~C243 at the Mode 1 or C243~C245 at the Mode 2 are 1-phase high speed counters which should use the program to activate then by the program or built-in reset input to clear.

X20 M9244	The X20 drives the M9244 to define the up/down count direction of the C244.
	 When X22 is ON and X6 is ON (the built-in start-up signal of C244), the C244 is activated to receive the counting signal from X0.
K220 C244	 When X21 is ON, the RST instruction is executed. The C244's Present Value resets to "0" and its output contact becomes OFF. If the application of C244 is not demanded to reset by the program, could ignore this line.
	• When X1 (the designated built-in reset signal of C244) is ON, the Present Value of C244 will be reset to "0" and its contact will become OFF.
	 The C244~C245 at the Mode 1 are 1-phase high speed counters which should use the program and start-up input to activate then by the program or built-in reset input to clear.

2-7-2 2-Phase High Speed Counter

• When the start-up signal X21 is ON and there is a pulse entering from either X0 or X1, the Present Value of C246 will up/down change.

When X0 changes from OFF to ON, the Present Value of C246 increases by 1. When X1 changes from OFF to ON, the Present Value of C246 decreases by 1.

- When the Present Value of the C235 increases from -6 to -5, its output contact switches from OFF to ON. On the other hand, when the Present Value of a counter decreases from -5 to -6, its output contact switches from ON to OFF.
- If the counter up counts accumulated beyond +2,147,483,647, the Present Value will automatically change to -2,147,483,648. Similarly, the down counting below -2,147,483,648 will have the result +2,147,483,647.
- The up/down counting direction of a 2-Phase High Speed Counter C246~C250 can be watched by to monitor the M9246~M9250. The related special relay is OFF that means up counting; ON means down counting.

X20			When X21 is ON C248 is activated to receive the counting signal from
	RST (C248	X3 or X4.
X21	C248	DO	When X3 changes from OFF to ON, the Present Value of C248 increases by 1
	0240		When X4 changes from OFF to ON, the Present Value of C248 decreases by 1.
• Mhan V00 in ONL the		atruction	is evented. The C240's Dresent Value is report to "0" and its output contact

- When X20 is ON, the RST instruction is executed. The C248's Present Value is reset to "0" and its output contact becomes OFF. If the application of C248 is not demanded to reset by the program, could ignore this line.
- When X5 (the designated built-in reset signal of C248) is ON, the Present Value of C248 will be reset to "0" and its contact will become OFF.
- The Set Value of C248 is provided by the content value of D1 and D0.
- The C247~C248 at the Mode 1 are 2-phase high speed counters which should use the program to activate then by the program or built-in reset input to clear.

X20	 When the X21 is ON and the X6 (designated start-up input of C249) is
RST C249	ON, the C249 is activated to receive the counting signal from X0 or X1.
X21	When X0 changes from OFF to ON, the Present Value of C249 increases
C249	by 1. When X1 changes from OFF to ON, the Present Value of C249 decreases
K100	by 1.

- When X20 is ON, the RST instruction is executed. The C249's Present Value is reset to "0" and its output contact becomes OFF. If the application of C249 is not demanded to reset by the program, could ignore this line.
- When X2 (the designated built-in reset signal of C249) is ON, the Present Value of C249 will be reset to "0" and its contact will become OFF.
- The C249~C250 at the Mode 1 are 2-phase high speed counters which should use the program and start-up input to activate then by the program or built-in reset input to clear.

2-7-3 A/B Phase High Speed Counter

The A/B phase high speed counter is exclusively for receiving A/B phase pulses from a rotary or linear encoder.

• When the start-up signal X21 is ON and there are orderly pulses entering from X0 and X1, the Present Value of C251 will up/down change.

When X0 is ON (A-phase pulse is ON) and X1 turns from OFF to ON (B-phase pulse turns from OFF to ON), the Present Value of C251 increases by 1.

When X0 is ON (A-phase pulse is ON) and X1 turns from ON to OFF (B-phase pulse turns from ON to OFF), the Present Value of C251 decreases by 1.

- The up/down counting direction of the A/B Phase High Speed Counter C251~C255 can be watched by to monitor the M9251~M9255. The related special relay is OFF that means up counting; ON means down counting.
- The rotary encoder which is connected to a motor shaft that produces corresponding A/B phase pulse according to the motor's forward/backward rotation. This A/B phase pulses are transmitted to C251's A/B phase inputs. Therefore, the Present Value of C251 increases/decreases according to the motor's moving direction.

 When the X21 is ON and A/B phase pulses entering from X0 and X1 for the C251.
 When X0 is ON and X1 turns from OFF to ON, the Present Value of C251 increases by 1.

When X0 is ON and X1 turns from ON to OFF, the Present Value of C251 decreases by 1.

- When the X20 is ON, the RST instruction is executed. The C252's Present Value is reset to "0" and its output contact becomes OFF. If the application of the C252 is not demanded to reset by the program, could ignore this line.
- When the X2 (designated built-in reset input of C252) is ON, the Present Value of C252 will be reset to "0" and its contact will become OFF.

The Set Value of C252 is provided by the content value of D11 and D10.

• The C252~C253 at the Mode 1 are A/B phase high speed counters which should use the program to activate then by the program or built-in reset input to clear.

 When the X21 is ON and the X7 (designated start-up input of C255) is ON, the C255 is activated to receive the counting signals from X3 and X4. When X3 is ON and X4 changes from OFF to ON, the Present Value of C255 increases by 1.
 When X3 is ON and X4 changes from ON to OFF, the Present Value of C255 decreases by 1.

- When the X20 is ON, the RST instruction is executed. The C255's Present Value is reset to "0" and its output contact becomes OFF. If the application of C255 is not demanded to reset by the program, could ignore this line.
- When the X2 (designated built-in reset input of C255) is ON, the Present Value of C255 will be reset to "0" and its contact will become OFF.
- The C254~C255 at the Mode 1 are A/B phase high speed counters which should use the program and start-up input to activate then by the program or built-in reset input to clear.

2-7-4 Precautions for Using the Software High Speed Counter

- The VS series PLC is equipped with the Software High-Speed Counters (SHSC) and the Hardware High-Speed Counters (HHSC). Since the Software High-Speed Counters operate in a way of interrupt and thus occupy considerable CPU's capacity and influence its efficiency. In contrast, the Hardware High Speed Counters are equipped with their own hardware circuits in charge of counting, which hardly occupy the efficacy of CPU. At the application of high speed counter, the Hardware High-Speed Counters are recommended.
- The Software High-Speed Counter comparison instructions (HSCS, HSCR, HSZ and HSCT) were to compare and produce results immediately when the related inputs change, then the results could immediately transmit to the specified outputs to drive the load.
 Thus, using the Software High-Speed Counter comparison instruction can get the fastest comparison result.
 However, because each related input changing is to be compared, that consumes the CPU time and reduces the overall performance. Therefore, after a Software High-Speed Counter is started in the program, according to application requirements user should appropriately make a choice between the use of this counter's output or counter's comparison instructions.
- The use of software high-speed counter comparison instructions in the program has the following limitations:
 (1) Use not more than eight instructions simultaneously among HSCS, HSCR, HSZ and HSCT instructions.
 (2) The HSCT instruction can only be used once in the program.
- Note that the signal source of high-speed counters should not have clutter or even switch bounce signals. They will cause the high-speed counter to count incorrectly.
- When the Software High-Speed Counter is used in the program, the filter time of correlative inputs will automatically adjust to the high speed mode.
- The output contact status of the Software High-Speed Counter is determined by the count operation of the counter input. The state of output contact cannot be affected by to insert a new Present Value which is equal to the Set Value.

To Active the Software High-Speed Counter	
 The conditional contact with the program for driving a Softw	vare High-Speed Counter is not the same as to use
for an input point of a general contour. Therefore, please do not use the pulse input point correspondence	onding to the Software High-Speed Counter as the
conditional for driving itself in the program. Doing so will m	nake the count error.
 Ideally the special relay M9000 should be used for activatio 	ın.
M9000	X0
C235	C235

	- C235	
Correct		Incorrec

The Output of Software High-Speed Counter				
M9000 K100 C235				
- - - - - - - - - -				
The Software High-Speed Counter operate by the interrupt, the counting is not dependent to the scan time. Therefore, when the external inputs make the counter's Present Value (PV) = Set Value (SV), the output contact of the counter will change immediately.				
However, as shown in the figure above, the contact state of the C235 will be transferred to Y0 when the program is scanned there, and the state of Y0 will be actually sent to the output when the END instruction is executed. It is still relevant to the scan time and is not an immediate output that drives the load.				
If an immediate output is desired, the specific Software High-Speed Counter comparison instructions FNC 53 (DHSCS), FNC 54 (DHSCR), FNC 55 (DHSZ) and FNC 280 (DHSCT) can be used.				
Finally, using relay outputs will still cause an output delay of about 10ms. If transistor outputs are used, there will				

Finally, using relay outputs will still cause an output delay of about 10ms. It transistor outputs are used, there wi be an output delay of less than 1 ms. (depending on the response speed of the output point). This needs to be taken into consideration if necessary. The Counting Frequency of SHSC

There are two important factors in determining the frequency of SHSC counting:

(1) Limit of hardware circuit: the reaction speed of the photo couplers at high-speed input points X0~X7 and the filter time of input filter circuits, those are limited the maximum pulse frequency can be fed into the PLC. According to the controller series, the pulse frequency is listed in the following table.

Series	X0	X1	X2	X3	X4	X5	X6	X7
VS1	10kHz	10kHz	10kHz	10kHz	10kHz	10kHz	10kHz	10kHz
VS2	50kHz	50kHz	50kHz	50kHz	50kHz	50kHz	50kHz	50kHz
VSM	200kHz	200kHz	50kHz	200kHz	200kHz	50kHz	50kHz	50kHz
VSM-28ML	1MHz	1MHz	50kHz	1MHz	1MHz	50kHz	50kHz	50kHz
VS3	200kHz	200kHz	50kHz	200kHz	200kHz	50kHz	50kHz	50kHz

When these input points are combined for an A/B phase counter, the counting frequency is reduced to half.

(2) Limit of total interruption frequency that PLC system can accept:

The VS series PLC can accept about 200kHz of total interruption frequency.

(The sum of 1-phase counting frequencies) + (The sum of 2-phase counting frequencies)

+ (The sum of A/B-phase counting frequencies) \times 2

= The total of the interrupt frequencies that occur by the Software High-Speed Counter

A lot of applications need to use interrupt at the PLC, those including the software HSC, external interrupt, frequency meter, pulse measurement, pulse output instruction, timer interrupt and so on. When considering the total interrupt frequency, these factors should be taken into an overall assessment.

—— The Notice About to Re	set the Software High-Speed Counter			
 Usually to reset the Software High-Speed Counter, we use the following program. The counter stops counting when the RST instruction is activated in the example. 				
X20	C235			
Count signal X0				
Present Value of C235	Although the pulse persistent, it won't count during this period.			
Reset signal X20	Y			
RST C235	C235 is continuously being reset			
• To avoid above situations, please use the following program.				
X20 ↑	C235 A C235 B			
Counting signal X0				
Present Value of C235	↓ 4 3 Because RST instruction was released, it's ready to count.			
RST C235	A) enables the RST $\rightarrow \sqrt{\gamma}$ \leftarrow Part (B) releases the RST			
2-8 Data Register (D) and Expansion Register (R)

The characteristics of the Data Register (D) and the Extension Register (R) are identical, so hereafter referred to as a Data Register. The data register is used to store a numerical data. The data length is 16 bits and the Most Significant Bit (MSB) represents a positive/negative sign. A register can store a content value between -32,768 and +32,767. Also, that is possible to combine two 16-bit registers into a 32-bit one; the 16 bits with a smaller number is defined as the lower 16 bits and the larger number is the upper 16 bits. A 32-bit data register can store a content value between -2,147,483,648 and +2,147,483,647, the Most Significant Bit (MSB) represents a positive/negative sign.

The data register can be distinguished by its use as follows:

- (1) General Register
 - When the PLC turns from RUN to STOP or its power is cut out the data in the register is reset to zero. If the M9033 is ON then the PLC turns from RUN to STOP, the data will retain; however, when the power is cut out, the data will still be cleared and become "0".
- (2) Latched Register
 - When the PLC's power is disconnected, the data in the Latched Register will be maintained as same as the value stored before the event occurred.
 - To clear the contents in the Latched Register, could use the RST or ZRST instruction.
 - The main purposes of the Latched Register are to store setup data, record data and the memory of mold parameter.
 - When the number of Latched Register is not enough or the stored data has the demand to be transplant, should use the expanded memory card and put the data into the card.

VS series Memory Cards

The VS series PLC provides the VS-MC and VS-MCR memory cards. After the installation of a memory card, 655,360 words of latched data storage space are available. Data can be transferred between the data register and the memory in the card via the data bank write instruction DBWR (FNC 91) and the data bank read instruction DBRD (FNC 90).

Since the memory card uses Flash ROM to store data, the number of writes is limited to 100,000 times. The improper use may shorten the lifespan of the Flash ROM. Therefore, use the DBWRP to substitute the DBWR instruction in a program to write data, that could avoid unnecessary operations and extend the lifespan of the Flash ROM.

(3) Special Register

- Each Special Register has its own specific function, the main usage is as the storage of system status, error code or status monitoring. For details, please refer to the section 2-14 "Special Relay and Special Register".
- (4) Extension Register
 - When the PLC turns from RUN to STOP or its power is cut out the data in the register is reset to zero. If the M9033 is ON then the PLC turns from RUN to STOP, the data will retain; however, when the power is cut out, the data will still be cleared and become "0".
- The function and discrimination of registers D in the VS1, VS2, VSM and VS3 series are exactly the same:

Series	General Register	Latched Register	Special Register	Extension Register
VS1				
VS2	D0~D6999	D7000~D8999	D9000~D9511	R0~R9999, Total = 10000 Pt.
VSM	Total = 7000Pt.	Total = 2000 Pt.	Total = 512 Pt.	
VS3				R0~R23999, Total = 24000 Pt.

2-9 Index Register (V and Z)

Index Register V, Z is a very special register in the VS series PLC. Its purpose is to use the index to modify the operand in an instruction, to serve the purpose of specifying the operand indirectly and exchangeable, thereby improving the flexibility and efficiency of program editing.

The index register provides the ability to specify the operand with flexibility when the instruction is being executed. That providing great help in the preparation of complex control program, and can often simplify the process. Here are some possible applications for reference:

- (1) At the Subroutine. There is generally a need for a subprogram to perform the same function repeatedly for different operands.
- (2) The instruction in the program has limitation about the used number of times.
- (3) When the data in bulk needs process, the source or target data can be specified by the index register.
- The index register is a 16-bit register, numbered from the V0 to the V7 and from the Z0 to the Z7, 16 points in total. Each index register can be reused for different instructions, that just need to give a correct content value to the index register before the instruction is executed.
- V, Z registers can be paired up to form a 32-bit register. In the 32-bit application instruction, V, Z registers should be paired up as (V0, Z0) (V1, Z1)..... (V7, Z7). However, when the paired index register is used to modify a 32-bit operand, that syntax is to put the Z register behind the operand (the V register is hidden).

16-bit	16-bit
V0	ZO
V1	Z1
V2	Z2
V3	Z3
V4	Z4
V5	Z5
V6	Z6
V7	Z7

32-	-bit ———
V0	ZO
V1	Z1
V2	Z2
V3	Z3
V4	Z4
V5	Z5
V6	Z6
V7	Z7

In a 32-bit instruction, only the Z0 is needed to be specified.

Upper 16 bits Lower 16 bits

2-9-1 Using Index Register in Basic Instruction

• The Index Registers can be used to modify the operand in a basic instruction, the modifiable components are shown helow.

The Set Value of a T: when it uses K, D or R at the OUT coil. The Set Value of a C: when it uses K, D or R at the OUT coil.

• Here provide some examples that Index registers V, Z modify operands: When Z0 = 10, X0Z0 = X12 (The X is named by octal number system)

Y5Z0 = Y17 (The Y is named by octal number system)

M10Z0 = M20S2Z0 = S12K100Z0 = K110D0Z0 = D10

XO

• Examples of using index register in basic instructions:

2-9-2 Using Index Register in Application Instruction

• The Index Registers can be used to modify the operand in an application instruction, the modifiable components are shown below:

Bit component: X, Y, M, S

Pointer: P, Q (P as the label name of the jump or subroutine cannot be modified)

Word component: The Present Value of a T or C Index register D, R The K $_n$ X, K $_n$ Y,, K $_n$ M, K $_n$ S which is composed by X, Y, M, S (K $_n$ itself can not be modified) The UnG at the part of G (Un itself can not be modified) Constant: K, H

- When using the index register in a 32-bit application instruction, be sure to use paired V, Z registers. At this point, pay special attention to whether there is residual value in the upper register V. To be safe, use the DMOV instruction when placing value into the V, Z paired registers.
- Here provide some examples that Index registers V, Z are used to modify operands:
- 16-bit instructions, when Z0 = 4, Y27Z0 = Y33 (The Y is named by the octal number system)
 T5Z0 = T9 D0Z0 = D4 K4M8Z0 = K4M12 U1G0Z0 = U1G4
 232-bit instructions(will occupyV,Zregisters), when (V1, Z1)=8, X20Z1 = X30 (The X is named by the octal number system)
 M0Z1 = M8 D0Z1 = D8 K8M40Z1 = K8M48 R10Z1 = R18

2-9-3 Demonstration Program Using Index Register

• Using index register in a subrountine

• With the following program and external wiring, you can use the coded inputs to change the value of Z0. Then, can select one of the Present Values in T0~T9 and display the number in the external seven-segment display.

Display the Present Value of selected Timer

• To add up all values in D0 \sim D9 and store the result into the D10.

M9000		
	RST V1	Reset the content of V1 to zero
	RST D100	Reset D100 to zero, this component is to store the result
Mauuu	 FOR K10 Assi	gn to execute 10 times within the loop, that for every command between the and NEXT instructions.
	ADD D0V1 D1	00 D100 The value of D0V1 is accumulated to the D100 once at each cycle.
	INC V1 Add 1	to the value of V1, and point to the next value to be accumulated.
	NEXT End of th	ne FOR~NEXT loop

If you want to get the result of the sum (D0 \sim D99) at the D100 instead in the above program, only need to change the K10 in FOR K10 to K100.

• The sprinkler system sets different opening and closing times from Sundays to Saturdays. The following example uses the set ON time at D0~D13 and the set OFF time at D20~D33 to drive the sprinkler motor by the output Y0. The time data of the Real-Time Clock (RTC) is compared with the setting value of the time schedule to determine the ON / OFF of the sprinkler motor.

Hr.	Min.		Hr.	Min.	
D1	D0	Sun.	D21	D20	
D3	D2	Mon.	D23	D22	
D5	D4	Tue.	D25	D24	The time data of RTC:
D7	D6	Wed.	D27	D26	D9019 0 (Sun.)~6 (Sat.)
D9	D8	Thu.	D29	D28	D9015 — Hour
D11	D10	Fri.	D31	D30	
D13	D12	Sat.	D33	D32	
Set O	N time		Set OF	F time	

_M9000 [ADD D9019 D9019 Z0 Double the day of a week from the RTC and put the comes the index for the times f	າe າe
L	comparison	
D= D9014 D0Z0	SET Y0 Compare with the "Set ON time" to drive the Y0 ON.	
D= D9014 D20Z0	RST Y0 Compare with the "Set OFF time" to drive the Y0 OFF.	

The simple program above can achieve the requirement easily, isn't it? In fact, dealing with a large number of regular data, the most important thing is to select an appropriate data structure (method for data storage). Then, with the characteristics of the index register, you can compile efficient programs.

2-10 Mark Pointer and Branch Pointer (P)

The purpose of the Mark Pointer and Branch Pointer (P) is to specify a specific point in the program. Usually they are used to indicate the destination of the CJ instruction, or the start position of a subroutine of the CALL instruction.

In the past, the VB series PLC only had Branch Pointer P, which indicates a specific location with indication number, but the program's readability was disadvantageous. Therefore, the VS series PLC newly enhances the Mark Pointer indicator function to enable programmers use illustrative text to indicate a specific address, thus greatly increases the readability.

- The ID numbers of Branch Pointer P in the VS1, VS2, VSM and VS3 series are exactly the same: P0~P1023, 1024 points in total.
 - The Branch Pointer P63 or P255 is equal to the position of END in the program.
- The Mark Pointer is made up of 16 English characters or numbers, and its use is exactly the same as the Branch Pointer P.
- A maximum of 1024 Pointers P (including the Mark / Branch Pointers and Interrupt Pointers) in the program can be used.
- The ID number at Branch Pointer P can be modified by the V, Z Index Register; texts in a Mark Pointer cannot use the V, Z Index Register. By the characteristics, choose the suitable one at the program.
- Among the exemplary programs are the Mark Pointer (left) and Branch Pointer P (right), the left one that uses the Mark Pointer can acquire better readability.

• An example of using Branch Pointer P and combine with Index Registers V, Z.

2-11 Table Nickname and Table Code (Q)

PLC users sometimes have to set up a lot of data in order to cope with needs such as formulas, control parameters and communication commands.

In the past, people often set up the necessary reference materials through programming.

Not only a lot of program capacity and manpower were consumed, but also the data content established mostly had poor readability, and were difficult to change and maintenance.

In order to meet the demands, the VS series PLC has provided the "Table" as a data source form. The table is a data set by collecting data of relevant characteristics, such as data table, MBUS communication table, LINK communication table. Each table has its own specific type and purpose. We use the computer programming software to provide the tables' editing interfaces, so these tables are easy to establish and manage, furthermore can significantly improve programming efficiency. The editing method of the table will be described in the programming software.

Those tables will occupy the memory space in the PLC. When the programming software writes a project to a PLC, tables will be written into the memory with the program together. Besides, to read a project from a PLC, the tables are read out from the its memory with the program together. The tables are a part of the PLC project.

At the VS series PLC, every table has its own Table Nickname or Table Code Q to identify. Then, the related application instruction can use that Table Nickname or Table Code Q to get a particular table.

Table Codes Q0~Q31 are marked with index numbers; while the Table Nicknames are composed of 16 English characters or numerals. The Table Nicknames have better readability. The drawback is that they cannot modify by Index Register V, Z. In contrast, Table Codes Q0 to Q31 have less readability but they are irreplaceable when used with the Index Register V, Z.

- The ID numbers of Table Code in the VS1, VS2, VSM and VS3 series are exactly the same.
- The Table Nicknames are made up of 16 English characters or numbers.
- A maximum of 32 Tables in the program can be used.
- Among the exemplary programs are making use of the Table Nickname and Table Code, the upper one that uses the Table Nickname can acquire better readability.

X20	MBUS INVERTER_COM_1 D100 K1	When $X20 = ON$, CP1 executes the MODBUS communication of which the content is based on the
X21	MBUS THERMOSTAT_COM_1 D200	When X21 = ON, CP2 executes the MODBUS K2 communication of which the content is based on the communication table of "THERMOSTAT_COM_1"

		MBUS	Q0	D100	K1	When $X20 = ON$, CP1 executes the MODBUS communication of which the content is based on the communication table at the Q0.
X21	•	MBUS	Q1	D200	K2	When $X21 = ON$, CP2 executes the MODBUS communication of which the content is based on the communication table at the Q1.

• Example of using Table Code Q and Index Register V, Z.

.....

X0 ∕	MOV K0 Z0 When X0 = OFF, the following MBUS instruction s to execute the communication table at the Q0;
X0	-MOV K1 Z0 when X0 = ON, the following MBUS instruction is to execute the communication table at the Q1.
X20	- MBUS Q0Z0 D100 K1 CP1 executes the MODBUS communication. With the index modify function, it can choose an expected table to execute the communication.

2-12 Interrupt Pointer (I)

In general, the PLC executes user program in the way of sequential scanning. Even the system itself also follows a sequence of execution (receive external inputs \rightarrow process the user program \rightarrow output the computed results). However, such an ordinary operation is occasionally unable to meet the needs for quick control responses. Therefore, the interruption function is generated which meets the required of to cut-in a processing sequence immediate.

The interrupt, as the name suggests, is to break the sequentially executed program, and then insert a program section to be processed immediately. In the VS series PLC, every Interrupt Pointer is bound up with its interrupt subroutine to deal with the user's requirement for the insertion of interruption.

- The purpose of the Interrupt Pointer is to specify the start position of interrupt subroutine in the program.
- The ID numbers of Interrupt Pointer I in the VS1, VS2, VSM and VS3 series are exactly the same:

External Interrupt			Timer Interrupt		Software HSC Interrupt		Hardware HSC Interrupt	
External Input	Interrupt Pointer	Inhibit Flag	Interrupt Pointer	Inhibit Flag	Interrupt Pointer	Inhibit Flag	Interrupt Pointer	Inhibit Flag
X0	IX0🗆	M9050			IHC0			
X1	IX10	M9051	ITA 🗆 🗆	M9058 M9059	IHC1	M9061	IHHC1	M9062
X2	IX2□	M9052			IHC2			
Х3	IX3🗆	M9053			IHC3			
X4	IX4□	M9054	IIDUU		IHC4			
X5	IX5□	M9055			IHC5		THUCO	MODES
X6	IX6□	M9056	ITC 🗆 🗆	M9060	IHC6		IHHC2	1019003
X7	IX7□	M9057			IHC7			
 =P means interrupt on the rising edge =F means interrupt on the falling edge 			□□=01~99 means the interval time is 1~99ms		The interrupt is processed with the DHSCS instruction.		The interrupt is processed, when the Present Value reaches to the Set Value.	

- Each interrupt pointer has an inhibitory special relay to control the interrupt, the user can avoid the interrupt by activating the corresponding special relay.
- By the characteristics, those interrupt pointers can be divided into external interrupt, timer interrupt, software high-speed counter interrupt and hardware high-speed counter interrupt.
 - ① External Interrupt:

The rising or falling signal from the specific input point (X0 to X7) generates an interrupt signal to interrupt the program in execution, jump to a designated interrupt pointer (IX0 \square to IX7 \square) and execute a corresponding interrupt subroutine. The External Interrupt at the VS series PLC also has the delay action function. Please refer to "2-15-1 External Interrupt" for more details.

2 Timer Interrupt:

When the timer interrupt pointer (ITA _ _ , ITB _ _ or ITC _) is written into the program, the PLC will automatically interrupt the program execution at a given time (as defined by the _ _ in the interrupt pointer). Its procedure jumps to the appointed interrupt pointer and executes the interrupt subroutine.

Timer interrupt is mainly used to generate a repeated interrupt that could execute fixed and rapid period timing subroutine. When a certain section is requiring an execution cycle shorter than the PLC's scan time or a fixed time cycle, the timer interrupt is considered.

For example, the HKY (FNC71) and SEGL (FNC74) instructions can use the PLC's scan time as the scan cycle of the instructions. However, too long or too short scan time may cause fault. In this case, a timer interrupt subroutine can be used to perform appropriate scan operation.

Additionally, the RAMP (FNC67) instruction generally depends the scan time of the program to bring the movement of ramp steps forward. Usually, the scan time is unregulated, thus the generated ramp result will become irregular. In this case, a subroutine of timer interrupt can be used for the RAMP instruction to depart it from the scan time, that may stabilize the movement of step thus to produce the regular ramp result.

③ Software High Speed Counter Interrupt:

The result of a comparison instruction by the FNC53 (DHSCS) high-speed counter can be assigned to execute an interrupt subroutine. When the DHSCS instruction is assigned to execute a certain interrupt subroutine (IHC0~IHC7) and the comparison result is equal, then PLC will jump to the specified interrupt pointer and execute the interrupt subroutine. Please refer to the FNC53 (DHSCS) Instruction for more details.

④ Hardware High Speed Counter Interrupt:

When the hardware high-speed counter HHSC1 reaches its Set Value by the external input, the IHHC1 interrupt can be generated; also, the HHSC2 can generate the IHHC2 interrupt. Please refer to "2-15-4 Hardware High-Speed Counter".

- The interrupt subroutine often needs to immediately read the external state or immediately drive the external load. In this case, the I / O update instruction REF (FNC 50) should be used in the interrupt subroutine to update the I / O status promptly.
- In the interrupt subroutine, should use the Timer T192~T199 when a timer is necessary.

- The interruption is a special mechanism for to break the rules of regular operation; an interrupt subroutine is not regularly implemented. Therefore, special attention must be paid to the components that are driven in the interrupt subroutine.
 - If a step relay is for to active a part of the SFC, it is not allowed to be driven in an interrupt subroutine.
 - The following example shows that the elements driven in the interrupt subroutine remain in their state.

• The following example shows the modified program.

• The applications of Interrupt Pointer and the concepts of interrupt subroutine are explained in detaile in the section of Application Instructions IRET, EI and DI.

2-13 Numerical System

(1) Binary Number (BIN)

The value in PLC is operated and stored used the binary system. The binary number and relative terminology are given as follows:

① Bit: the basic of the binary number, each value of a Bit must be either "0" or "1".

- (2) Nibble: composed of 4 sequential bits. For example, b3 \sim b0 can express an one-Nibble hex value: 0 \sim F.
- 3 Byte: composed of 8 sequential bits. For example, b7 \sim b0 can express a two-Nibble hex value: 00 \sim FF.
- 4 Word: composed of 2 sequential bytes or 16 sequential bits. For example, b15 \sim b0 can express a four-Nibble hex value: 0000 \sim FFFF.
- ⑤ Double Word: composed of 2 sequential words, 4 sequential bytes or 32 sequential bits. For example, b31 ~ b0 can express an eight-Nibble hex value: 00000000 ~ FFFFFFF.
- ⁽⁶⁾ The relations between every binary Bit, Nibble, Byte, Word and Double Word:

_					V			<u> </u>	Doub	le Word
		W1				ŴO)		è—	– Word
	BY3		BY2		BY1		B	Y0	\sim	-Byte
~	NB7	NB6	NB5	NB4	NB3	NB2	NB1	NBO	$ \leftarrow$	- Nibble
b	31 b30 b29 b28 b27 b2	26 b25 b24 b2	23 b22 b21 b20 b	19 b18 b17 b16 b	o15 b14 b13 b12 b1	1 b10 b9 b8	b7 b6 b5 b4	b3 b2 b1	b0 ←	—— Bit

⑦ Expression of the value

For Word (16 bits) or Double Word (32 bits), the Most Significant Bit (MSB), e.g. the b15 of a Word or the b31 of a Double Word, gives the value positive or negative bias, where "0" for positive and "1" for negative. The rest bits, e.g. b14 \sim b0 or b30 \sim b0, express the quantity of the value. It is a 16-bit value shows below.

⑧ Range of the value

The maximum range of the value expressed by 16 bits and 32 bits:

16 bits	-32,768~32,767
32 bits	-2,147,483,648~2,147,483,647

(2) Octal Number (OCT)

The assigned numbers of PLC's external input and output terminals are displayed by the octal system. For example,

The external input ports: X0 \sim X7, X10 \sim X17 The external output ports: Y0 \sim Y7, Y10 \sim Y17

(3) Decimal Number (DEC)

Decimal Number is the value system which people are familiar with. In PLC, a decimal number is always headed with a "K" in front of the value. For example, K123 indicates a decimal number where the value is 123. Application occasions of Decimal Number:

- ① Used as the Set Value of the T and C, for example, K10
- ② Used as the component number of the M, S, T or C, for example, M9, S10, etc.

③ Used as an Operand device in the applied instruction, for example, MOV K1 D1.

(4) Binary Code Decimal (BCD)

BCD is to express a Decimal digit unit with a Nibble or 4 bits. Sequential 16 bits can express 4 Decimal digits. BCD is mainly used to read the input value of the Digital Switch (Thumbwheel input) or export the data to the 7-Segment Displayer for displaying the value.

(5) Hexadecimal Number (HEX)

In PLC, a Hex number is always headed with an "H", for example, H123 represents a Hex number and is valued 123.

(6) Bits of the numerical system and the numerical conversion table:

ОСТ	DEC	HEX	BIN		B	CD
0	0	00	0000	0000	0000	0000
1	1	01	0000	0001	0000	0001
2	2	02	0000	0010	0000	0010
3	3	03	0000	0011	0000	0011
4	4	04	0000	0100	0000	0100
5	5	05	0000	0101	0000	0101
6	6	06	0000	0110	0000	0110
7	7	07	0000	0111	0000	0111
10	8	08	0000	1000	0000	1000
11	9	09	0000	1001	0000	1001
12	10	0A	0000	1010	0001	0000
13	11	0B	0000	1011	0001	0001
14	12	0C	0000	1100	0001	0010
15	13	0D	0000	1101	0001	0011
16	14	0E	0000	1110	0001	0100
17	15	0F	0000	1111	0001	0101
20	16	10	0001	0000	0001	0110
•						
143	99	63	0110	0011	1001	1001

(7) Floating Point (Real number)

The PLC was provided with Floating Point instructions therefore the PLC can calculate decimal numbers. The decimal numbers are storage and calculated in a PLC using two different pattern formats: Binary Floating Point Number and Decimal Floating Point Number. The expositions are showed below.

① Binary Floating Point Number

• Inside of the PLC, the Floating Point calculates and decimal number storages are using Binary Floating Point Numbers. A Binary Floating Point Number's value storage format is composed of 2 sequential registers. It is an example, using (D1,D0) to explain a format of a Binary Floating Point Number.

Mantissa Sing bit (1 = Negative, 0 = Positive)

Binary Floating Point Number's value

```
= \pm (2^{0} + A22 \times 2^{-1} + A21 \times 2^{-2} + \dots + A1 \times 2^{-22} + A0 \times 2^{-23}) \times 2^{(E7 \times 2^{7} + E6 \times 2^{6} + \dots + E1 \times 2^{1} + E0 \times 2^{0})} / 2^{127}
```

• If S = 0, A22 = 1, A21 = 1, A20 \sim A0 = 0 E7 = 1, E6 \sim E0 = 0

Therefor, the Binary Floating Point Number's value storage in the register (D1,D0) is equal to $(2^{0}+1\times2^{-1}+1\times2^{-2}+....+0\times2^{-23})\times2^{(1\times2^{7}+0\times2^{6}+....+0\times2^{0})}/2^{127} = 1.75\times2^{128}/2^{127} = 1.75\times2^{1}$

• A Binary Floating Point Number's value limit:

 $\begin{array}{l} -1.0\times2^{128}\sim-1.0\times2^{\cdot126},\;0,\;1.0\times2^{\cdot126}\sim1.0\times2^{128}\\ \text{Minimum modulus:}\;1.175\times10^{\cdot38} & \text{Maximum modulus:}\;3.402\times10^{38} \end{array}$

In the PLC program, the real constant value is usually preceded by the "E". The effective range of real constants is $-3.402 \times 10^{38} \sim 3.402 \times 10^{38}$, which can be expressed by the decimal point or exponent.

By the decimal point: Directly use decimal point to express the value, for example, "E102.35" represents "102.35".

By the exponent: Use the mathematical exponent to express, for example, "E1.0235+2" represents "102.35"; "+2" means to multiply by 10^{+2} .

② Decimal Floating Point Number

• A Decimal Floating Point Number's value storage format is also composed of 2 sequential registers. It is an example, using (D3,D2) to explain a format of a Decimal Floating Point Number.

- If D2 = 1234, D3 = -1
 - Therefor, the Decimal Floating Point Number's value storage in the register (D3, D2) is equal to $1234 \times 10^{-1} = 123.4$
- A Decimal Floating Point Number's value limit: Minimum modulus: 1175×10⁻⁴¹ Maximum modulus: 3402×10³⁵
- The Binary Floating Point Number and Decimal Floating Point Number can use the instructions to convert the value:

FNC118 (DEBCD): To convert from a Binary Floating Point Number to a Decimal Floating Point Number. FNC119 (DEBIN): To convert from a Decimal Floating Point Number to a Binary Floating Point Number.

2-14 Special Relay and Special Register

In the tables below, the symbol "
"
" represents that the component is not allowed to use an instruction in the program to drive the relay or write data to the register. And if the special relay or the special register is not listed in this table, which is reserved for the system and can not be used to drive the relay or write the data to the program either.

2-14-1 Table of Special Relay

Relay ID No.		Description	Series				
PLC Oper	ation Status		VS1	VS2	VSM	VS3	
■M9000	An always "ON", "a" Contact, M9000	is "ON" during the running PLC.	0	0	0	0	
■M9001	An always "OFF", "a" Contact, M9001	An always "OFF", "a" Contact, M9001 is "OFF" during the running PLC.				0	
■M9002	Initial Pulse, "a" Contact, M9002 will be "ON" for a Scan Time when the moment PLC is STOP \rightarrow RUN.				0	0	
■M9003	initial Pulse, "b" Contact, M9003 will be "OFF" for a Scan Time when the moment PLC is STOP \rightarrow RUN.			0	0	0	
■M9004	Error occurred. When either one of the	error flag relay M9066, M9067 is "ON", M9004="ON" .	0	0	0	0	
Clock Puls	e or RTC		VS1	VS2	VSM	VS3	
■M9011	Alternate pulse by the period of 10ms cycle time. "ON" 5ms/"OFF" 5ms Pulse			0	0	0	
■M9012	Alternate pulse by the period of 100ms	s cycle time. "ON" 50ms/"OFF" 50ms Pulse	0	0	0	0	
■M9013	Alternate pulse by the period of 1sec.	cycle time. "ON" 0.5sec./"OFF" 0.5sec. Pulse	0	0	0	0	
■M9014	Alternate pulse by the period of 1min.	cycle time. "ON" 30sec./"OFF" 30sec. Pulse	0	0	0	0	
M9015	Pause the RTC and write the values in	D9013~D9019 to the RTC	0	0	0	0	
M9016	Stop reading time data from the RTC		0	0	0	0	
M9017	Modify RTC ±30sec.		0	0	0	0	
■M9018	M9018="ON" when RTC is installed in	n the Main Unit.	0	0	0	0	
■M9019	Write wrong data onto the RTC		0	0	0	0	
Flag			VS1	VS2	VSM	VS3	
■M9020	Zero Flag. M9020="ON" if the result of	f an arithmetic instruction is "0". (except the MUL and DIV)	0	0	0	0	
■M9021	Borrow Flag. M9021="ON" if any "Borrow" occurs by the addition or subtraction instruction.				0	0	
M9022	Carry Flag. M9022="ON" if any "Carry" occurs by the arithmetic, rotary instruction.			0	0	0	
■M9023	Zero Flag. M90023="ON" if the result of multiplication (MUL) or division (DIV) is "0".			0	0	0	
■M9025	Overflow Flag. M90025="ON" if the result of division (DIV) is overflowed.			0	0	0	
■M9029	Instruction execution completed flag. M9029="ON" when the executions of some applied instructions are completed (please refer to the relevant instructions).			0	0	0	
■M9090	All bits "ON" flag at the result of a bloc	k data comparison BKCMP (FNC194~FNC199) instruction.				0	
■M9162	To indicate the completion of HSCT ins	struction.	0	0	0	0	
■M9163	External Interrupt delay time set-up flag	g. Use this flag contact to active the interrupt delay function.	0	0	0	0	
PLC Syste	m Operation Mode		VS1	VS2	VSM	VS3	
M9031	Clear the Non-Latched area memory.	States and contents of devices are reset at the "END". All Coils Y, M, S, T, C turn "OFF" and content values of T, C,		0	0		
M9032	Clear the Latched area memory.	D become "0"; But, the Special M and D will not be changed.		_	_		
M9033	When M9033="ON" and RUN \rightarrow STO	P, the content value and statuses of T, C, D are retained.	0	0	0	0	
M9034	All the outputs are disable. When M90 contacts for the program still operate r	34="ON", all external outputs are forced to "OFF" but the Y normally.	0	0	0	0	
M9039	To fix PLC's Scan Time duration. When the period is allocated by the D9039.	M9039="ON", the PLC within a constant scan duration and	0	0	0	0	
Assigning	Specification of Applied Operation Inst	tructions Mode	VS1	VS2	VSM	VS3	
M9024	Assign the BMOV moving direction. W	/hen M9024="OFF", S → D; when M9024="ON", S ← D.	0	0	0	0	
M9026	Assign the RAMP operating mode. We executed; when M9026="ON", one tr	hen M9026="OFF", a series of ramp process will be igger signal will ramp once only.	0	0	0	0	
M9027	Assign the PR operating mode. Please	e refer to PR (FNC 77) Instruction for details.	0	0	0	0	
M9028	To protect not to operate the FROM/TO When M9028="OFF", disallows interru When M9028="ON", FROM/TO in an	D instruction repeatedly. upt during FROM/TO is in operation. interrupt subroutine is ineffective.		0	0	0	
M9035	Assign the PWM operating time base. the unit of 1ms.; when M9035="ON",	When M9035="OFF", the parameters for the PWM are by by the unit of 0.1ms.	0	0	0	0	

Relay ID No.	Description	Series			
Assigning	Specification of Applied Operation Instructions Mode	VS1	VS2	VSM	VS3
M9091	Assign the BINDA operating mode. 16-bit instruction: If M9091="OFF", will add the end of string 0000H after the result. If M9091="ON", will only convert the data without to add the end of string.				0
	32-bit instruction: If M9091="OFF", will add the end of string 00H at the result's last upper 8 bits. If M9091="ON", will add the end of string 20H at the result's last upper 8 bits.				
M9160	Assign the XCH to execute the SWAP function.	0	0	0	0
M9161	Assign the 8-bit or 16-bit operating mode for the related instructions. When M9161="OFF", those instructions are processed by the 16-bit mode; when M9161="ON", are by the 8-bit mode.			0	0
M9165	Assign the SORT2 instruction operating mode. When M9165="OFF", the sort is by ascending order; when M9165="ON", by descending order.	0	0	0	0
M9167	Assign the HKY instruction operating mode. When M9167="OFF", by the "DEC" numeric mode; when M9167="ON", by the "HEX" numeric mode.	0	0	0	0
M9168	Assign the SMOV instruction operating mode. When M9168="OFF", by the "DEC" numeric mode; when M9168="ON", by the "HEX" numeric mode.	0	0	0	0
Step Ladd	er Instruction Correlated Flags	VS1	VS2	VSM	VS3
M9040	To prevent the step transfer. When M9040="ON", the STL state transfer function is disabled.	0	0	0	0
■M9046	STL step is working. When M9047="ON" and any relay of S0~S899="ON" than M9046="ON".	0	0	0	0
M9047	STL monitoring is enable. D9040 \sim D9047 will be active only when M9047="ON".	0	0	0	0
■M9048	The annunciator monitoring has been enabled. When M9049="ON" and any coil of S900~S999= "ON", than M9048="ON".	0	0	0	0
M9049	Enable annunciator monitoring. D9049 will be effective only when M9049="ON".	0	0	0	0
Interrupt P	rohibit Flag	VS1	VS2	VSM	VS3
M9050	To prevent the external interrupt from IX0. The IX0P or IX0F is prohibited.	0	0	0	0
M9051	To prevent the external interrupt from IX1. The IX1P or IX1F is prohibited.	0	0	0	0
M9052	To prevent the external interrupt from IX2. The IX2P or IX2F is prohibited.			0	0
M9053	To prevent the external interrupt from IX3. The IX3P or IX3F is prohibited.			0	0
M9054	To prevent the external interrupt from IX4. The IX4P or IX4F is prohibited.	0	0	0	0
M9055	To prevent the external interrupt from IX5. The IX5P or IX5F is prohibited.	0	0	0	0
M9056	To prevent the external interrupt from IX6. The IX6P or IX6F is prohibited.	0	0	0	0
M9057	To prevent the external interrupt from IX7. The IX7P or IX7F is prohibited.		0	0	0
M9058	To prevent the timer interrupt ITA. The ITA \Box for timer interrupt is prohibited.	0	0	0	0
M9059	To prevent the timer interrupt ITB. The ITB \Box for timer interrupt is prohibited.	0	0	0	0
M9060	To prevent the timer interrupt ITC. The ITC \Box for timer interrupt is prohibited.	0	0	0	0
M9061	To prevent the SHSCs' interrupt. Software High Speed Counter interrupts IHC0~7 are prohibited.	0	0	0	0
M9062	To prevent the HHSC1's interrupt. Hardware High Speed Counter interrupt IHHC1 is prohibited.	0	0	0	0
M9063	To prevent the HHSC2's interrupt. Hardware High Speed Counter interrupt IHHC2 is prohibited.	0	0	0	0
Error Mess	age	VS1	VS2	VSM	VS3
■M9066	Program CHECK SUM error will cause the PLC stop, M9066="ON" and "ERR" indicator flash (2Hz).	0	0	0	0
■M9067	Operation error. If operation error occurs during program execution, then M9067="ON" but PLC will keep running.	0	0	0	0
M9068	Operation error latch. When M9068="ON" and operation error occurs, the step number where operation error occur will be latched in D9068,D9069.	0	0	0	0
Loop Cour	iter	VS1	VS2	VSM	VS3
M9072	Start the 32-bit up-count loop counter 0~2,147,483,647. (unit: ms)	0	0	0	0
M9099	Start the 16-bit high-speed-up-count loop counter $0\sim$ 32,767. (unit: 0.1ms)	0	0	0	0
Pulse Mea	surement	VS1	VS2	VSM	VS3
■M9075	Pulse measurement setting-up flag. Use this flag contact to active the pulse width / period measurement function at the X0, X1, X3 or X4.	0	0	0	0
M9076	To start the X0 for pulse measurement.	0	0	0	0
M9077	To start the X1 for pulse measurement.	0	0	0	0
M9078	To start the X3 for pulse measurement.	0	0	0	0
M9079	To start the X4 for pulse measurement.	0	0	0	0
M9080	To set the mode of X0's pulse measurement. "OFF": pulse width measurement, "ON": pulse period measurement	0	0	0	0

Relay ID No.	D Description Series				
Pulse Mea	surement	VS1	VS2	VSM	VS3
M9081	To set the mode of X1's pulse measurement. "OFF": pulse width measurement, "ON": pulse period measurement	0	0	0	0
M9082	To set the mode of X3's pulse measurement. "OFF": pulse width measurement, "ON": pulse period measurement	0	0	0	0
M9083	To set the mode of X4's pulse measurement. "OFF": pulse width measurement, "ON": pulse period measurement	0	0	0	0
CP1 Com	nunication	VS1	VS2	VSM	VS3
M9100	CP1 RS instruction data sending out request flag.	0	0	0	0
M9101	CP1 RS instruction data receive completed flag.	0	0	0	0
M9102	CP1 RS instruction data receive time-out flag.	0	0	0	0
M9103	CP1 RS / LINK / MBUS instruction on communication abnormal flag.	0	0	0	0
■M9104	CP1 LINK / MBUS instruction on execution table complete once flag.	0	0	0	0
CP2 Com	nunication	VS1	VS2	VSM	VS3
M9110	CP2 RS instruction data sending out request flag.	0	0	0	0
M9111	CP2 RS instruction data receive completed flag.	0	0	0	0
M9112	CP2 RS instruction data receive time-out flag.	0	0	0	0
M9113	CP2 RS / LINK / MBUS instruction on communication abnormal flag.	0	0	0	0
■M9114	CP2 LINK / MBUS instruction on execution table complete once flag.	0	0	0	0
CP3 Com	nunication	VS1	VS2	VSM	VS3
M9120	CP3 RS instruction data sending out request flag.	0	0	0	0
M9121	CP3 RS instruction data receive completed flag.	0	0	0	0
M9122	CP3 RS instruction data receive time-out flag.	0	0	0	0
M9123	CP3 RS / LINK / MBUS instruction on communication abnormal flag.	0	0	0	0
■M9124	CP3 LINK / MBUS instruction on execution table complete once flag.	0	0	0	0
CP4 Com	nunication	VS1	VS2	VSM	VS3
M9130	CP4 RS instruction data sending out request flag.				0
M9131	CP4 RS instruction data receive completed flag.				0
M9132	CP4 RS instruction data receive time-out flag.				0
M9133	CP4 RS / LINK / MBUS instruction on communication abnormal flag.				0
■M9134	CP4 LINK / MBUS instruction on execution table complete once flag.				0
CP5 Com	nunication	VS1	VS2	VSM	VS3
M9140	CP5 RS instruction data sending out request flag.				0
M9141	CP5 RS instruction data receive completed flag.				0
M9142	CP5 RS instruction data receive time-out flag.				0
M9143	CP5 RS / LINK / MBUS instruction on communication abnormal flag.				0
■M9144	CP5 LINK / MBUS instruction on execution table complete once flag.				0
Input Pulse	e Capture Flag	VS1	VS2	VSM	VS3
M9170	X0 input signal captured flag.	0	0	0	0
M9171	X1 input signal captured flag.	0	0	0	0
M9172	X2 input signal captured flag.	0	0	0	0
M9173	X3 input signal captured flag.	0	0	0	0
M9174	X4 input signal captured flag.	0	0	0	0
M9175	X5 input signal captured flag.	0	0	0	0
M9176	X6 input signal captured flag.	0	0	0	0
M9177	X7 input signal captured flag.	0	0	0	0
Hardware	High Speed Counter	VS1	VS2	VSM	VS3
■M9196	HHSC1's counting direction flag. When M9196="OFF", up counting; when "ON", down counting.	0	0	0	0
■M9197	HHSC2's counting direction flag. When M9197="OFF", up counting; when "ON", down counting.	0	0	0	0

Relay ID No.	Description	Description Series			
The 32-bit	Counter Count Direction Control	VS1	VS2	VSM	VS3
M9200	When M92 \square = "OFF", the C2 \square is operated as a up counter. When M92 \square = "ON", the C2 \square is operated as a down counter.	0	0	0	0
Controlling	g Flag of Software High Speed Counter Count Direction	VS1	VS2	VSM	VS3
M9235	When M92 \square = "OFF", the C2 \square is operated as a up counter. When M92 \square = "ON", the C2 \square is operated as a down counter.	0	0	0	0
Monitoring	Flag of Software High Speed Counter Count Direction	VS1	VS2	VSM	VS3
■M9246	When $C2 \Box \Box$ is operated a up count M92 $\Box \Box = "OFF"$		102	VOIVI	100
₹ M9255	When C2 [] is operated a down count, M92 [] = "ON".	0	0	0	0
Working A	rea of the EC1 Expansion Card	VS1	VS2	VSM	VS3
M9260 { M9279	EC1 Expansion Card's working area. M9260~M9267= EC1X0~EC1X7; M9270~M9277=EC1Y0~EC1Y7.	0	0	0	0
Working A	rea of the EC2 Expansion Card	VS1	VS2	VSM	VS3
M9280 <i>X</i> M9299	EC2 Expansion Card's working area. M9280~M9287= EC2X0~EC2X7; M9290~M9297=EC2Y0~EC2Y7.	0	0	0	0
Working A	rea of the EC3 Expansion Card	VS1	VS2	VSM	VS3
M9300 2 M9319	EC3 Expansion Card's working area. M9300~M9307= EC3X0~EC3X7; M9310~M9317=EC3Y0~EC3Y7.	0	0	0	0
DUTY Ins	truction Output	VS1	VS2	VSM	VS3
M9330	Destination #1 for the timing sequence pulse generative instruction DUTY (FNC186).				0
M9331	Destination #2 for the timing sequence pulse generative instruction DUTY (FNC186).				0
M9332	Destination #3 for the timing sequence pulse generative instruction DUTY (FNC186).				0
M9333	Destination #4 for the timing sequence pulse generative instruction DUTY (FNC186).				0
M9334	Destination #5 for the timing sequence pulse generative instruction DUTY (FNC186).				0
Y0 Axis's	Positioning Control Flag	VS1	VS2	VSM	VS3
■M9340	Y0 axis's status. "OFF" means the Y0 is in the READY status, it is available for a positioning instruction; while "ON" = BUSY, the Y0 has been occupying.	0	0	0	0
■M9341	Y0 axis's pulse output monitor. "ON" means pulse is generating.	0	0	0	0
■M9342	Y0 axis's positioning completed flag.	0	0	0	0
■M9343	Y0 axis's positioning abnormal stop flag.	0	0	0	0
■M9344	Y0 axis's zero home positioning has been completed.	0	0	0	0
M9345	Y0 axis's stop flag (with gradually slow down).	0	0	0	0
M9346	Y0 axis's immediately stop flag.	0	0	0	0
M9347	Y0 axis's table positioning start signal.	0	0	0	0
■M9348	Y0 axis's M-code active flag.	0	0	0	0
M9349	Y0 axis's M-code clear command.	0	0	0	0
M9350	Y0 axis's external interrupt trigger type. When M9350="OFF", the interrupt is triggered by a rising edge; when M9350="ON", that is triggered by a falling edge.	0	0	0	0
Y1 Axis's F	Positioning Control Flag	VS1	VS2	VSM	VS3
■M9360	Y1 axis's status. "OFF" means the Y1 is in the READY status, it is available for a positioning instruction; while "ON" = BUSY, the Y1 has been occupying.	0	0	0	0
■M9361	Y1 axis's pulse output monitor. "ON" means pulse is generating.	0	0	0	0
■M9362	Y1 axis's positioning completed flag.	0	0	0	0
■M9363	Y1 axis's positioning abnormal stop flag.	0	0	0	0
■M9364	Y1 axis's zero home positioning has been completed.	0	0	0	0
M9365	Y1 axis's stop flag (with gradually slow down).	0	0	0	0
M9366	Y Laxis's immediately stop flag.	0	0	0	0
M9367	Y Laxis's table positioning start signal.	-	-	-	
■M9368	Y I axis's IVI-code active flag.	-	-	-	
M9369	Y LAXIS'S M-CODE Clear command.	0	0	0	
M9370	edge; when M9370="ON", that is triggered by a falling edge.	0	0	0	0

Relay ID No.	Relay ID Description			Series				
Y2 Axis's F	Positioning Control Flag	VS1	VS2	VSM	VS3			
■M9380	Y2 axis's status. "OFF" means the Y2 is in the READY status, it is available for a positioning instruction; while "ON" = BUSY, the Y2 has been occupying.	0	0	0	0			
■M9381	Y2 axis's pulse output monitor. "ON" means pulse is generating.	0	0	0	0			
■M9382	Y2 axis's positioning completed flag.	0	0	0	0			
■M9383	Y2 axis's positioning abnormal stop flag.	0	0	0	0			
■M9384	Y2 axis's zero home positioning has been completed.	0	0	0	0			
M9385	Y2 axis's stop flag (with gradually slow down).	0	0	0	0			
M9386	Y2 axis's immediately stop flag.	0	0	0	0			
M9387	Y2 axis's table positioning start signal.	0	0	0	0			
■M9388	Y2 axis's M-code active flag.	0	0	0	0			
M9389	Y2 axis's M-code clear command.	0	0	0	0			
M9390	Y2 axis's external interrupt trigger type. When M9390="OFF", the interrupt is triggered by a rising edge; when M9390="ON", that is triggered by a falling edge.	0	0	0	0			
Y3 Axis's F	Positioning Control Flag	VS1	VS2	VSM	VS3			
■M9400	Y3 axis's status. "OFF" means the Y3 is in the READY status, it is available for a positioning instruction; while "ON" = BUSY, the Y3 has been occupying.	0	0	0	0			
■M9401	Y3 axis's pulse output monitor. "ON" means pulse is generating.	0	0	0	0			
■M9402	Y3 axis's positioning completed flag.	0	0	0	0			
■M9403	Y3 axis's positioning abnormal stop flag.	0	0	0	0			
■M9404	Y3 axis's zero home positioning has been completed.	0	0	0	0			
M9405	Y3 axis's stop flag (with gradually slow down).	0	0	0	0			
M9406	Y3 axis's immediately stop flag.	0	0	0	0			
M9407	Y3 axis's table positioning start signal.	0	0	0	0			
■M9408	Y3 axis's M-code active flag.	0	0	0	0			
M9409	Y3 axis's M-code clear command.	0	0	0	0			
M9410	Y3 axis's external interrupt trigger type. When M9410="OFF", the interrupt is triggered by a rising edge; when M9410="ON", that is triggered by a falling edge.	0	0	0	0			

2-14-2 Instruction Table of Special Register

Register ID No.	Description				Series			
PLC Opera	ation Status		VS1	VS2	VSM	VS3		
D9000	Time Setting of Watch D	og Timer. The WDT default value is 200ms (unit: 1ms)	0	0	0	0		
■D9004	Error code. When M900 "2-14-3 Error Code Dese	Error code. When M9004="ON", this content value will show an error report. Please refer to the "2-14-3 Error Code Description" for more detail.				0		
D9010	Current operation scan t	ime (unit: 0.1ms)	0	0	0	0		
D9011	Min. scan time (unit: 0.1	ms)	0	0	0	0		
D9012	Max. scan time (unit: 0.1	ms)	0	0	0	0		
System S	tatus		VS1	VS2	VSM	VS3		
■D9001	The PLC's model and v	ersion. VS1 series:10 VS2 series:11 VSM series:12 VS3 series:13 VSM-28ML:14 VS1 series:14 VS1 series:10 VS2 series:11 VS1 series:10 VS2 series:11 VS3 series:12 VS3 series:13 VSM-28ML:14	0	0	0	0		
■D9002	Capacity size of memory	y. "16" = 16K words, "32" = 32K words, "64" = 64K words.	0	0	0	0		
■D9003	Type of Memory. 00H ind extend Flash Memory C	dicates using the built-in Flash Memory of PLC. 10H indicates using the ard.	0	0	0	0		
D9020	Input points (X0 \sim X7) filt available range is 0 \sim 60	er response time setting. (unit: 1ms) The default value is 10ms and the ms.	0	0	0	0		
D9039	To set the fixed period o	f the PLC's Scan Time. The default value is 0ms (unit: 1ms).	0	0	0	0		
Time Data	a of Real Time Clock (F	RTC)	VS1	VS2	VSM	VS3		
D9013	Seconds value. (0~59)		0	0	0	0		
D9014	Minute value. (0~59)		0	0	0	0		
D9015	Hour value. (0~23)		0	0	0	0		
D9016	Date value. (1~31)		0	0	0	0		
D9017	Month value. (1~12)		0	0	0	0		
D9018	Year value. (2000~20YY, 4 digits)		0	0	0	0		
D9019	Day of week. 0 (Sun.) \sim	6 (Sat.)	0	0	0	0		
VS-3AV-E	S-3AV-EC Voltage I/O Brief Expansion Card		VS1	VS2	VSM	VS3		
D9030	The AD converted value	of VI1 at the VS-3AV-EC, $0 \sim 10V = 0 \sim 4000$	0	0	0	0		
■D9031	The AD converted value	of VI2 at the VS-3AV-EC, $0 \sim 10V = 0 \sim 4000$	0	0	0	0		
D9032	The DA digital input valu	ie for the VO at the VS-3AV-EC, $0 \sim 1000 = 0 \sim 10V$	0	0	0	0		
Step Lado	ler Instruction Correlat	red	VS1	VS2	VSM	VS3		
■D9040	1 st active STL step							
■D9041	2 nd active STL step							
■D9042	3 rd active STL step							
■D9043	4 th active STL step	When M9047="ON", the active STL step ID numbers will be stored in D0040, D0047, where the D0040 will store the lowest active ID number						
■D9044	5 th active STL step	the second lowest one will store in the D9041, and so forth.						
■D9045	6 th active STL step							
■D9046	7 th active STL step							
■D9047	8 th active STL step							
■D9049	When M9049="ON", it	stores the lowest currently active Annunciator in D9049.	0	0	0	0		
Error Mes	sage		VS1	VS2	VSM	VS3		
■D9067	Error code to identify the	e operation error.	0	0	0	0		
D9068	Lower 16 bits	Latched the step address number of the operation error						
D9069	Upper 16 bits							
D9070	Lower 16 bits	Step address number of the operation error						
D9071	Upper 16 bits					Ľ		
Loop Cou	nter		VS1	VS2	VSM	VS3		
D9072	Lower 16 bits	The current value of 32-bit up-count loop counter $0\sim$ 2,147,483,647. (unit: ms)	0	0	0	0		
	The current value of 16 k	high-speed-up-count loop counter 0~32.767 (unit: 0.1ms)	-		0	0		
03033								

Register ID No.	Description				Series			
Pulse Mea	asurement			VS2	VSM	VS3		
D9074	Lower 16 bits	The X0's rising edge to catch the current value of loop counter.				_		
D9075	Upper 16 bits	(unit: 1/6 μs)	0	0		0		
D9076	Lower 16 bits	The X0's falling edge to catch the current value of loop counter.						
D9077	Upper 16 bits	(unit: 1/6 μs)	0	0		0		
D9078	Lower 16 bits	The X0's Pulse Width/Period Measurement cached value. (unit: 10µs).						
D9079	Upper 16 bits	The measurable range of Width: 10μ s~100s, min. Pulse Period: 20μ s	0	0		0		
D9080	Lower 16 bits	The X1's rising edge to catch the current value of loop counter.						
D9081	Upper 16 bits	(unit: 1/6 µs)				0		
D9082	Lower 16 bits	The X1's falling edge to catch the current value of loop counter.				0		
D9083	Upper 16 bits	(unit: 1/6 µs)		0		0		
D9084	Lower 16 bits	The X4's Pulse Width/Period Measurement cached value. (unit: 10μ s).						
D9085	Upper 16 bits	The measurable range of Width: 10μ s~100s, min. Pulse Period: 20μ s						
D9086	Lower 16 bits	The X3's rising edge to catch the current value of loop counter.						
D9087	Upper 16 bits	(unit: 1/6 µs)						
D9088	Lower 16 bits	The X3's falling edge to catch the current value of loop counter.						
D9089	Upper 16 bits	(unit: 1/6 µs)		0	<u> </u>			
D9090	Lower 16 bits	The X4's Pulse Width/Period Measurement cached value. (unit: 10μ s).	0	0	0	0		
D9091	Upper 16 bits	The measurable range of Width: 10μ s \sim 100s, min. Pulse Period: 20μ s						
D9092	Lower 16 bits	The X4's rising edge to catch the current value of loop counter.		0		0		
D9093	Upper 16 bits	(unit: 1/6 μs)		Ŭ		Ŭ		
D9094	Lower 16 bits	The X4's falling edge to catch the current value of loop counter. (unit: $1/6\mu s$)		0		0		
D9095	Upper 16 bits			Ŭ				
D9096	Lower 16 bits	The X4's Pulse Width/Period Measurement cached value. (unit: 10μ s).		0	0	0		
D9097	Upper 16 bits	The measurable range of width. 10μ s ~ 100 s, min. Pulse Period. 20μ s						
CP1 Com	munication Port		VS1	VS2	VSM	VS3		
D9100	The CP1's station numb	er.	0	0	0	0		
■D9101	The CP1's amount of re	sidual data to be sent out by the instruction RS.	0	0	0	0		
■D9102	The CP1's amount of th	e data already received by the instruction HS.	0	0	0	0		
CP2 Com	munication Port		VS1	VS2	VSM	VS3		
D9110	The CP2's station numb	er.	0	0	0	0		
■D9111	The CP2's amount of re	sidual data to be sent out by the instruction RS.	0	0	0	0		
■D9112	The CP2's amount of th	e data already received by the instruction RS.	0	0	0	0		
CP3 Com			VS1	VS2	VSIM	VS3		
D9120	The CP3's station numb	er.		0		0		
■D9121	The CP3's amount of residual data to be sent out by the instruction RS.			0		0		
■D9122	2 The CP3's amount of the data already received by the instruction RS.							
DO100	CP4 Communication Port			V52	VSIVI	V53		
D9130	The CP4's station numb	edual data to be cont out by the instruction PS	<u> </u>			0		
D9131	The CP4's amount of th	a data already reasized by the instruction RS.	<u> </u>			0		
	munication Dort			1/60	VCNA	1/62		
			101	V32	10100	033		
	The CP5's amount of re	ici. sidual data to be sent out by the instruction RS	<u> </u>					
	The CP5's amount of the	e data already received by the instruction RS	<u> </u>					
= D314Z	I THE CHOS'S ATTIOUNT OF THE DATA AIREADY RECEIVED BY THE INSTRUCTION HS.				'			

RND, HSCT_INT VS1 VS2 VS3 VS2 VS3 <	Register ID No.	Description			Series			
D9160 Lower 16 bits Providing a number (or her ND) (FNC184) instruction to produce a random value. Initial value: K1 O <tho< th=""> <tho< th=""> O</tho<></tho<>	RND, HSC	T, INT		VS1	VS2	VSM	VS3	
Diff Upper 16 bits India Value. Initial value. K1 C <thc< <="" td=""><td>D9160</td><td>Lower 16 bits</td><td>Providing a number for the RND (FNC184) instruction to produce a</td><td></td><td></td><td></td><td></td></thc<>	D9160	Lower 16 bits	Providing a number for the RND (FNC184) instruction to produce a					
ID9162 The number of count is activated at the table of HSCT instruction. □ <th□< th=""> □ □ <</th□<>	D9161	Upper 16 bits	random value. Initial value: K1		0		0	
Design External interrupt delay time Set Value (Unit: ms). O <tho< th=""></tho<>	■D9162	The number of count is	activated at the table of HSCT instruction.	0	0	0	0	
Index Image V.Z VSI VS2 VSI VS	D9163	External interrupt delay t	ime Set Value (Unit: ms).	0	0	0	0	
D9180 Z0 index Register C	Index Regi	x Register V, Z			VS2	VSM	VS3	
D9181 V0 index Register O O O O D9182 Z1 index Register O	D9180	Z0 Index Register		0	0	0	0	
D9182 Z1 Index Register ○	D9181	V0 Index Register		0	0	0	0	
D9183 V1 Index Register ○	D9182	Z1 Index Register		0	0	0	0	
D9184 Z2 Index Register ○	D9183	V1 Index Register		0	0	0	0	
D9185 V2 Index Register ○	D9184	Z2 Index Register		0	0	0	0	
D9186 Z3 Index Register ○ <td>D9185</td> <td>V2 Index Register</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	D9185	V2 Index Register		0	0	0	0	
D9187 V3 Index Register O O O O D9188 Z4 Index Register O	D9186	Z3 Index Register		0	0	0	0	
D9188 Z4 Index Register O	D9187	V3 Index Register		0	0	0	0	
D9189 V4 Index Register O O O O D9190 Z5 Index Register O	D9188	Z4 Index Register		0	0	0	0	
D9190 Z5 Index Register O O O D9191 V5 Index Register O O O O D9192 Z6 Index Register O	D9189	V4 Index Register		0	0	0	0	
D9191 V5 Index Register O <tho< th=""> O</tho<>	D9190	Z5 Index Register		0	0	0	0	
D9192 Z6 Index Register O	D9191	V5 Index Register		0	0	0	0	
D9193 V6 Index Register O	D9192	Z6 Index Register		0	0	0	0	
D9194 Z7 Index Register O	D9193	V6 Index Register		0	0	0	0	
D9195 V7 Index Register O O O O Hardware High Speed Counter VS1 VS2 VSM VS3 D9224 HHSC1 counting mode selection. "0" is to disable the HHSC1; "1" ~ "6" represent different modes. O O D9225 HHSC2 counting mode selection. "0" is to disable the HHSC2; "1" ~ "6" represent different modes. O O D9226 Lower 16 bits The Present Value of HHSC1. O O O D9227 Upper 16 bits The Present Value of HHSC1. O O O O D9228 Lower 16 bits The Present Value of HHSC1. O	D9194	Z7 Index Register			0	0	0	
Hardware High Speed CounterVS1VS2VSMVS3D9224HHSC1 counting mode selection. "0" is to disable the HHSC1; "1" ~ "6" represent different modes. \circ \circ \circ D9225HHSC2 counting mode selection. "0" is to disable the HHSC2; "1" ~ "6" represent different modes. \circ \circ \circ D9226Lower 16 bitsThe Present Value of HHSC1. \circ \circ \circ \circ D9227Upper 16 bitsThe Present Value of HHSC2. \circ \circ \circ \circ D9230Lower 16 bitsThe Present Value of HHSC1. \circ \circ \circ \circ D9231Upper 16 bitsThe Set Value of HHSC1. \circ \circ \circ \circ D9232Lower 16 bitsThe Set Value of HHSC2. \circ \circ \circ \circ D9233Upper 16 bitsThe Set Value of HHSC2. \circ \circ \circ \circ D9234Lower 16 bitsThe Set Value of HHSC2. \circ \circ \circ \circ D9233Upper 16 bitsThe Set Value of HHSC2. \circ \circ \circ \circ D9234EC1 Expansion CardVS1VS2VSMVS3D9260EC1 Expansion Cards working area.D9260~D9279=EC1D0~EC1D19. \circ \circ \circ D9280EC2 Expansion Cards working area.D9280~D9299=EC2D0~EC2D19. \circ \circ \circ D9300 $\frac{1}{2}$ EC2 Expansion Cards working area.D9300~D9319=EC3D0~EC3D19. \circ \circ \circ D3310Cycle counter #1 for the timing sequence pulse generative ins	D9195	5 V7 Index Register			0	0	0	
D9224 HHSC1 counting mode selection. "0" is to disable the HHSC1; "1" ~ "6" represent different modes. 0 0 D9225 HHSC2 counting mode selection. "0" is to disable the HHSC2; "1" ~ "6" represent different modes. 0 0 0 D9226 Lower 16 bits The Present Value of HHSC1. 0 0 0 0 D9227 Upper 16 bits The Present Value of HHSC2. 0 0 0 0 0 D9228 Lower 16 bits The Present Value of HHSC2. 0	Hardware I	Hardware High Speed Counter		VS1	VS2	VSM	VS3	
D9225 HHSC2 counting mode selection. "0" is to disable the HHSC2; "1" ~ "6" represent different modes. 0 0 D9226 Lower 16 bits The Present Value of HHSC1. 0 0 0 D9228 Lower 16 bits The Present Value of HHSC1. 0 0 0 0 D9229 Upper 16 bits The Present Value of HHSC2. 0 0 0 0 0 D9230 Lower 16 bits The Present Value of HHSC1. 0	D9224	HHSC1 counting mode	selection. "0" is to disable the HHSC1; "1" \sim "6" represent different modes.	0	0	0	0	
D9226 Lower 16 bits The Present Value of HHSC1. 0 0 0 D9227 Upper 16 bits The Present Value of HHSC1. 0 0 0 D9228 Lower 16 bits The Present Value of HHSC2. 0 0 0 0 D9229 Upper 16 bits The Present Value of HHSC2. 0 <td>D9225</td> <td>HHSC2 counting mode</td> <td>selection. "0" is to disable the HHSC2; "1" \sim "6" represent different modes.</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	D9225	HHSC2 counting mode	selection. "0" is to disable the HHSC2; "1" \sim "6" represent different modes.	0	0	0	0	
DiscleteThe Present Value of HHSC1. \circ	D9226	Lower 16 bits						
D9228 Lower 16 bits The Present Value of HHSC2. 0 0 0 0 D9229 Upper 16 bits The Present Value of HHSC2. 0	D9227	Upper 16 bits	The Present Value of HHSC1.	0	0	0	0	
DeterminationThe Present Value of HHSC2.OOOOD9229Upper 16 bitsThe Set Value of HHSC1.OOOOOD9231Upper 16 bitsThe Set Value of HHSC1.OOOOOOD9232Lower 16 bitsThe Set Value of HHSC2.OOOOOOOD9233Upper 16 bitsThe Set Value of HHSC2.OOO <td>D9228</td> <td>Lower 16 bits</td> <td></td> <td> </td> <td></td> <td></td> <td></td>	D9228	Lower 16 bits						
D9230 Lower 16 bits The Set Value of HHSC1. 0 <td>D9229</td> <td>Upper 16 bits</td> <td>The Present Value of HHSC2.</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	D9229	Upper 16 bits	The Present Value of HHSC2.	0	0	0	0	
D9230 Upper 16 bits The Set Value of HHSC1. O O O O D9231 Upper 16 bits The Set Value of HHSC2. O <td< td=""><td>D9230</td><td>Lower 16 bits</td><td></td><td> </td><td></td><td></td><td></td></td<>	D9230	Lower 16 bits						
D9231 Dpps i robite Image: construction of the construction of th	D9231	Lipper 16 bits	The Set Value of HHSC1.	0	0	0	0	
D9232Control outsThe Set Value of HHSC2.OOOOOD9233Upper 16 bitsThe Set Value of HHSC2.VS1VS2VSMVS3Vorking Area of the EC1 Expansion Card's working area.D9260~D9279=EC1D0~EC1D19.OOOOD9279EC1 Expansion Card's working area.D9260~D9279=EC1D0~EC1D19.OOOOWorking Area of the EC2 Expansion CardVS1VS2VSMVS3D9280 2 0EC2 Expansion Card's working area.D9280~D9299=EC2D0~EC2D19.OOOOWorking Area of the EC3 Expansion CardVS1VS2VSMVS3D9300 2 0EC2 Expansion Card's working area.D9300~D9319=EC3D0~EC3D19.OOODUTY Instruction OutputVS1VS2VSMVS3D9330Cycle counter #1 for the timing sequence pulse generative instruction DUTY (FNC186).OOOD9331Cycle counter #2 for the timing sequence pulse generative instruction DUTY (FNC186).OOOD9332Cycle counter #3 for the timing sequence pulse generative instruction DUTY (FNC186).OOO	D9232	Lower 16 bits						
Working Area of the EC1 Expansion Card VS1 VS2 VSM VS3 D9260 29279 EC1 Expansion Card's working area. D9260~D9279=EC1D0~EC1D19. 0 0 0 0 Working Area of the EC2 Expansion Card VS1 VS2 VSM VS3 D9280 29299 EC1 Expansion Card's working area. D9280~D9299=EC2D0~EC2D19. 0 0 0 0 Working Area of the EC3 Expansion Card VS1 VS2 VSM VS3 D9299 EC2 Expansion Card's working area. D9280~D9299=EC2D0~EC2D19. 0 0 0 0 Working Area of the EC3 Expansion Card VS1 VS2 VSM VS3 D9300 200 EC2 Expansion Card's working area. D9300~D9319=EC3D0~EC3D19. 0 0 0 0 DUTY Instruction Output VS1 VS2 VSM VS3 0	D9233	Lipper 16 bits	The Set Value of HHSC2.	0	0	0	0	
Working Area of the EC1 Expansion Card's working area. D9260~D9279=EC1D0~EC1D19. 0 0 0 0 D9279 EC1 Expansion Card's working area. D9260~D9279=EC1D0~EC1D19. 0 0 0 0 Working Area of the EC2 Expansion Card VS1 VS2 VSM VS3 D9280 EC2 Expansion Card's working area. D9280~D9299=EC2D0~EC2D19. 0 0 0 0 Working Area of the EC3 Expansion Card VS1 VS2 VSM VS3 D9300 EC2 Expansion Card's working area. D9300~D9319=EC3D0~EC3D19. 0 0 0 0 DUTY Instruction Output VS1 VS2 VSM VS3 D9330 Cycle counter #1 for the timing sequence pulse generative instruction DUTY (FNC186). 0 0 0 D9331 Cycle counter #2 for the timing sequence pulse generative instruction DUTY (FNC186). 0 0 0 D9332 Cycle counter #3 for the timing sequence pulse generative instruction DUTY (FNC186). 0 0 0	Working Ar	ea of the EC1 Expansio	n Card	V/S1	1/52	VSM	1/53	
Control <t< td=""><td>D9260</td><td></td><td></td><td>001</td><td>V32</td><td>0.0101</td><td>v 33</td></t<>	D9260			001	V32	0.0101	v 33	
Working Area of the EC2 Expansion Card VS1 VS2 VSM VS3 D9280 EC2 Expansion Card's working area. D9280~D9299=EC2D0~EC2D19. 0 0 0 0 Working Area of the EC3 Expansion Card's working area. D9280~D9299=EC2D0~EC2D19. 0	D9279	EC1 Expansion Card's v	vorking area. D9260~D9279=EC1D0~EC1D19.	0	0	0	0	
D9280 D9299 EC2 Expansion Card's working area. D9280~D9299=EC2D0~EC2D19. 0	Working Ar	ea of the EC2 Expansio	n Card	VS1	VS2	VSM	VS3	
Column 1 Column 1 <td< td=""><td>D9280</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	D9280							
Working Area of the EC3 Expansion Card VS1 VS2 VS3 D9300 b9319 EC2 Expansion Card's working area. D9300~D9319=EC3D0~EC3D19. 0 <	D9299	EC2 Expansion Card's v	vorking area. D9280~D9299=EC2D0~EC2D19.		0	0	0	
D9300 D9319 EC2 Expansion Card's working area. D9300~D9319=EC3D0~EC3D19. 0 0 0 0 DUTY Instruction Output VS1 VS2 VSM VS3 DD9330 Cycle counter #1 for the timing sequence pulse generative instruction DUTY (FNC186). 0 0 D9331 Cycle counter #2 for the timing sequence pulse generative instruction DUTY (FNC186). 0 0 D9332 Cycle counter #3 for the timing sequence pulse generative instruction DUTY (FNC186). 0 0	Working Ar	ea of the EC3 Expansio	n Card	VS1	VS2	VSM	VS3	
DUTY Instruction Output VS1 VS2 VSM VS3 ■D9330 Cycle counter #1 for the timing sequence pulse generative instruction DUTY (FNC186). ○ ○ ■D9331 Cycle counter #2 for the timing sequence pulse generative instruction DUTY (FNC186). ○ ○ ■D9332 Cycle counter #3 for the timing sequence pulse generative instruction DUTY (FNC186). ○ ○	D9300 2 D9319	EC2 Expansion Card's working area. D9300~D9319=EC3D0~EC3D19.			0	0	0	
■ D9330 Cycle counter #1 for the timing sequence pulse generative instruction DUTY (FNC186). ○ ■ D9331 Cycle counter #2 for the timing sequence pulse generative instruction DUTY (FNC186). ○ ■ D9332 Cycle counter #3 for the timing sequence pulse generative instruction DUTY (FNC186). ○	DUTY Inst	ruction Output			VS2	VSM	VS3	
D9331 Cycle counter #2 for the timing sequence pulse generative instruction DUTY (FNC186).	■D9330	Cycle counter #1 for the	e timing sequence pulse generative instruction DUTY (FNC186).				0	
D9332 Cycle counter #3 for the timing sequence pulse generative instruction DLITY (ENC186)	■D9331	Cycle counter #2 for the	e timing sequence pulse generative instruction DUTY (FNC186).				0	
	D9332	Cycle counter #3 for the	e timing sequence pulse generative instruction DUTY (FNC186).				0	
■ D9333 Cycle counter #4 for the timing sequence pulse generative instruction DUTY (FNC186).	D9333	Cycle counter #4 for the	e timing sequence pulse generative instruction DUTY (FNC186).				0	
■D9334 Cycle counter #5 for the timing sequence pulse generative instruction DUTY (FNC186).	■D9334	Cycle counter #5 for the	e timing sequence pulse generative instruction DUTY (FNC186).				0	

Register ID No.	Description				Series				
Y0 Axis's	Positioning Cont	rol	VS1	VS2	VSM	VS3			
D9340 D9341	Lower 16 bits Upper 16 bits	The Y0's maximum speed. Available range: VS1, VS2 is 1Hz~50kHz; VSM, VS3 is 1Hz~200kHz; VSM-28ML is 1Hz~1MHz	0	0	0	0			
D9342	The Y0's bias sp	peed. Available range: 0~20kHz.	0	0	0	0			
D9343	The Y0's accele If <0, then equa	ration time, range = $0 \sim 32,000$ ms. al to 0; if $> 32,000$, then equal to 32,000.	0	0	0	0			
D9344	The Y0's decele If <0, then equa	ration time, range = $0 \sim 32,000$ ms. al to 0; if >32,000, then equal to 32,000.	0	0	0	0			
D9345	The Y0's number If out of the rang	er of PG0 input when to execute the ZRN instruction, range = $1 \sim 32,767$. ge, then equal to 1.	0	0	0	0			
D9346	Lower 16 bits	The Y0's preSet Value when the ZRN is finished.							
D9347	Upper 16 bits	Available range: -2,147,483,648~+2,147,483,647.	0	0	0	0			
D9348	The Y0's pulse of If over the range	Dutput speed multiple ratio, ranging from $1 \sim 30,000 = 0.1\% \sim 3,000.0\%$. e, then equal to 1,000 (100.0%).	0	0	0	0			
■D9349	The Y0's M-cod	e register.	0	0	0	0			
■D9350	Lower 16 bits	The Y0's current speed.				0			
■D9351	Upper 16 bits	(unit: Hz).			0				
D9352	Lower 16 bits	The Y0's current location (Present Value, PV). The initial value is 0.							
D9353	Upper 16 bits	For the PLSY or PLSR instruction, that is the amount of output pulses.		0		0			
D9354	Lower 16 bits	s The Y0's current location (Present Value, PV) at positioning. The initial value is 0.				0			
D9355	Upper 16 bits								
Y1 Axis's Positioning Control		VS1	VS2	VSM	VS3				
D9360	Lower 16 bits	The Y1's maximum speed. Available range: VS1, VS2 is 1Hz~50kHz; VSM, VS3 is 1Hz~200kHz;	0	0	0	0			
D9361	Upper 16 bits	VSM-28ML is 1Hz~1MHz.							
D9362	The Y1's bias sp	peed. Available range: 0~20kHz.	0	0	0	0			
D9363	The Y1's accele $ f < 0$, then equa	ration time, range = $0 \sim 32,000$ ms. al to 0; if $> 32,000$, then equal to 32,000.	0	0	0	0			
D9364	The Y1's deceled $If < 0$, then equal	ration time, range = $0 \sim 32,000$ ms. al to 0; if $> 32,000$, then equal to 32,000.	0	0	0	0			
D9365	The Y1's number If out of the range	er of PG0 input when to execute the ZRN instruction, range = $1 \sim 32,767$. ge, then equal to 1.	0	0	0	0			
D9366	Lower 16 bits	The Y1's preSet Value when the ZRN is finished.							
D9367	Upper 16 bits	Available range: -2,147,483,648~+2,147,483,647.							
D9368	The Y1's pulse of If over the range	butput speed multiple ratio, ranging from $1 \sim 30,000 = 0.1\% \sim 3,000.0\%$. e, then equal to 1,000 (100.0%).	0	0	0	0			
■D9369	The Y1's M-cod	e register.	0	0	0	0			
■D9370	Lower 16 bits	The Y1's current speed.				0			
■D9371	Upper 16 bits	(unit: Hz).							
D9372	Lower 16 bits	The Y1's current location (Present Value, PV). The initial value is 0.				0			
D9373	Upper 16 bits	For the PLSY or PLSR instruction, that is the amount of output pulses.							
D9374	Lower 16 bits	The Y1's current location (Present Value, PV) at positioning. The initial value is 0							
D9375	Upper 16 bits	er 16 bits							

Register ID No.	Description			Series				
Y2 Axis's	Positioning Cont	rol	VS1	VS2	VSM	VS3		
D9380 D9381	Lower 16 bits Upper 16 bits	The Y2's maximum speed. Available range: VS1, VS2 is 1Hz~50kHz; VSM, VS3 is 1Hz~200kHz; VSM-28ML is 1Hz~1MHz	0	0	0	0		
D9382	The Y2's bias sp	peed. Available range: 0~20kHz.	0	0	0	0		
D9383	The Y2's accele If <0, then equa	ration time, range = $0 \sim 32,000$ ms. al to 0; if >32,000, then equal to 32,000.	0	0	0	0		
D9384	The Y2's decele If <0, then equa	ration time, range = $0 \sim 32,000$ ms. al to 0; if $> 32,000$, then equal to 32,000.	0	0	0	0		
D9385	The Y2's number If out of the rang	er of PG0 input when to execute the ZRN instruction, range = $1 \sim 32,767$. ge, then equal to 1.	0	0	0	0		
D9386	Lower 16 bits	The Y2's preSet Value when the ZRN is finished.						
D9387	Upper 16 bits	Available range: -2,147,483,648~+2,147,483,647.	0	0	0	0		
D9388	The Y2's pulse of If over the range	butput speed multiple ratio, ranging from $1 \sim 30,000 = 0.1\% \sim 3,000.0\%$. e, then equal to 1,000 (100.0%).	0	0	0	0		
■D9389	The Y2's M-cod	e register.	0	0	0	0		
■D9390	Lower 16 bits	The Y2's current speed.						
D9391	Upper 16 bits	(unit: Hz).						
D9392	Lower 16 bits	The Y2's current location (Present Value, PV). The initial value is 0.						
D9393	Upper 16 bits	For the PLSY or PLSR instruction, that is the amount of output pulses.	0	0	0	0		
D9394	Lower 16 bits	6 bitsThe Y2's current location (Present Value, PV) at positioning. The initial value is 0.						
D9395	Upper 16 bits			0		0		
Y3 Axis's	Y3 Axis's Positioning Control			VS2	VSM	VS3		
D9400	Lower 16 bits The Y3's maximum speed.							
D9401	Upper 16 bits	VSM-28ML is 1Hz~1MHz		0		0		
D9402	The Y3's bias sp	peed. Available range: 0~20kHz.	0	0	0	0		
D9403	The Y3's accele If <0, then equa	ration time, range = $0 \sim 32,000$ ms. al to 0; if $> 32,000$, then equal to 32,000.	0	0	0	0		
D9404	The Y3's deceled $If < 0$, then equal	ration time, range = $0 \sim 32,000$ ms. al to 0; if $> 32,000$, then equal to 32,000.	0	0	0	0		
D9405	The Y3's number If out of the range	er of PG0 input when to execute the ZRN instruction, range = $1 \sim 32,767$. ge, then equal to 1.	0	0	0	0		
D9406	Lower 16 bits	The Y3's preSet Value when the ZRN is finished.						
D9407	Upper 16 bits	Available range: $-2,147,483,648 \sim +2,147,483,647$.						
D9408	The Y3's pulse of If over the range	butput speed multiple ratio, ranging from $1 \sim 30,000 = 0.1\% \sim 3,000.0\%$. e, then equal to 1,000 (100.0%).	0	0	0	0		
■D9409	The Y3's M-cod	e register.	0	0	0	0		
■D9410	Lower 16 bits	The Y3's current speed.						
■D9411	Upper 16 bits	(unit: Hz).		0		0		
D9412	Lower 16 bits	The Y3's current location (Present Value, PV). The initial value is 0.						
D9413	Upper 16 bits	For the PLSY or PLSR instruction, that is the amount of output pulses.						
D9414	Lower 16 bits	The V3's current location (Present Value, PV) at positioning. The initial value is 0						
D9415	Upper 16 bits	er 16 bits I he Y3's current location (Present Value, PV) at positioning. The initial value is 0.						

2-14-3 Error Code Description

Error Code	Error Cause	Opportunity to Detect the Error	PLC Status	Status of the ERR Indicator
9064	PLC ID ≠ Project ID	STOP→RUN	STOP	Twinkling by 1Hz
9065	PLC model is incorrect	STOP→RUN	STOP	Twinkling by 1Hz
9066	Check Sum incorrect	STOP→RUN	STOP	Twinkling by 1Hz
9067	Operation error	During the program processing	RUN	OFF
6100	ROM access error	Power OFF→ON	STOP	ON
6101	RAM access error	Power OFF→ON	STOP	ON
6105	Watch Dog Timer exceeding	During the program processing	STOP	Twinkling by 1Hz

System error information (use the contents of D9004)

Operation error information (use the contents of D9067)

Error Code	Error Cause							
0	Normal, no processing error							
6701	The destination pointer of the CJ or CALL instruction is not exist. Usually the pointer is modified by an incorrect index register.							
6702	More than 5 Levels of the CALL instruction have been nested together.							
6704	More than 5 Levels of the FOR / NEXT loop have been nested together.							
6705	An incompatible device has been specified as an operand for an application instruction							
6706	Specified devices or contents at the operand has been exceeded the range for the app	lication instruction.						
6708	The source or destination for the FROM / TO instruction is not existed.							
6710	The assigned parameter does not match with the application instruction.							
The code	below is for the PID instruction							
Error Code	Error Cause	Effect to the Instruction						
6730	The setting value of Sampling Time (Ts) is beyond the range (Ts $<$ 1).							
6732	The setting value of Input Filter constant (α) is beyond the range ($\alpha < 0$ or $\alpha \ge 100$).							
6733	The setting value of Proportional Gain constant (KP) is beyond the range (KP $<$ 1). The PID instruction will s							
6734	The setting value of Integral Time constant (TI) is beyond the range (TI < 0) to operate							
6735	The setting value of Differential Gain constant (KD) is beyond the range (KD < 0 or KD > 100).							
6736	The setting value of Derivative Time constant (TD) is beyond the range (TD $<$ 0).							
6740	The Sampling Time <= The Scan Time of PLC							
6742	The change of the measured Present Value is too large ($\triangle PV < -32768$ or $\triangle PV > 32767$).							
6743	The variance of current Error Value is too large ($\triangle EV < -32768$ or $\triangle EV > 32767$).							
6744	The calculating value of Integral process exceeds –32768~32767.							
6745	The value of Proportional Gain (KP) is too large, it cause the calculating value of proportion which exceeds the range.							
6746	The calculating value of Differential process exceeds $-32768 \sim 32767$.							
6747	The calculating result value of the PID instruction which exceeds $-32768 \sim 32767$.							

2-15 The X0~X7 High Speed Input Function Description

The input points $X0 \sim X7$ of the VS series PLC have the abilities to respond to high-speed input and to execute many high speed functions. The functions of these 8 output points are listed as follows.

Function	External Input Point								
Tunction	X0	X1	X2	X3	X4	X5	X6	X7	Page
Common Input	Use D9020	Use D9020 to adjust the filter time as 0~60ms.							183
Frequency Meter	Use the SP	D instruction	to perform t	he speed de	tection funct	ion			190
Software High Speed Counter	Become the input of the C235~C255 1-phase/2-phase/AB phase counter, hereby could make the IHC0~IHC7 interrupt					ıld make	25		
External Interrupt	IX0P/F	IX1P/F	IX2P/F	IX3P/F	IX4P/F	IX5P/F	IX6P/F	IX7P/F	54
Pulse Capture	M9170	M9171	M9172	M9173	M9174	M9175	M9176	M9177	55
Hardware High Speed Counter	HHSC1, to make the IHHC1 interrupt		_	HHSC2, the IHHC	to make 2 interrupt	_	_	_	58
Pulse Measurement	Width / Period measurement		_	Width / Period measurement			_	_	56
Positioning Control	Can be the	input points	of the position	oning control	's DOG, PG), INT signals	s or for the h	andwheel	427

- Common Input is available to work with an other advanced function.
- When one of the X0~X7 performs a mentioned advanced function above, this input point is not reusable with another function. However, External Interrupt could cooperate with Pulse Measurement function. (For details, please see the specific function description.)
- When a mentioned advanced function above performs, the filter time of this input point will be automatically adjusted to 0 ms (deviates form D9020). To prevent noise interference, input points X0~X7 are also mounted with hardware RC filters.

Thus, the filter time of 0 ms is not true 0 ms. In addition, the response time of input points $X0 \sim X7$ is varied depending on the series of VS1, VS2, VSM or VS3.

When the filter time is adjusted to 0 ms, the minimum ON or OFF signal width of each input point is listed as follows.

Series	External Input Point								
Series	X0	X1	X2	X3	X4	X5	X6	Х7	
VS1	50µs	50µs	50µs	50µs	50µs	50µs	50µs	50µs	
VS2	10µs	10µs	10µs	10µs	10µs	10µs	10µs	10µs	
VSM	2.5µs	2.5µs	10µs	2.5µs	2.5µs	10µs	10µs	10µs	
VSM-28ML	0.5µs	0.5µs	10µs	0.5µs	0.5µs	10µs	10µs	10µs	
VS3	2.5µs	2.5µs	10µs	2.5µs	2.5µs	10µs	10µs	10µs	

- When a multi-function input point is performing an advanced function, the reaction speed of the point should be very fast. On the other hand, the consequence is relatively sensitive (higher frequency means more sensitive), which makes the input vulnerability to noise interference. Therefore, it's necessary to pay special attention to the external wiring. Keep away from interference sources, or even use isolation cables.
- As the adjustable input filter time, speed detection and the functions of high-speed counters have been described above, the sections below will describe the functions of external interrupt, pulse wave capture, hardware high speed input and pulse measurement.

2-15-1 External Interrupt

The VS series PLC has 8 external interrupt input points $X0 \sim X7$. The External Interrupt function can be employed when the external input signal that needs instant response, not to be affected by scan time or to read a narrow width pulse.

The External Interrupt signal works with its corresponding interrupt subroutine to execute an external interrupt.

The External Interrupt pointers are listed in the following table:

External Input Point	Rising Edge Interrupt Pointer	Falling Edge Interrupt Pointer	Interrupt Prohibit Flag
X0	IXOP	IXOF	M9050
X1	IX1P	IX1F	M9051
X2	IX2P	IX2F	M9052
X3	IX3P	IX3F	M9053
X4	IX4P	IX4F	M9054
X5	IX5P	IX5F	M9055
X6	IX6P	IX6F	M9056
X7	IX7P	IX7F	M9057

% One external input point only corresponds to one external interrupt pointer. Such as either the IX0P or IX0F can be used in a program; either the IX1P or IX1F can be used in a program, and so forth.

• Program example:

When the external input point X1 turns OFF, the IX1F interrupt subroutine is executed and Y0 is set to ON. And the status of Y0 ON is immediately sent to the output port via the I / O refresh command REF (FNC 50).

ł		The main program.	
-		FEND The First End instruction. End of the main program.	
I)	X1F	The IX1F external interrupt pointer.	
-	M9000	SET Y0 Set the Y0 ON. REF Y0 K8 Deliver the memory's status to the outputs Y0~Y7 immediately.	The IX1F external interrupt subroutine.
ł		IRET The end of interrupt subroutine and return.	

• The VS series PLC external interrupt has the function of delay interrupt. That delay time is by the unit of 1ms. This feature allows the user to change the starting of the interrupt subroutine by the parameter adjustments, without to change the external detector's location where the interrupt signal has occurred.

This interrupt delay time setting is by a series of particular pattern below the interrupt pointer. The pattern format of this standard program can not be changed.

The tables below list the special relay and register related to this function: ■ Represents that component is read only.

Relay ID No.	Description
■M9163	External Interrupt delay time set-up flag. Use this flag contact to active the interrupt delay function.
Register ID No.	Description
D9163	External interrupt delay time Set Value (Unit: ms).

2-15-2 Pulse Capture

The function of pulse capture is to get the input signal which the width of ON is narrow. If an input point $X0 \sim X7$ is not to use an input special function, its pulse capture is active automatically.

The pulse signals which $X0 \sim X7$ input points capture will reflect to the special relays M9170 \sim M9177. For each captured point, its special relay can only be cleared by using the RST instruction. And after the END instruction is executed, the input point is able to capture the next signal.

Only one signal can be captured at a scan time. Therefore, if there is a demand for to capture more signals at a short time, the external interrupt function can be used for this purpose.

The table below lists the special relays related to this function:

Relay ID No.	Description					
M9170	X0 input signal captured flag.					
M9171	X1 input signal captured flag.					
M9172	X2 input signal captured flag.					
M9173	X3 input signal captured flag.					
M9174	X4 input signal captured flag.					
M9175	X5 input signal captured flag.					
M9176	X6 input signal captured flag.					
M9177	X7 input signal captured flag.					

• Program example:

During program operation, when the external input point X0 changes from OFF to ON, the M9170 is set to ON in an interrupt manner. Subsequently, the M9170 will remain its ON status no matter the X0 changes OFF or ON. After the X20 is turned ON to reset the M9170 to OFF, the M9170 is able to turned ON again by the next time that X0 changes from OFF to ON.

2-15-3 Pulse Measurement

With the pulse measurement function, the VS series PLC can measure X0, X1, X3, X4 input pulse signal's ON width or cycle period.

The pulse measurement function uses an 1/6 μ s loop counter to store the count value to the specific special registers at the rising edge and falling edge of the input signal respectively. And then calculate the pulse width or pulse period of the input signal according to the contents of the registers. The calculated width or cycle is stored in the corresponding special registers in the unit of 10 μ s.

The tables below list the special relays and registers related to this function: ■ Represents that component is read only.

Relay ID No.	Description
■M9075	Pulse measurement setting-up flag. Use this flag contact to active the pulse width / period measurement function at the X0, X1, X3 or X4.
M9076	To start the X0 for pulse measurement.
M9077	To start the X1 for pulse measurement.
M9078	To start the X3 for pulse measurement.
M9079	To start the X4 for pulse measurement.
M9080	To set the mode of X0's pulse measurement. "OFF": pulse width measurement, "ON": pulse period measurement
M9081	To set the mode of X1's pulse measurement. "OFF": pulse width measurement, "ON": pulse period measurement
M9082	To set the mode of X3's pulse measurement. "OFF": pulse width measurement, "ON": pulse period measurement
M9083	To set the mode of X4's pulse measurement. "OFF": pulse width measurement, "ON": pulse period measurement

Register ID No.		Description	
D9074	Lower 16 bits	The Y0's riging edge to establish surrent value of loop coupter (upit: $1/6$ up)	
D9075	Upper 16 bits	The xostisting edge to catch the current value of hoop counter. (that, $1/0\mu s$)	
D9076	Lower 16 bits	The V0's falling edge to establish surrent value of least counter (unit: $1/6$ us)	
D9077	Upper 16 bits	The xo's failing edge to catch the current value of loop counter. (unit: $1/6\mu s$)	
D9078	Lower 16 bits	The X0's Pulse Width/Period Measurement cached value. (unit: 10μ s).	
D9079	Upper 16 bits	The measurable range of Width: 10μ s \sim 100s, minimum Pulse Period: 20μ s	
D9080	Lower 16 bits	The V1/e riging edge to establish surrent value of least counter (upit: $1/2$ up)	
D9081	Upper 16 bits	The \times is fishing edge to catch the current value of hoop counter. (that, 1/0 μ s)	
D9082	Lower 16 bits	The X1's falling edge to catch the current value of loop counter (unit: $1/6u_{\rm S}$)	
D9083	Upper 16 bits		
D9084	Lower 16 bits	The X1's Pulse Width/Period Measurement cached value. (unit: 10μ s).	
D9085	Upper 16 bits	The measurable range of Width: 10μ s \sim 100s, minimum Pulse Period: 20μ s	
D9086	Lower 16 bits	The X3's rising edge to catch the current value of loop counter (unit: $1/6us$)	
D9087	Upper 16 bits		
D9088	Lower 16 bits	The X3's falling edge to catch the current value of loop counter (unit: 1/6//s)	
D9089	Upper 16 bits		
D9090	Lower 16 bits	The X3's Pulse Width/Period Measurement cached value. (unit: 10μ s).	
D9091	Upper 16 bits	The measurable range of Width: 10μ s \sim 100s, minimum Pulse Period: 20μ s	
D9092	Lower 16 bits	The X/ e riging edge to eatch the current value of loop counter (unit: $1/6us$)	
D9093	Upper 16 bits		
D9094	Lower 16 bits	The X/I's falling edge to catch the current value of loop counter (unit: $1/6us$)	
D9095	Upper 16 bits		
D9096	Lower 16 bits	The X4's Pulse Width/Period Measurement cached value. (unit: 10μ s).	
D9097	Upper 16 bits	The measurable range of Width: $10\mu s \sim 100s$, minimum Pulse Period: $20\mu s$	

• Must use the M9075 to drive M9076~M9079 to activate the pulse measurement function at the corresponding input point X0, X1, X3 or X4.

• The pulse measurement and external interrupt functions can use an external input point at the same time.

• Program example 1:

Pulse width me	easurement at the X0 input point.
X0 input signal _	
M9075	- M9076 Use the M9075 to drive the M9076 to activate the X0's pulse measurement function.
:	FEND The First End instruction. End of the main program.
IXOF	The IX0F external interrupt pointer. When $X0 = ON \rightarrow OFF$, this subroutine executes once.
M9000	DMOV D9078 D0 Since the M9080 = OFF, it executes the pulse width measurement and moves the result data from D9079, D9078 to D1, D0 registers.
	IRET The end of interrupt subroutine and return.
²rogram exam ²ulse period m	ple 2: neasurement at the X1 input point.
X1 input signal	Measuring zone
M9075 X20 :	 M9077 Use the M9075 to drive the M9077 to activate the X1's pulse measurement function. M9081 Use the X20 to drive the M9081. If that is ON, executes the pulse period measurement function.
	FEND The First End instruction. End of the main program.
IX1P	The IX1P external interrupt pointer. When $X1 = OFF \rightarrow ON$, this subroutine executes once.
M9000	DMOV D9084 D10 If the M9081 = ON, it executes the pulse period measurement and moves the result data from D9085, D9084 to D11, D10 registers.
	IRET The end of interrupt subroutine and return.
Г	K────> This interval must ≥ one PLC's Scan Time
M9081 X1	
D90 will not	185,D9084 D9085,D9084 D9085,D9084 D9085,D9084 to e updated will be updated will be updated
As shown in th	The figure above, after the period measurement mode (M9081 = OFF \rightarrow ON) is selected, the measured

value of the period in D9085 and D9084 will not be updated at the first rising edge until the next rising edge is appeared.

2-15-4 Hardware High Speed Counter

The VS series PLC has two sets of Hardware High-Speed Counter: HHSC1 and HHSC2. To reach the purposes of high-speed counting, the HHSC uses its hardware circuit to get high-speed pulse input. Therefore, in the counting process, HHSC will not affect the efficiency of CPU implementation. When planning a control system, one can make good use of HHSC function.

The HHSC is a 32-bit up/down count counter with a latched function. Also, with the function of Set Value comparison, when a pulse input to make its Present Value and Set Value are equal, it starts the IHHC interrupt.

The figure below shows the configuration of HHSC:

• From the figure above, HHSC possesses both CPU's memory registers and hardware circuit registers. When executing the END instruction, the PLC system program automatically writes the HHSC's mode register, set value register and interrupt prohibit flag to the hardware circuit. That also reads the HHSC's Present Value from the hardware circuit and stores it in the CPU's Present Value register.

In order to meet the needs of fast and prompt process, the VS PLCs are also designed with the "Hardware high-speed counter data move, HHCMV (FNC 189)" instruction. With the HHCMV instruction, the Present Value in the HHSC hardware circuit can be read out immediately or the Set Value can be written to the HHSC hardware circuit.

			HHSC Operating Mode					
HHSC No.	Input Point	1-Pł	nase	2-Phase	AB-Phase ×1	AB-Phase × 2	AB-Phase × 4	
		1	2	3	4	5	6	
HHSC1	X0	U	U/D	U	A	A	A	
	X1		DIR	D	В	В	В	
HHSC2	X3	U	U/D	U	A	A	A	
	X4		DIR	D	В	В	В	

• Table of HHSC Working Modes:

U: Up count input D: Down count input A: A-phase input B: B-phase input U/D: Up/Down count pulse input DIR: Up/Down directional selector input

• The operating modes of HHSC are illustrated by using the HHSC1.

Mode 2: 1-phase Up/Down count

The tables below list the special relays and registers related to the HHSCs:
 Represents that component is read only.

Relay ID No.	Description					
M9062	To prevent the HHSC1	s interrupt. Hardware High Speed Counter interrupt IHHC1 is prohibited.				
M9063	To prevent the HHSC2	s interrupt. Hardware High Speed Counter interrupt IHHC2 is prohibited.				
■M9196	HHSC1's counting dire	ction flag. When M9196="OFF", up counting; when "ON", down counting.				
■M9197	HHSC2's counting dire	ction flag. When M9197="OFF", up counting; when "ON", down counting.				
Register ID No.	Description					
D9224	HHSC1 counting mode	HHSC1 counting mode selection. "0" is to disable the HHSC1; "1" ~ "6" represent different modes.				
D9225	HHSC2 counting mode	HHSC2 counting mode selection. "0" is to disable the HHSC2; "1" ~ "6" represent different modes.				
D9226	Lower 16 bits	The Present Value of HHSC1				
D9227	Upper 16 bits					
D9228	Lower 16 bits	The Breeent Value of HHSC2				
D9229	Upper 16 bits	- The Present value of HHSC2.				
D9230	Lower 16 bits					
D9231	Upper 16 bits	- The Set Value of HHSC1.				
D9232	Lower 16 bits					
D9233	Upper 16 bits					

• Program example:

This exemplary program is mainly used to describe the actual usage of the HHSC1 and HHSC2.

To use the HHSC, only need to set the counting mode at the special register, then the HHSC can start to count obediently. When the PLC is executing the END instruction, the PLC system automatically reads the HHSC's Present Value from the hardware circuit, and store it in the Present Value register.

To get the most precise Present Value during the user program is in executing, can use the DHHCMV instruction to read that from the hardware circuit immediately. When the DHHCMV instruction is executing, the PLC system firstly reads out the HHSC hardware circuit's Present Value and stores it in the CPU's Present Value register, then transports this value to the destination register of the DHHCMV instruction. Besides, to reset the Present Value of the HHSC instantly, must use the DHHCMV instruction rather than use the RST instruction.

In addition, according to the quick response of the application requirement, can use its hardware comparison function to immediately generate an interrupt, that could avoid the delay from the PLC's Scan Time.

X10 X10 X10	MOVP K0 D9224 The X10 is the HHSC1's start signal. When X10 is OFF, the HHSC1 is disabled. When X10 is ON, the HHSC1's counting mode is AB-Phase×1.
M9000	DHHCMV D9226 D0 Read the Present Value from the HHSC1 and store it to the D0.
	DHHCMVP K0 D9226 Set the Present Value of the HHSC1 to zero.
	DHHCMV K1000 D9230 Set the HHSC1's Set Value to 1000. When its Present Value = Set Value, the IHHC1's interrupt will occur.
	MOVP K0 D9225 When X11 is the HHSC2's start signal. When X11 is OFF, the HHSC2 is disabled. When X11 is ON, the HHSC2's counting mode is AB-Phase×4.
M9000	DHHCMV D9228 D2 Read the Present Value from the HHSC2 and store it to the D2.
M1	DHHCMVP K0 D9228 Set the Present Value of the HHSC2 to zero.
M9002	- DHHCMV K2000 D9232 Set the HHSC2's Set Value to 2000. When its Present Value = Set Value, the IHHC2's interrupt will occur.
	- FEND The First End instruction. End of the main program.
IHHC1	The pointer of the interrupt subroutine HHSC1.
Y0 ──\∕ <u></u> ───	- Y0 Invert the output of the Y0.
M9000	REF Y0 K8 Output the statuses of Y0~Y7 immediately.
	- IRET The end of interrupt subroutine IHHC1 and return.
IHHC2	The pointer of the interrupt subroutine HHSC2.
Y1 ──\∕	- Y1 Invert the output of the Y1.
M9000	REF Y0 K8 Output the statuses of Y0~Y7 immediately.
	- IRET The end of interrupt subroutine IHHC2 and return.
	- END End of the user program.

2-16 Expansion Card Related Components

The Expansion Card Sockets are designed for flexible expansions, on the upper side of the VS series PLC. Which are available to install DIO expansion cards to increase a small number of control points in a cost effective way. Also can install the communication port (CP) expansion card to expand communication capabilities for linking with external accessories of communication control. In addition, the special function (SF) expansion card is capable to perform various special controls, such as position inspection, speed control, temperature control, etc. to present a complicated, high-level control system.

ltem	Model Name	Main Specification
	VS-4XY★-EC	DIO Expansion Card: 2 DI (DC 24V); 2 DO \star ; I/O by screw-clamp terminal
	VS-4X-EC	DI Expansion Card: 4 DI (DC 24V); output by screw-clamp terminal
	VS-4Y★-EC	DO Expansion Card: 4 DO ★; output by screw-clamp terminal
DIO	VS-8XY★-EC	DIO Expansion Card: 4 DI (DC 24V); 4 DO ★; I/O by screw-clamp terminal
Card	VS-8X-EC	DI Expansion Card: 8 DI (DC 24V); input by screw-clamp terminal
	VS-8YT-EC	DO Expansion Card: 8 DO (DC 24V, 300mA NPN transistor); output by screw-clamp terminal
	VS-8XI-EC	DI Expansion Card: 8 DI (DC 24V); input by IDC connector
	VS-8YTI-EC	DO Expansion Card: 8 DO (DC 24V, 100mA NPN transistor); output by IDC connector
	VS-485-EC	RS-485 Comm. Expansion Card: One non-isolated RS-485 port with TX / RX indicators; dist. 50m Max.
	VS-485A-EC	RS-485 Comm. Expansion Card: One isolated RS-485 port with TX / RX indicators; dist. 1000m Max.
	VS-D485-EC	RS-485 Comm. Expansion Card: Dual non-isolated RS-485 ports with TX / RX indicators; dist. 50m Max.
_Comm.	VS-D485A-EC	RS-485 Comm. Expansion Card: Dual isolated RS-485 ports with TX / RX indicators; dist. 1000m Max.
Expansion Card	VS-D232-EC	RS-232C Communication Expansion Card: Dual non-isolated RS-232 ports with TX / RX indicators; dist. 15m Max.; wiring by the RX / TX / SG terminals
	VS-D52A-EC	RS-485 + RS-232C Communication Expansion Card: One isolated RS-485 port (1000m) & one non-isolated RS-232C port (15m), both with TX / RX indicators and wiring by terminals
	VS-ENET-EC	Ethernet + RS-485 Communication Expansion Card: One Ethernet port (with additional non-isolated RS-485, dist. 50m) & one non-isolated RS-485 port (dist. 50m), both with TX / RX indicators
	VS-3AV-EC	Brief Voltage I/O Card: 2 channel (0~10V, 12-bit) inputs; 1 channel (0~10V, 10-bit) output; with a calibrated DC 10V output; non-isolated
	VS-4AD-EC	Analog Input Card: 4 channel (12-bit) inputs, each channel could output either 0~10V, 4~20mA or 0~20mA; non-isolated
	VS-2DA-EC	Analog Output Card: 2 channel (12-bit) outputs, each channel could input either 0~10V, 4~20mA or 0~20mA; non-isolated
Special	VS-4A-EC	Analog I/O Card: 2 channel (12-bit) inputs + 2 channel (12-bit) outputs, each channel could input/output either 0~10V, 4~20mA or 0~20mA; non-isolated
Function Card	VS-3ISC-EC	Inverter Speed Control Card: 3 channel (0.1% resolution) voltage outputs; totally isolated for each channel
	VS-2TC-EC	Thermocouple Temperature Input Card: 2 channel (K, J, R, S, T, E, B or N type thermocouple, 0.2~0.3°C resolution) inputs; non-isolated
	VS-4TC-EC	Thermocouple Temperature Input Card: 4 channel (K, J, R, S, T, E, B or N type thermocouple, 0.2~0.3°C resolution) inputs; non-isolated
	VS-1PT-EC	PT-100 Temperature Input Card: 1 channel (3-wire PT-100, 0.1°C resolution) input; non-isolated
	VS-2PT-EC	PT-100 Temperature Input Card: 2 channel (3-wire PT-100, 0.1°C resolution) inputs; non-isolated

★ Selectable output: R: 2A Relay; T: 0.3A NPN transistor

The VS series PLCs are equipped with one to three Expansion Card Sockets depending on the model. There are configured with 20 special relays and 20 special registers for each Expansion Card Socket as the work area of the card. For helping memory and convenience in use, every special component of the Expansion Card at a socket is given a corresponding "Simple Code". Hereafter, the "Simple Code" will be used in the following documents.

Expansion Card	Worl	king Area	Available Card Type for the Socket			
Socket	Special Component Simple Code		DIO Card	CP Card	SF Card *	
	M9260~M9269	EC1X0~EC1X7				
EC1	M9270~M9279	EC1Y0~EC1Y7	0	0	0	
	D9260 \sim D9279	EC1D0~EC1D19				
	M9280~M9289	EC2X0~EC2X7				
EC2	${\rm M9290}{\sim}{\rm M9299}$	EC2Y0~EC2Y7	0	_	\bigcirc	
	D9280 \sim D9299	EC2D0~EC2D19				
	M9300~M9309	EC3X0~EC3X7				
EC3	M9310~M9319	EC3Y0~EC3Y7		0	0	
	D9300 ~ D9319	EC3D0~EC3D19		(at the VS3 only)		

* The VS-3AV-EC can ONLY be installed at the EC2 expansion socket otherwise it is ineffective. Except for the VS-3AV-EC, the VS1 series can install one SF card only.

2-16-1 The DIO Expansion Card Related Components

When a DIO Expansion Card is installed in the Main Unit, those components' X/Y numbers at this card are correspond to their Simple Codes respectively. (★ Selectable output: R: Relay; T: NPN transistor)

Model Name of	Expansion Card	Simple Code at the DIO Card							
Expansion Card	Socket	X0	X1	X2	X3	Y0	Y1	Y2	Y3
	EC1	EC1X0	EC1X1	—		EC1Y0	EC1Y1	—	
VS-4XY★-EC	EC2	EC2X0	EC2X1	—		EC2Y0	EC2Y1	—	_
	EC3	EC3X0	EC3X1	—		EC3Y0	EC3Y1	—	
	EC1	EC1X0	EC1X1	EC1X2	EC1X3			—	
VS-4X-EC	EC2	EC2X0	EC2X1	EC2X2	EC2X3			_	_
	EC3	EC3X0	EC3X1	EC3X2	EC3X3	_	—	—	—
	EC1	—	—	—	—	EC1Y0	EC1Y1	EC1Y2	EC1Y3
VS-4Y★-EC	EC2	—	—	—	—	EC2Y0	EC2Y1	EC2Y2	EC2Y3
	EC3	—		—		EC3Y0	EC3Y1	EC3Y2	EC3Y3
	EC1	EC1X0	EC1X1	EC1X2	EC1X3	EC1Y0	EC1Y1	EC1Y2	EC1Y3
VS-8XY★-EC	EC2	EC2X0	EC2X1	EC2X2	EC2X3	EC2Y0	EC2Y1	EC2Y2	EC2Y3
	EC3	EC3X0	EC3X1	EC3X2	EC3X3	EC3Y0	EC3Y1	EC3Y2	EC3Y3

Model Name of	Expansion Card	Simple Code at the DIO Card							
Expansion Card	Socket	X0	X1	X2	X3	X4	X5	X6	X7
VS-8X-EC VS-8XI-EC	EC1	EC1X0	EC1X1	EC1X2	EC1X3	EC1X4	EC1X5	EC1X6	EC1X7
	EC2	EC2X0	EC2X1	EC2X2	EC2X3	EC2X4	EC2X5	EC2X6	EC2X7
	EC3	EC3X0	EC3X1	EC3X2	EC3X3	EC3X4	EC3X5	EC3X6	EC3X7

Model Name of	Expansion Card	Simple Code at the DIO Card							
Expansion Card	Socket	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
VS-8YT-EC VS-8YTI-EC	EC1	EC1Y0	EC1Y1	EC1Y2	EC1Y3	EC1Y4	EC1Y5	EC1Y6	EC1Y7
	EC2	EC2Y0	EC2Y1	EC2Y2	EC2Y3	EC2Y4	EC2Y5	EC2Y6	EC2Y7
	EC3	EC3Y0	EC3Y1	EC3Y2	EC3Y3	EC3Y4	EC3Y5	EC3Y6	EC3Y7

HS-4t	vs1-32MR	$ \bigcirc \bigcirc$	ØØØØØØ + VI1 - ● + VI2 -	$\underset{S/S}{\oslash} \underset{X0}{\oslash} \underset{X1}{\bigotimes} \underset{X2}{\bigotimes} \underset{X1}{\bigotimes} \underset{X2}{\bigotimes} \underset{X3}{\bigotimes}$	
	X0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17	485	3AV	8XYR	
⊳	0 21 22 23 0 21 2 2 3 0 21 2 2 3 0 21 2 2 3 0 21 2 2 3 0 2 5 0 2 5			X0 1 2 3 V0 1 2 1 V0 1 2 3	
	10 11 12 13	S VIGOR	S VIGOR	N VIGOR	
	VIGOR	00000	+ VO - • 10V 0V 000000	C0 Y0 Y1 Y2 Y3	

As shown on the left, a VS-8XYR-EC is installed in the EC3 Expansion Card Socket.

Those X0~X3 on the VS-8XYR-EC are correspond to EC3X0~EC3X3 and Y0~Y3 are correspond to EC3Y0~EC3Y3.

EC3Y0

Send the Main Unit's X0 input status out via the Y0 output point in the VS-8XYR-EC.

2-16-2 The Communication Expansion Card Related Components

At the VS1, VS2 or VSM series PLC, it has one built-in communication port CP1 already, moreover at its EC1 socket is available to install one CP card. By to install a single port CP card can have the expanded CP2, or by a dual port CP card to get the CP2 and CP3. As a result, the VS1, VS2 or VSM series PLC could have three communication ports CP1~CP3.

At the VS3 series PLC, its EC1 can install a dual port card to provide the CP2 and CP3, furthermore the EC3 can install a dual port card to provide the CP4 and CP5. Thus the VS3 could have 5 communication ports CP1~CP5. However, if the CP5 at a VS3 PLC is required, its EC2 socket may install a VS-3AV-EC card or not to use; any DIO or SF Card at EC2 will cause the CP5 at EC3 ineffective.

A communication port at CP card is not related to the working area of DIO expansion or SF card, to operate the port is directly by the installed setting and program.

• The special relays and registers related to the CP1:

(■ means read only)

Component ID No.	Description
M9100	CP1 RS instruction data sending out request flag.
M9101	CP1 RS instruction data receive completed flag.
M9102	CP1 RS instruction data receive time-out flag.
M9103	CP1 RS / LINK / MBUS instruction on communication abnormal flag.
■M9104	CP1 LINK / MBUS instruction on execution table complete once flag.
D9100	The CP1's station number.
■D9101	The CP1's amount of residual data to be sent out by the instruction RS.
■D9102	The CP1's amount of the data already received by the instruction RS.

• The special relays and registers related to the CP2:

(■ means read only)

Component ID No.	Description
M9110	CP2 RS instruction data sending out request flag.
M9111	CP2 RS instruction data receive completed flag.
M9112	CP2 RS instruction data receive time-out flag.
M9113	CP2 RS / LINK / MBUS instruction on communication abnormal flag.
■M9114	CP2 LINK / MBUS instruction on execution table complete once flag.
D9110	The CP2's station number.
■D9111	The CP2's amount of residual data to be sent out by the instruction RS.
■D9112	The CP2's amount of the data already received by the instruction RS.

• The special relays and registers related to the CP3:

(■ means read only)

Component ID No.	Description
M9120	CP3 RS instruction data sending out request flag.
M9121	CP3 RS instruction data receive completed flag.
M9122	CP3 RS instruction data receive time-out flag.
M9123	CP3 RS / LINK / MBUS instruction on communication abnormal flag.
■M9124	CP3 LINK / MBUS instruction on execution table complete once flag.
D9120	The CP3's station number.
■D9121	The CP3's amount of residual data to be sent out by the instruction RS.
■D9122	The CP3's amount of the data already received by the instruction RS.

• The special relays and registers related to the CP4:

(means read only)

Component ID No.	Description
M9130	CP4 RS instruction data sending out request flag.
M9131	CP4 RS instruction data receive completed flag.
M9132	CP4 RS instruction data receive time-out flag.
M9133	CP4 RS / LINK / MBUS instruction on communication abnormal flag.
■M9134	CP4 LINK / MBUS instruction on execution table complete once flag.
D9130	The CP4's station number.
■D9131	The CP4's amount of residual data to be sent out by the instruction RS.
■D9132	The CP4's amount of the data already received by the instruction RS.

• The special relays and registers related to the CP5:

(■ means read only)

Component ID No.	Description
M9140	CP5 RS instruction data sending out request flag.
M9141	CP5 RS instruction data receive completed flag.
M9142	CP5 RS instruction data receive time-out flag.
M9143	CP5 RS / LINK / MBUS instruction on communication abnormal flag.
■M9144	CP5 LINK / MBUS instruction on execution table complete once flag.
D9140	The CP5's station number.
■D9141	The CP5's amount of residual data to be sent out by the instruction RS.
■D9142	The CP5's amount of the data already received by the instruction RS.

2-16-3 The Special Function Expansion Card Related Components

For convenience, every EC1~EC3 expansion card socket at a VS series PLC will possess 20 special registers that is the working area of the installed expansion card. When a special card is installed in the socket, the PLC can access related data for the respective device on the card through its working area.

For easy memorize and convenient application, every special register of each Special Expansion Card is given a "Simple Code". The "Simple Code" will be used in the following documents.

Expansion Card	Expansion Card Working Area		
Socket	Simple Code	Special Register	
EC1	EC1D0~EC1D19	D9260 ~ D9279	
EC2	EC2D0~EC2D19	D9280 ~ D9299	
EC3	EC3D0~EC3D19	D9300 ~ D9319	

The instruction diagram below will move the content value from the EC1D0 of special card to the register D100 of PLC. (that card is installed at the EC1 socket)

The instruction diagram below will move the content value from the register D0 of PLC to the EC2D5 of special card. (that card is installed at the EC2 socket)

 Special Register related to the VS-3AV-EC (For this brief card the Simple Code EC2Dn is useless) The VS-3AV-EC can ONLY be installed at the EC2 expansion socket otherwise it is ineffective. Also, to access this expansion card is through 3 specific special registers below that instead of expansion card working area.
 Represents that component is read only.

Register ID No.	Description	
■D9030	The AD converted value of VI1 at the VS-3AV-EC, $0 \sim 10V = 0 \sim 4000$	
■D9031	The AD converted value of VI2 at the VS-3AV-EC, $0 \sim 10V = 0 \sim 4000$	
D9032	The DA digital input value for the VO at the VS-3AV-EC, $0 \sim 1000 = 0 \sim 10V$	

• EC Card Register (Simple Code) related to the VS-4AD-EC

EC1	EC2	EC3	Component Description	
EC1D0	EC2D0	EC3D0	To assign the analog input modes of Al1~Al4.	
EC1D1	EC2D1	EC3D1	Converted digital value of Al1, 0~4000 or 0~3200.	
EC1D2	EC2D2	EC3D2	Converted digital value of Al2, 0~4000 or 0~3200.	
EC1D3	EC2D3	EC3D3	Converted digital value of Al3, 0~4000 or 0~3200.	
EC1D4	EC2D4	EC3D4	Converted digital value of Al4, 0~4000 or 0~3200.	
EC1D18	EC2D18	EC3D18	Identification code: K101 (If code = K240, means connecting error between Main Unit and card)	
EC1D19	EC2D19	EC3D19	The version number of this card. (the content value \Box indicates Ver. \Box . \Box)	

To appoint the modes of analog inputs: (the sliding switch should also consistent with the modes)

b´	15			b0	
Nibble #4		Nibble #3	Nibble #2	Nibble #1	
	AI4	AI3	AI2	AI1	
To assign input modes:					

If the nibble = 0, the channel is assigned for (0~10V) voltage input. If the nibble = 1, the channel is assigned for (4~20mA) current input. If the nibble = 2, the channel is assigned for (0~20mA) current input. If the nibble is any number other than 0, 1 or 2, the channel is disabled.

Example: If VS- 4AD- EC is installed in EC1, and EC1D0 is set to be H3210, then

Al1: voltage input (0~10V) Al2: current input (4~20mA) Al3: current input (0~20mA) Al4: disabled

• EC Card Register (Simple Code) Related to the VS-2DA-EC

EC1	EC2	EC3	Component Description	
EC1D10	EC2D10	EC3D10	To assign the analog output modes of AO1~AO2.	
EC1D11	EC2D11	EC3D11	Digital Set Value for AO1, 0~4000 or 0~3200.	
EC1D12	EC2D12	EC3D12	Digital Set Value for AO2, 0~4000 or 0~3200.	
EC1D18	EC2D18	EC3D18	Identification code: K102 (If code = K240, means connecting error between Main Unit and card)	
EC1D19	EC2D19	EC3D19	The version number of this card. (the content value \Box indicates Ver. \Box . \Box)	

To appoint the modes of analog outputs:

b15			b0
Nibble #4	Nibble #3	Nibble #2	Nibble #1
Null	Null	AO2	A01
		To a output	ssign modes:

If the nibble = 0, the channel is assigned for (0~10V) voltage output. If the nibble = 1, the channel is assigned for (4~20mA) current output. If the nibble = 2, the channel is assigned for (0~20mA) current output. If the nibble is any number other than 0, 1 or 2, the channel is disabled.

Example: If a VS-2DA-EC is installed at the EC1, and its EC1D10 is set to be H10, then AO1: voltage output (0~10V) AO2: current output (4~20mA)

• EC Card Register (Simple Code) related to the VS-4A-EC

EC1	EC2	EC3	Component Description	
EC1D0	EC2D0	EC3D0	To assign the input modes of Al1~Al2.	
EC1D1	EC2D1	EC3D1	Read value of Al1, 0~4000 or 0~3200.	
EC1D2	EC2D2	EC3D2	Read value of Al2, 0~4000 or 0~3200.	
EC1D10	EC2D10	EC3D10	To assign the output modes of AO1~AO2.	
EC1D11	EC2D11	EC3D11	Write value of AO1, 0~4000 or 0~3200.	
EC1D12	EC2D12	EC3D12	Write value of AO2, 0~4000 or 0~3200.	
EC1D18	EC2D18	EC3D18	Identification code: K103 (If code = K240, means connecting error between Main Unit and card)	
EC1D19	EC2D19	EC3D19	The version number of this card. (the content value indicates Ver)	

To appoint the modes of analog inputs: (the sliding switch should also consistent with the modes)

b15			b0	
Nibble #4	Nibble #3	Nibble #2	Nibble #1	
Null	Null	AI2	AI1	
	To assign input modes:			:

If the nibble = 0, the channel is assigned for (0~10V) voltage input. If the nibble = 1, the channel is assigned for (4~20mA) current input. If the nibble = 2, the channel is assigned for (0~20mA) current input. If the nibble is any number other than 0, 1 or 2, the channel is disabled.

Example: If a VS-4A-EC is installed at the EC1, and its EC1D0 is set to be H10, then Al1: voltage input (0 \sim 10V) Al2: current input (4 \sim 20mA)

To appoint the modes of analog inputs:

b15			b0	
Nibble #4	Nibble #3	Nibble #2	Nibble #1	
Null	Null	_A02	A01	
	То	assign ou	utput mode	s:

If the nibble = 0, the channel is assigned for (0~10V) voltage output. If the nibble = 1, the channel is assigned for (4~20mA) current output. If the nibble = 2, the channel is assigned for (0~20mA) current output. If the nibble is any number other than 0, 1 or 2, the channel is disabled.

Example: If VS-4A-EC is installed in EC1, and EC1D10 is set to be H10, then AO1: voltage output (0~10V) AO2: current output (4~20mA)
• EC Card Register (Simple Code) Related to the VS-3ISC-EC

EC1	EC2	EC3	Component Description								
EC1D0	EC2D0	EC3D0	VO Set Value of CH1, 0~1000	The output ratio (0% \sim 100.0%) at the VO terminal that connect to the analog speed control point of inverter							
EC1D1	EC2D1	EC3D1	VO Set Value of CH2 ,0~1000	This VO Set Value is the percentage of 0 to "VO Max."							
EC1D2	EC2D2	EC3D2	VO Set Value of CH3 , 0~1000	If the Set Value < 0 , the output ratio $= 0$ (0 %). If the Set Value > 1000 , the output ratio $= 1000$ (100.0 %).							
EC1D3	EC2D3	EC3D3	V+ measured voltage value of CH1.	Measure the external control use power from inverter by a							
EC1D4	EC2D4	EC3D4	V+ measured voltage value of CH2.	10V, then fill in 1000 (by unit of 0.01V). If the filled result is							
EC1D5	EC2D5	EC3D5	V+ measured voltage value of CH3.	not between 400 and 1200, then the VO point will output 0V.							
EC1D6	EC2D6	EC3D6	VO Max. of CH1.	Fill in the control input voltage of the maximum speed for the inverter. If its effective range is $0 \sim 10^{\circ}$ then fill in 1000							
EC1D7	EC2D7	EC3D7	VO Max. of CH2.	(by unit of 0.01V). If the filled value is not, in the range							
EC1D8	EC2D8	EC3D8	VO Max. of CH3.	output 0V.							
EC1D18	EC2D18	EC3D18	Identification code: K104 (If code = K240, means connecting error between Main Un								
EC1D19	EC2D19	EC3D19	The version number of this card. (the	he version number of this card. (the content value \Box indicates Ver. \Box . \Box)							

• EC Card Register (Simple Code) Related to the VS-2TC-EC

EC1	EC2	EC3	Component Description						
EC1D0	EC2D0	EC3D0	To assign the thermocouple types for	fo assign the thermocouple types for TC1~TC2.					
EC1D1	EC2D1	EC3D1	To assign the unit of temperature me	To assign the unit of temperature measurement. 0:°C; 1:°F; other values: °C.					
EC1D2	EC2D2	EC3D2	Converted temperature value of TC1, with unit as 0.1 $^\circ$ C or 0.1 $^\circ$ F.						
EC1D3	EC2D3	EC3D3	Converted temperature value of TC2, with unit as 0.1 °C or 0.1 °F.						
EC1D6	EC2D6	EC3D6	To set the average times of TC1	Lipphia Sat Value is 1, 22767; other values -5					
EC1D7	EC2D7	EC3D7	To set the average times of TC2	Usable Set value is $1 \sim 32707$, other values – 5.					
EC1D17	EC2D17	EC3D17	Status and error flag						
EC1D18	EC2D18	EC3D18	Identification code: K105 (If code = K240, means connecting error between Main Unit and card)						
EC1D19	EC2D19	EC3D19	The version number of this card. (the	e content value 🔲 indicates Ver. 🗌.					

Assign Thermocouple Type:

b15			b0										
Nibble #4	Nibble #3	Nibble #2	Nibble #1	Value of Nibble	0	1	2	3	4	5	6	7	If Value of Nibble is not $0 \sim 7$,
Null	Null	TC2	TC1	Thermocouple Type	К	J	R	S	Т	Е	В	Ν	the channel is disabled.

Example: If a VS-2TC-EC is installed at the EC1, and its EC1D0 is set to be H0010, then TC1: K Type of thermocouple input, TC2: J Type thermocouple input.

• EC Card Register (Simple Code) Related to the VS-4TC-EC

EC1	EC2	EC3	Co	mponent	Description					
EC1D0	EC2D0	EC3D0	To assign the thermocouple types fo	r TC1~TC4.						
EC1D1	EC2D1	EC3D1	To assign the unit of temperature me	assign the unit of temperature measurement. 0:°C; 1:°F; other values:°C.						
EC1D2	EC2D2	EC3D2	Converted temperature value of TC1	Converted temperature value of TC1, with unit as 0.1 $^\circ C$ or 0.1 $^\circ F$.						
EC1D3	EC2D3	EC3D3	Converted temperature value of TC2	Converted temperature value of TC2, with unit as 0.1 $^\circ C$ or 0.1 $^\circ F$.						
EC1D4	EC2D4	EC3D4	Converted temperature value of TC3	converted temperature value of TC3, with unit as 0.1 °C or 0.1 °F.						
EC1D5	EC2D5	EC3D5	Converted temperature value of TC4, with unit as 0.1 $^\circ \! C$ or 0.1 $^\circ \! F$.							
EC1D6	EC2D6	EC3D6	To set the average times of TC1	o set the average times of TC1						
EC1D7	EC2D7	EC3D7	To set the average times of TC2		Set Value is $1 \cdot 32767$; other values - 5					
EC1D8	EC2D8	EC3D8	To set the average times of TC3		Set value is $1 \sim 32707$, other values -3 .					
EC1D9	EC2D9	EC3D9	To set the average times of TC4							
EC1D17	EC2D17	EC3D17	Status and error flag	Status and error flag						
EC1D18	EC2D18	EC3D18	Identification code: K106 (If code =	Identification code: K106 (If code = K240, means connecting error between Main Unit and card)						
EC1D19	EC2D19	EC3D19	The version number of this card. (th	e content va	lue □□ indicates Ver. □.□)					

To appoint the types of thermocouples:

b15			b0										
Nibble #4	Nibble #3	Nibble #2	Nibble #1	Value of Nibble	0	1	2	3	4	5	6	7	If Value of Nibble is not 0~7,
TC4	TC3	TC2	TC1	Thermocouple Type	Κ	J	R	S	Т	Е	В	Ν	the channel is disabled.

Example: If a VS-4TC-EC is installed at the EC1, and its EC1D0 is set to be H8100, then TC1 & TC2: K Type of thermocouple input, TC3: J Type thermocouple input, TC4: disabled

Status and Error Flag:	b15~b5	b4	b3	b2	b1	b0	- TC1 is disconnected or converted value exceeds the range
The hardware error flag c	of this card —						
TC4 disconnected or value exceeds	converted – the range						

• EC Card Register (Simple Code) Related to the VS-1PT-EC

EC1	EC2	EC3	Component Description
EC1D0	EC2D0	EC3D0	To select the frequency of power noise to be filtered out. 0: 60Hz, 1: 50Hz; other values: 60Hz. Reduce the influence of noise from power lines. Always set the value as 1 for 50Hz AC system.
EC1D1	EC2D1	EC3D1	To assign the unit of temperature measurement. 0: $^\circ\!C$; 1: $^\circ\!F$; other values: $^\circ\!C$.
EC1D2	EC2D2	EC3D2	Converted temperature value of PT1, with unit as 0.1 $^\circ \! C$ or 0.1 $^\circ \! F$.
EC1D6	EC2D6	EC3D6	To set the average times of PT1. Usable Set Value is $1 \sim 32767$; other values = 1.
EC1D17	EC2D17	EC3D17	Status and error flag
EC1D18	EC2D18	EC3D18	Identification code: K107 (If code = K240, means connecting error between Main Unit and card)
EC1D19	EC2D19	EC3D19	The version number of this card. (the content value \Box indicates Ver. \Box . \Box)

Status and Error Flag: b15~b5 b4 b3 b2 b1 b0

TC1 is disconnected or converted value exceeds the range
 The hardware error flag of this card

• EC Card Register (Simple Code) Related to the VS-2PT-EC

EC1	EC2	EC3		Component Description						
EC1D0	EC2D0	EC3D0	To select the frequency of power Reduce the influence of noise from	o select the frequency of power noise to be filtered out. 0: 60Hz, 1: 50Hz; other values: 60Hz. Reduce the influence of noise from power lines. Always set the value as 1 for 50Hz AC system.						
EC1D1	EC2D1	EC3D1	To assign the unit of temperature	To assign the unit of temperature measurement. 0: °C ; 1: °F ; other values: °C .						
EC1D2	EC2D2	EC3D2	Converted temperature value of F	Converted temperature value of PT1, with unit as 0.1 $^\circ C$ or 0.1 $^\circ F$.						
EC1D3	EC2D3	EC3D3	Converted temperature value of PT2, with unit as 0.1 $^\circ \! C$ or 0.1 $^\circ \! F$.							
EC1D6	EC2D6	EC3D6	To set the average times of PT1.	Leable Set Value is $1 - 32767$; other values -1						
EC1D7	EC2D7	EC3D7	To set the average times of PT2.	Usable Set value is 1732707, Utilei values – 1.						
EC1D17	EC2D17	EC3D17	Status and error flag.							
EC1D18	EC2D18	EC3D18	Identification code: K108 (If code = K240, means connecting error between Main Unit and card)							
EC1D19	EC2D19	EC3D19	The version number of this card.	(the content value $\Box \Box$ indicates Ver. \Box . \Box)						

Status and Error Flag: b15~b5 b4 b3 b2 b1 b0

PT1 is disconnected or converted value exceeds the range PT2 is disconnected or converted value exceeds the range The hardware error flag of this card

2-17 Special Function Module

The VS series PLC offers various Special Function Models, such as analog input/output and temperature input. The following is the list of selectable special models.

Item	Model Name	Specifications
	VS-4AD	Analog Input Module: 4 channel (16-bit) inputs, each channel could input either -10~+10V, 4~20mA or -20~+20mA; isolated; with an accurate calibration DC 10V output
	VS-2DA	Analog Output Module: 2 channel (16-bit) outputs, each channel could output either -10 ~+10V, 4~20mA or -20 ~+20mA; isolated
	VS-3A	Analog I/O Module: 2 channel (16-bit) inputs + 1 channel (16-bit) output, each channel could input/output either $-10 \sim +10V$, $4 \sim 20$ mA or $-20 \sim +20$ mA; isolated; with an accurate calibration DC 10V output
	VS-6A	Analog I/O Module: 4 channel (16-bit) inputs + 2 channel (16-bit) outputs, each channel could input/output either $-10 \sim +10V$, $4 \sim 20$ mA or $-20 \sim +20$ mA; isolated; with an accurate calibration DC 10V output
Special Function	VS-4TC	Thermocouple Temperature Input Module: 4 channel thermocouple (K, J, R, S, T, E, B or N type) inputs, 0.1° C / 0.1° F resolution ; isolated
Module	VS-8TC	Thermocouple Temperature Input Module: 8 channel thermocouple (K, J, R, S, T, E, B or N type) inputs, 0.1° C / 0.1° F resolution ; isolated
	VS-2PT	PT-100 Temperature Input Module: 2 channel (3-wire PT-100) inputs, 0.1°C / 0.1°F resolution ; isolated
	VS-4PT	PT-100 Temperature Input Module: 4 channel (3-wire PT-100) inputs, 0.1°C / 0.1°F resolution ; isolated
	VS-2PG	Pulse Generator Module: 2 sets of 200 kHz high speed pulse outputs for 2 axes position control
	VS-4PG	Pulse Generator Module: 4 sets of 200 kHz high speed pulse outputs for 4 axes position control

All the Special and DIO Expansion Modules are serial connected on the right side of the Main Unit. The connecting sequence is without reserve. The closest Special Module is designated as the 1^{st.} Special Module. Then on its right side, the following Special Module is the 2^{nd.}, and so on. But, the DIO Expansion Module or Power Module will not interfere to the ranking. Please pay attention to the power consumption, appropriately add the VS-PSD power repeater module is required as the picture below if the power is insufficient.

There are some Buffer Memories (BFM) built-in at every Special Function Module to store the related data. The VS series Main Unit uses the FROM/TO instruction to read/write the data in the module's BFM thus can achieve the purpose of data transfer across each other. The FROM instruction is used to read BFMs data from the designated special module. The TO instruction is used to write data into the designated BFMs at the special module. For detailed information about the FROM and TO instructions, please refer to the following pages.

Furthermore, can directly use the addressing operation to easily access the data in the special module's BFM.

Operand									Dev	vice								
oporana	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"
S1							•	•	•	٠	٠	•	•	0	•	•		
S2								•		•		•		0		•		
D		٠		٠	0	0									\bigtriangledown			

Above is the example table of Operand devices for an instruction. The device type of UnG at the table is to indicate the BFM at a Special Module could be used by the instruction directly. Thus, if the operand U1G3 is used in an instruction, that means to access the data at the BFM #3 of the 1^{st.} Special Module.

Since the Ladder Master S programming software can not get the real time status from a BFM of Special Module, it is unavailable to monitor the data of operand at the UnG that is used in the instruction.

The program line on the right is to compare the data in the 1 ^{st.}	 Special Module's BFM #30 with the constant value K201,
and the comparison result is used to drive the coil of M0. If that U1G30 is equal to K201, the M0 will be turned ON.	— U1G30 K201 M0

Due to the monitor mode of the Ladder Master S could not get the value from U1G30, the in-line comparison itself in the ladder diagram would not show the result, but the real output of this line is not affected by the display.

The program line on the right is to move the value H1100 into the BFM #0 of the 2^{nd.} Special Module.

2-17-1 Buffer Memory BFM in the VS-4AD Module

BFM No.	Component Description								
#0	To assign the analog input mode	s of Al1~Al4. When the power is turned from OFF to ON, the default value is H0000.							
#1	To set the average times of AI1.								
#2	To set the average times of Al2.	When the power is turned from OFF to ON, the default value is 10.							
#3	To set the average times of Al3.	The available range is $1 \sim 32,767$, otherwise it is equivalent to 10.							
#4	To set the average times of AI4.	1							
#5	Converted digital value of Al1 (the	e average times is designated by BFM #1).							
#6	Converted digital value of Al2 (the	e average times is designated by BFM #2).							
#7	Converted digital value of AI3 (the	Converted digital value of Al3 (the average times is designated by BFM #3).							
#8	Converted digital value of Al4 (the average times is designated by BFM #4).								
#30	Identification code: $VS-4AD = K2$	Identification code: VS-4AD = K201 (can use the FROM instruction to check whether the place is this module or not)							
#31	The version number of this modu	le. (the content value □□ indicates Ver. □. □)							

BFM#0 To appoint the modes of analog inputs: (the sliding switch should also consistent with the modes)

b15	BFM#0		b0	Value of	Analog Input Mode	
Nibble #4	Nibble #3	Nibble #2	Nibble #1	Nibble		
ΔΙΛ	Δ13	Δ12	ΔΙ1	0	10)/ 10)/voltage ipput	Converted digital value: -32000~+32000
AI4 AI5 AI2 AIT				1	-10V~+10V voltage input	Converted digital value: -10000~+10000
1	lo assign input modes		2	4mA~20mA current input	Converted digital value: 0~+16000	
			3		Converted digital value: -16000~+16000	
		4	-20ma~+20ma current input	Converted digital value: -20000~+20000		
				Other	Disabled	

Example: If the BFM #0 of a VS-4AD is set to be H5420, then

Al1: For $-10V \sim +10V$ voltage input, that will be converted to the value $-32,000 \sim +32,000$ at this mode.

- Al2: For 4mA~20mA current input, that will be converted to the value 0~+16,000 at this mode.
- Al3: For $-20mA \sim +20mA$ current input, that will be converted to the value $-20,000 \sim +20,000$ at this mode.

Al4: Disabled

2-17-2 Buffer Memory BFM in the VS-2DA Module

BFM No.	Component Description			
#20	To assign the analog output modes of AO1~AO2. When the power is turned from OFF to ON, the default value is H00.			
#21	The digital Set Value of AO1.			
#22	The digital Set Value of AO2.	When the power is turned from OFF to ON, the default value is 0.		
#23	To assign the holding modes of AO1~AO2. When the power is turned from OFF to ON, the default value is H00.			
#30	Identification code: VS-2DA = K202 (can use the FROM instruction to check whether the place is this module or not)			
#31	The version number of this module. (the content value indicates Ver)			

BFM#20 To appoint the modes of analog outputs:

o15	BFM	#20 b(Value of	Analog	Output Mode		
Nibble #4	Nibble #3	Nibble #2	Nibble #1	Nibble	Analog			
Null	Null	۵02	ΔΟ1	0		Digital Set Value: -32000~+32000		
Null	nun		AUT	1	-10v~+10v voltage output	Digital Set Value: -10000~+10000		
		output modes		2	4mA~20mA current output	Digital Set Value: 0~+32000		
					3	3		Digital Set Value: -32000~+32000
				4	-2011A~+2011A current output	Digital Set Value: -20000~+20000		
			Other	Disabled				

Example: If the BFM #20 of a VS-2DA is set to be H20, then

AO1: For $-10V \sim +10V$ voltage output, that will use the digital Set Value $-32,000 \sim +32,000$ at this mode. AO2: For 4mA \sim 20mA current output, that will use the digital Set Value $0 \sim +32,000$ at this mode.

BFM#23 To appoint the output holding mode: (for the PLC status turns from RUN to STOP)

b15	BFM	#23	b0	If the value in the nibble $= 0$, the channel will keep the last output, even PLC
Nibble #4	Nibble #3	Nibble #2	Nibble #1	is STOP.
Null	Null	AO2	AO1	If the value in the nibble \neq 0, the channel will change its digital Set Value = 0 at STOP.

2-17-3 Buffer Memory BFM in the VS-3A Module

BFM No.	Component Description				
#0	To assign the analog input modes	s of Al1~Al2. When the power is turned from OFF to ON, the default value is H00.			
#1	To set the average times of Al1. When the power is turned from OFF to ON, the default value is 10.				
#2	To set the average times of Al2. The available range is $1 \sim 32,767$, otherwise it is equivalent to 10.				
#5	Converted digital value of AI1 (the average times is designated by BFM #1).				
#6	Converted digital value of Al2 (the average times is designated by BFM #2).				
#20	To assign the analog output mode	e of AO1. When the power is turned from OFF to ON, the default value is H0.			
#21	The digital Set Value of AO1. When the power is turned from OFF to ON, the default value is 0.				
#23	To assign the holding mode of AO1. When the power is turned from OFF to ON, the default value is H0.				
#30	Identification code: VS-3A = K203 (can use the FROM instruction to check whether the place is this module or not)				
#31	The version number of this modu	le. (the content value 🔲 indicates Ver. 🗋 . 🗋)			

BFM#0 To appoint the modes of analog inputs: (the sliding switch should also consistent with the modes)

b15	BFN	BFM#0		Value of	Apalog Input Mode				
Nibble #4	Nibble #3	Nibble #2	Nibble #1	Nibble	Analog				
Null	Null	AT2	ΔΤ1	0	10V 10V voltage ipput	Converted digital value: -32000~+32000			
Null	nun					1	-10V~+10V voltage input	Converted digital value: -10000~+10000	
		input modes		2	4mA~20mA current input	Converted digital value: 0~+16000			
						3	3		Converted digital value: -16000~+16000
				4		Converted digital value: -20000~+20000			
			Other	Disabled					

Example: If the BFM #0 of a VS-3A is set to be H20, then

Al1: For $-10V \sim +10V$ voltage input, that will be converted to the value $-32,000 \sim +32,000$ at this mode.

Al2: For $4mA \sim 20mA$ current input, that will be converted to the value $0 \sim +16,000$ at this mode.

BFM#20	To appoint the mode of	analog output:

b15	BFM#20		b0	Value of	Analog Output Mode	
Nibble #4	Nibble #3	Nibble #2	Nibble #1	Nibble	,	
Null	Null	Null	A O 1	0	10/(+10)/ voltage output	Digital Set Value: -32000~+32000
Null	nun	Null	AUT	1		Digital Set Value: -10000~+10000
				2	4mA~20mA current output	Digital Set Value: 0~+32000
				3	$20m\Lambda_{-1} \pm 20m\Lambda_{-1}$ output	Digital Set Value: -32000~+32000
				4		Digital Set Value: -20000~+20000
				Other	Disabled	

Example: If the BFM #20 of a VS-3A is set to be H2, then

AO1: For 4mA \sim 20mA current output, that will use the digital Set Value 0 \sim +32,000 at this mode.

BFM#23	To appoint the or	Itout holding mode:	(for the PLC status turns	from RUN to STOP
DI 101// 20		apput noiding mode.		

b15	BEM	#23	b0
Nibble #4	Nibble #3	Nibble #2	Nibble #1
Null	Null	Null	AO1

If the value in the nibble = 0, the channel will keep the last output, even PLC is STOP.

If the value in the nibble \neq 0, the channel will change its digital Set Value = 0 at STOP.

2-17-4 Buffer Memory BFM in the VS-6A Module

BFM No.	Component Description					
#0	To assign the analog input modes	s of Al1~Al4. When the power is turned from OFF to ON, the default value is H0000.				
#1	To set the average times of Al1.					
#2	To set the average times of AI2.	When the power is turned from OFF to ON, the default value is 10.				
#3	To set the average times of AI3.	The available range is $1 \sim 32,767$, otherwise it is equivalent to 10.				
#4	To set the average times of AI4.					
#5	Converted digital value of Al1 (the average times is designated by BFM #1).					
#6	Converted digital value of Al2 (the average times is designated by BFM #2).					
#7	Converted digital value of AI3 (the average times is designated by BFM #3).					
#8	Converted digital value of AI4 (the	e average times is designated by BFM #4).				
#20	To assign the analog output mode	es of AO1~AO2. When the power is turned from OFF to ON, the default value is H00.				
#21	The digital Set Value of AO1.	When the power is turned from OFE to ON, the default value is 0				
#21	The digital Set Value of AO2.					
#23	To assign the holding modes of AO1~AO2. When the power is turned from OFF to ON, the default value is H00.					
#30	Identification code: $VS-6A = K20$	14 (can use the FROM instruction to check whether the place is this module or not)				
#31	The version number of this modu	le. (the content value □□ indicates Ver. □. □)				

BFM#0 To appoint the modes of analog inputs: (the sliding switch should also consistent with the modes)

o15	BFM#0		b0	Value of	Analog Input Mode	
Nibble #4	Nibble #3	Nibble #2	Nibble #1	Nibble	Analog	
Δ1/		Δ12	ΔΙ1	0	10)/ 10)/weltage input	Converted digital value: -32000~+32000
				1	-TOV~+TOV Voltage Input	Converted digital value: -10000~+10000
10	lo assign input modes		2	4mA~20mA current input	Converted digital value: 0~+16000	
			3		Converted digital value: -16000~+16000	
		4	-2011A~+2011A current input	Converted digital value: -20000~+20000		
				Other	Disabled	

Example: If the BFM #0 of a VS-6A is set to be H5420, then

Al1: For $-10V \sim +10V$ voltage input, that will be converted to the value $-32,000 \sim +32,000$ at this mode.

Al2: For $4mA \sim 20mA$ current input, that will be converted to the value $0 \sim +16,000$ at this mode.

Al3: For -20mA \sim +20mA current input, that will be converted to the value -32,000 \sim +32,000 at this mode. Al4: Disabled

BFM#20	To appoint t	he mode of	analog output:
--------	--------------	------------	----------------

b15	BFN	1#20	b0	Value of	Analog	Output Mode
Nibble #4	Nibble #3	Nibble #2	Nibble #1	Nibble		
Null	Null	AO2	A O 1	0		Digital Set Value: -32000~+32000
Null				1	-10v~+10v voltage output	Digital Set Value: -10000~+10000
		lo assign output modes		2	4mA~20mA current output	Digital Set Value: 0~+32000
				3		Digital Set Value: -32000~+32000
				4	-20ma~+20ma current output	Digital Set Value: -20000~+20000
				Other	Disabled	

Example: If the BFM #20 of a VS-6A is set to be H20, then

AO1: For $-10V \sim +10V$ voltage output, that will use the digital Set Value $-32,000 \sim +32,000$ at this mode. AO2: For 4mA \sim 20mA current output, that will use the digital Set Value $0 \sim +32,000$ at this mode.

BFM#23 To appoint the output holding mode: (for the PLC status turns from RUN to STOP)

b15	BFM	#23	b0	If the value in the nibble $= 0$, the channel will keep the last output, even PLC
Nibble #4	Nibble #3	Nibble #2	Nibble #1	is STOP.
Null	Null	A02	AO1	If the value in the nibble \neq 0, the channel will change its digital Set Value = 0 at STOP.

2-17-5 Buffer Memory BFM in the VS-4TC Module

BFM No.		Component Description					
#0	To assign the thermocouple types	for TC1~TC4. When the power is turned from OFF to ON, the default value is H0000.					
#2	To assign the scale of temperatur ON, the default value is 0.	e measurement. 0: $^\circ\!C$; 1: $^\circ\!F$; other values: $^\circ\!C$. When the power is turned from OFF to					
#3	To set the average times of TC1.						
#4	To set the average times of TC2.	When the power is turned from OFF to ON, the default value is 1.					
#5	To set the average times of TC3.	The available range is $1 \sim 32,767$, otherwise it is equivalent to 1.					
#6	To set the average times of TC4.						
#11	Converted temperature value of T	C1, with unit as 0.1 °C or 0.1 °F.					
#12	Converted temperature value of T	C2, with unit as 0.1 °C or 0.1 °F.					
#13	Converted temperature value of T	C3, with unit as 0.1 °C or 0.1 °F.					
#14	Converted temperature value of T	C4, with unit as 0.1 °C or 0.1 °F.					
#29	Status and error flag.	Status and error flag.					
#30	Identification code: VS-4TC = K2	05 (can use the FROM instruction to check whether the place is this module or not)					
#31	The version number of this modul	e. (the content value 🔲 indicates Ver. 🗌 . 🗌)					

BFM #0 To appoint the types of thermocouples:

b15	BFN	Λ#Ο	b0										
Nibble #4	Nibble #3	Nibble #2	Nibble #1	Value of Nibble	0	1	2	3	4	5	6	7	If Value of Nibble is not $0 \sim 7$,
TC4	TC3	TC2	TC1	Thermocouple Type	Κ	J	R	S	Т	Е	В	Ν	the channel is disabled.

Example: If the BFM #0 of a VS-4TC is set to be H8100, then TC1 & TC2: K Type thermocouple input;

TC3: J Type thermocouple input; TC4: disabled.

BFM #29 Status and Error Flag: (0: normal; 1: error)

BFM No.	Component Description						
#0	To assign the thermocouple types	To assign the thermocouple types for TC1~TC4. When the power is turned from OFF to ON, the default value is H0000.					
#1	To assign the thermocouple types	To assign the thermocouple types of TC5~TC8. When the power is turned from OFF to ON, the default value is H0000.					
#2	To assign the scale of temperatur ON, the default value is 0.	e measurement. 0: $^\circ\!C$; 1: $^\circ\!F$; other values: $^\circ\!C$. When the power is turned from OFF to					
#3	To set the average times of TC1.						
#4	To set the average times of TC2.						
#5	To set the average times of TC3.						
#6	To set the average times of TC4.	When the power is turned from OFF to ON, the default value is 1.					
#7	To set the average times of TC5.	The available range is $1 \sim 32,767$, otherwise it is equivalent to 1.					
#8	To set the average times of TC6.						
#9	To set the average times of TC7.						
#10	To set the average times of TC8.						
#11	Converted temperature value of T	C1, with unit as 0.1 °C or 0.1 °F.					
#12	Converted temperature value of T	C2, with unit as 0.1 °C or 0.1 °F.					
#13	Converted temperature value of T	C3, with unit as 0.1 °C or 0.1 °F.					
#14	Converted temperature value of T	C4, with unit as 0.1 $^\circ \!\! C$ or 0.1 $^\circ \!\! F$.					
#15	Converted temperature value of T	C5, with unit as 0.1 °C or 0.1 °F.					
#16	Converted temperature value of T	C6, with unit as 0.1 °C or 0.1 °F.					
#17	Converted temperature value of T	C7, with unit as 0.1 $^{\circ}\text{C}$ or 0.1 $^{\circ}\text{F}$.					
#18	Converted temperature value of T	C8, with unit as 0.1 $^\circ$ C or 0.1 $^\circ$ F.					
#29	Status and error flag.						
#30	Identification code: VS-8TC = K2	206 (can use the FROM instruction to check whether the place is this module or not)					
#31	The version number of this modul	le. (the content value indicates Ver)					

2-17-6 Buffer Memory BFM in the VS-8TC Module

BFM #0 & BFM #1 To appoint the types of thermocouples:

2-17-7 Buffer Memory BFM in the VS-2PT Module

BFM No.	Component Description								
#2	To assign the scale of temperatur ON, the default value is 0.	To assign the scale of temperature measurement. 0: $^{\circ}C$; 1: $^{\circ}F$; other values: $^{\circ}C$. When the power is turned from OFF to ON, the default value is 0.							
#3	To set the average times of PT1.	When the power is turned from OFF to ON, the default value is 1.							
#4	To set the average times of PT2.	The available range is $1 \sim 32,767$, otherwise it is equivalent to 1.							
#11	Converted temperature value of F	Converted temperature value of PT1, with unit as 0.1 °C or 0.1 °F.							
#12	Converted temperature value of F	T2, with unit as 0.1 $^\circ C$ or 0.1 $^\circ F$.							
#29	Status and error flag.								
#30	Identification code: $VS-2PT = K2$	07 (can use the FROM instruction to check whether the place is this module or not)							
#31	The version number of this modu	le. (the content value indicates Ver)							

BFM #29 Status and Error Flag: (0: normal; 1: error)

2-17-8 Buffer Memory BFM in the VS-4PT Module

BFM No.	Component Description								
#2	To assign the scale of temperature measurement. 0: $^{\circ}C$; 1: $^{\circ}F$; other values: $^{\circ}C$. When the power is turned from OFF to ON, the default value is 0.								
#3	To set the average times of PT1.								
#4	To set the average times of PT2.	When the power is turned from OFF to ON, the default value is 1.							
#5	To set the average times of PT3.	The available range is $1 \sim 32,767$, otherwise it is equivalent to 1.							
#6	To set the average times of PT4.								
#11	Converted temperature value of PT1, with unit as 0.1 °C or 0.1 °F.								
#12	Converted temperature value of F	PT2, with unit as 0.1 $^{\circ}\text{C}$ or 0.1 $^{\circ}\text{F}$.							
#13	Converted temperature value of F	YT3, with unit as 0.1 $^\circ\mathrm{C}$ or 0.1 $^\circ\mathrm{F}$.							
#14	Converted temperature value of F	T4, with unit as 0.1 $^\circ\mathrm{C}$ or 0.1 $^\circ\mathrm{F}$.							
#29	Status and error flag.								
#30	Identification code: $VS-4PT = K2$	08 (can use the FROM instruction to check whether the place is this module or not)							
#31	The version number of this modu	e. (the content value indicates Ver)							

BFM #29 Status and Error Flag: (0: normal; 1: error)

	b15	b14~b4	b3	b2	b1	b0	
Module's external DC 24V supply is missing or has a - hardware error							PT1 is disconnected or converted value exceeds the range
							PT2 is disconnected or converted value exceeds the range
PT4 is disconnected or convexceed	verted va ds the rai	alue nge					PT3 is disconnected or converted value exceeds the range

2-17-9 Buffer Memory BFM in the VS-2PG / VS-4PG Module

The VS-2PG / VS-4PG module uses the BFM to communicate with the VS Main Unit for the parameter setting and value access. The VS-2PG provides PG1 and PG2, the VS-4PG provides PG1~PG4.

At the list below, a number with the "
" symbol means it is a read only BFM.

The BFM#0~31 are shared by all axes.

The BFM#100 \sim 137 are specifically for the operation of PG1, the BFM#200 \sim 237 are for the PG2, the BFM#300 \sim 337 are for the PG3 and the BFM#400 \sim 437 are for the PG4.

Since the definitions of BFMs for each axis are equal, at the list below only shows the BFMs of PG1.

The BFM#150~163 are specifically for the linear interpolation operation at the paired PG1 and PG2.

The BFM#350~363 are specifically for the linear interpolation operation at the paired PG3 and PG4.

Since the definitions of BFMs for each linear interpolation group are equal, at the list below only shows the BFMs for the paired PG1 and PG2.

BFM #	Title	Component Description	Default Value	Unit
1,0	MPG's Input Current Position	32-bit data	0	Pulse
■ 2	MPG's Input Frequency	16-bit data	0	Hz
3	MPG's Gear Ratio Numerator	$1 \sim 32,767;$ over the range will be regarded as 1.	1	
4	MPG's Gear Ratio Denominator	MPG's output pulses=Input pulses×Numerator/Denominator	1	
5	MPG's Response Delay Time	$1 \sim 500$ ms; over the range will be regarded as 5 ms.	5	ms
	MPC's Handwhaal Input Statua	b0=Input from the MPG is forward (current value increase)	Норор	
-0	MPGS Handwheel Input Status	b1=Input from the MPG is backward (current value decrease)	HUUUU	
■ 20	PG1 and PG2 Terminal Status	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	H0000	_
■ 21	PG3 and PG4 Terminal Status	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H0000	
22	STR, CK, DIR and CLR Terminal Function Select	PG4 PG3 PG2 PG1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 b0 C	H0000	
23	CK, DIR and CLR Status Force Command	PG4 PG3 PG2 PG1 151413121110987654321 987654321 987654321 C </td <td>H0000</td> <td></td>	H0000	
3 0	Identification code	VS-2PG: K209 Can use the FROM instruction to check	209	
_ 00		VS-4PG: K210 whether the place is this module or not	210	
3 1	Version	Firmware version (the content value $\Box\Box$ indicates Ver. \Box . \Box)	10	—

% The range of a 32-bit data is −2,147,483,648 ~ 2,147,483,647.

The range of a 16-bit data is $-32,768 \sim 32,767$.

BFM #	Title	Component Description						Default Value	Unit
101,100	Maximum Speed	Conv 10~:	/ert t 200k	his sp Hz; (peed for pulse over the range	output it must be will be regarded	tween as 200kHz.	200,000	User-defined
102	Bias Speed	Convolution	vert f the r	or the	e real pulse out will be regarde	0	User-defined		
103	Acceleration Time	0~3	2.000	Oms		100	ms		
104	Deceleration Time	If < (0, wi	ll be i	regarded as 0;	if > 32,000, will	as 32,000.	100	ms
106,105	JOG Operating Speed	Conv	/ert f	or the	e real pulse out	een 1~200kHz	10,000	User-defined	
107	JOG Start Delay Time	1~32	2,767	7ms;	over the range	will be regarded	l as 1ms.	300	ms
109,108	Home Positioning Speed	Conv	/ert f	or the	e real pulse out	out it must betwe	een 1~200kHz	200,000	User-defined
110	Home Positioning Creep Speed	Conv	/ert f	or the	e real pulse out	put it must betwe	en 1~30kHz	1,000	User-defined
111	Input No. of PG0 after DOG	1~32	2,767	7; ov	er the range wil	I be regarded as	s 1.	1	Pulse
113,112	PreSet Value of Home Position	Conv	/ert t	his p	osition to the ur	nit of pulse it mus	st fit 32-bit data	0	User-defined
114	Speed Multiple Ratio	0.1~	3,00	0.0%	; over the rang	e will be regarde	ed as 100.0%.	1,000	×0.1%
		b1,b	0=C)pera	ting unit				
						Ur	nit		
		61	60		Item	Position	Speed		
		0	0	N	lotor system	Pulse	Hz		
		0	1	Ма	chine system	● μ m ● mdeg	• cm/min • 10deg/min • inch/min		
		1	X	Con	nbined system	●10 ⁻⁴ inch	Hz		
			-						
		b3,t	02=1 r	Multip	ole rate of	b3b2 = 00	D:X1		
			1	00011	on data	D:X100			
						1:X1,000	_		
		b4= b4= b4=	Rota 0: In 1: In	ationa creas creas	ll direction se Present Value se Present Value	d			
115	Parameter Setting	b5= b5= b5=	Horr 0: B <u>y</u> 1: By	ne ret y the v the	urn direction direction of Pre direction of Pre	sent Value decre	easing; asing	Ноооо	_
115		h0						110000	
		- 60 60	00=	HOM		lomo roturo mor	10		
			0	00		d home position	ing		
			0	1	DOG Front Fr	d homo position	ning		
				-	DOG Rear En	d with PG0 cour	nt home		
			1	0	positioning				
		0	1	1	DOG Front Er positioning	nd with PG0 coui	nt home		
		1	Х	Х	Data-set type	home return			
		b9=	STR	inpu	t type	b9=0: N/O cc b9=1: N/C co	ntact; ntact		
		b10=	=DC)G inp	out type	b10=0: N/O c b10=1: N/C c	ontact; ontact		
		b11=	=PG	0 inp	ut type	b11=0: N/O c b11=1: N/C c	ontact; ontact		
		b12=	=INT	inpu	it type	b12=0: N/O c b12=1: N/C c	ontact;		
117,116	Pulse Per Revolution of Motor	1~9	99,9	99; c	over the range v	vill be regarded a	as 2,000.	2,000	Pulse
119,118	Distance Per Rev. of Motor	1~9	99,9	99; c	over the range v	vill be regarded a	as 2,000.	2,000	User-defined
121,120	Target Position #1	Con	vert	this p	osition to the u	nit of pulse it mu	st fit 32-bit data	0	User-defined
123,122	Operation Speed #1	Conv (For t	/ert f the F	or the PLSV,	e real pulse out the +/- sign of	put it must betwe speed is forwar	een 1~200kHz d/reverse control)	200,000	User-defined
125,124	Target Position #2	Con	vert	this p	osition to the u	nit of pulse it mu	st fit 32-bit data	0	User-defined
127,126	Operation Speed #2	Con	vert	for th	e real pulse out	put it must betw	een 1~200kHz	50,000	User-defined

BFM #	Title	Component Description	Default Value	Unit
		b0=Error reset, will reset at the rising edge		
		b1=Stop, will gradually slow down and then stop		
		b2=LSF forward limit switch, level detection		
128	System Command	b3=LSR reverse limit switch, level detection	НОООО	
120		b4=Absolute/Relative positioning b4=0: Absolute positioning; b4=1: Relative positioning	110000	
		b5=Start command, will begin at the rising edge		
		b6=Speed change signal of the DV2I positioning	-	
		b0=ZRN Home Positioning (Zero Return)		
		b1=JOGF, Jog Forward		
		b2=JOGR, Jog Reverse		
		b3=DRV, Drive to Set Position		
		b4=DRV2, Drive to Set Position by 2 Stages		
129	Operation Command	b5=DVIT, Interrupt Constant Quantity Positioning	H0000	—
		b6=DV2I, 2 Stages Interrupt Constant Quantity Positioning		
		b7=DVS, Interrupt to Stop or Drive to Set Position		
		b8=PLSV, Variable Speed Pulse Output		
		b9=MPG, Handwheel Positioning		
		b10=LI, Linear Interpolation Positioning	-	
■ 131,130	Current Speed	32-bit data	0	User-defined
133,132	Current Location	32-bit data	0	User-defined
135,134	Current Location	32-bit data For input the servo's position, the data is read from the Main Unit's ABS instruction.	0	Pulse
		b0=READY/BUSY 0: READY for a new instruction; 1: BUSY		
		b1=Moving forward		
		b2=Moving backward	-	
■ 136	Status Information	b3=The home positioning completed flag	H0000	—
		b4=The Current Location at the BFM#133, 132 is exceeded		
		b5=The error flag. Also, the BFM#137 shows the error code.		
		b6=The positioning completed flag		
		K0=No error		
		K 1=Setting value is exceeded shows the number of incorrect BFM		
1 37	Error Code	K 2=Setting value is overflow shows the number of incorrect BFM	0	_
		K3=More than one operation command is given		
		K4=The LSF or LSR is activated at its watching operation Use the JOGF, JOGR or MPG instruction could relieve the limit switch and clear this error code.		

BFM #	Title	Component Description			Unit
150	Linear Interpolation's Composite Initial Speed	Convert for the real pulse output it must between $0 \sim 30$ kHz; over the range will be regarded as 0.		0	User-defined
152,151	Linear Interpolation's Composite Operating Speed	Convert for the real pulse output it must between 10~200kHz; over the range will be regarded as 200kHz.		200,000	User-defined
153	Linear Interpolation's Acceleration/Deceleration Time	0~32,000ms If < 0, will be regarded as 0; if > 32,000, will as 32,000.		100	ms
155,154	Linear Interpolation's Target of X-axis	Convert this position to the unit of pulse it must fit 32-bit data		0	User-defined
157,156	Linear Interpolation's Target of Y-axis	Convert this position to the unit of pulse it must fit 32-bit data		0	User-defined
1 58	Linear Interpolation's X-axis Bias Speed	16-bit data		0	User-defined
■ 160,159	Linear Interpolation's X-axis Operating Speed	32-bit data	Result storage area, those are produced by	0	User-defined
■ 161	Linear Interpolation's Y-axis Bias Speed	16-bit data	the interpolation instruction	0	User-defined
■ 163,162	Linear Interpolation's Y-axis Operating Speed	32-bit data		0	User-defined

3. Basic Instruction

3-1 Basic Instruction Table

Mnemonic Format		Devices	Function	
LD (LOAD)		X, Y, M, S, T, C, D.b, R.b	Initial logical operation contact type NO (Normally Open)	
LDI (LOAD INVERSE)		X, Y, M, S, T, C, D.b, R.b	Initial logical operation contact type NC (Normally Closed)	
LDP (LOAD PULSE)		X, Y, M, S, T, C, D.b, R.b	Initial logical operation Rising edge pulse	
LDF (LOAD FALLING PULSE)		X, Y, M, S, T, C, D.b, R.b	Initial logical operation Falling edge pulse	
AND (AND)		X, Y, M, S, T, C, D.b, R.b	Serial connection of NO (Normally Open) contact	
ANI (AND INVERSE)		X, Y, M, S, T, C, D.b, R.b	Serial connection of NC (Normally Closed) contact	
ANDP (AND PULSE)		X, Y, M, S, T, C, D.b, R.b	Serial connection of Rising edge pulse	
ANDF (AND FALLING PULSE)		X, Y, M, S, T, C, D.b, R.b	Serial connection of Falling edge pulse	
OR (OR)		X, Y, M, S, T, C, D.b, R.b	Parallel connection of NO (Normally Open) contact	
ORI (OR INVERSE)		X, Y, M, S, T, C, D.b, R.b	Parallel connection of NC (Normally Closed) contact	
ORP (OR PULSE)		X, Y, M, S, T, C, D.b, R.b	Parallel connection of Rising edge pulse	
ORF (OR FALLING PULSE)		X, Y, M, S, T, C, D.b, R.b	Parallel connection of Falling edge pulse	
ANB (AND BLOCK)		_	Series connection of multiple parallel circuit blocks	
ORB (OR BLOCK)		_	Parallel connection of multiple contact circuit blocks	
MPS (POINT STORE)		_	Store the current result of the internal PLC operation	
MRD (POINT READ)		_	Read the current result of the internal PLC operation	
MPP (POINT POP)		_	Pop (recall and remove) the currently stored result	
INV (INVERSE)		_	Invert the current result of the internal PLC operation	
MEP		_	Conversion of operation result to Rising edge pulse	
MEF		_	Conversion of operation result to Falling edge pulse	
OUT (OUT)	Y0	Y, M, S, T, C, D.b, R.b	Final logical operation type coil drive	
SET (SET)	SET YO	Y, M, S, D.b, R.b	Set component permanently ON	
RST (RESET)	RST Y0	Y, M, S, D.b, R.b, T, C, D, R, V, Z	Reset component permanently OFF	
PLS (PULSE)	PLS Y0	Y, M(Except for special M)	Rising edge pulse	
PLF (PULSE FALLING)	PLF Y0	Y, M(Except for special M)	Falling edge pulse	

Mnemonic	Format	Devices	Function
MC (MASTER CONTROL)	- MC N0	N0~N7	Denote the start of a master control block
MCR (MC RESET)	MCR N0	N0~N7	Denote the end of a master control block
END (END)	- END	_	Force the current program scan to end
NOP (NO OPERATION)	_	_	No operation or null step

Devices Instru-32-bit 16-bit ction Х Y Μ SM S Т D.b R.b D R V.Z С С LD • • 0 • • • 0 0 LDI 0 0 • • • LDP 0 0 • Ο LDF 0 • • • • • 0 AND • • 0 Ο ANI • • • • • • • • 0 Ο ANDP 0 0 • • • • • • ANDF • • • • • 0 0 • • • OR 0 Ο ORI • • 0 0 ORP 0 0 ORF 0 0 . • OUT Ο Ο • • • Ο SET • • \bigcirc 0 RST • Ο Ο \bigcirc \bigcirc \bigcirc PLS • PLF

The related device table for the basic instruction

○ Means it cannot use the V, Z Index Register to modify ● Mean

• Means it could use the V, Z Index Register to modify

To establish the Set Value of OUT T or OUT C instruction can use the K, D or R, also which can use the Index Register V, Z to modify.

The basic instructions of the VS series PLC provide the "Bitwise Operation" and the "Bit Index" function. That greatly improving the convenience of programming, but also greatly enhances the overall performance.

 Since a register has 16 bits and they are allocated to 0~F (b0~b15) respectively, the "Bitwise Operation" function is to treat the individual bit in a register D or R as a bit component to process, as shown in the example below:

• The "Bit Index" function is to let the bit operand in the basic instruction has V, Z modifiable capability, as shown in the example below:

3-2 The LD, LDI, AND, ANI, OR, ORI, INV, OUT and END Instructions

Mnemonic	Format	Devices	Function	
LD (LOAD)		X, Y, M, S, T, C, D.b, R.b	Initial logical operation contact type NO (Normally Open)	
LDI (LOAD INVERSE)		X, Y, M, S, T, C, D.b, R.b	Initial logical operation contact type NC (Normally Closed)	
AND (AND)		X, Y, M, S, T, C, D.b, R.b	Serial connection of NO (Normally Open) contact	
ANI (AND INVERSE)		X, Y, M, S, T, C, D.b, R.b	Serial connection of NC (Normally Closed) contact	
OR (OR)		X, Y, M, S, T, C, D.b, R.b	Parallel connection of NO (Normally Open) contact	
ORI (OR INVERSE)		X, Y, M, S, T, C, D.b, R.b	Parallel connection of NC (Normally Closed) contact	
INV (INVERSE)		_	Invert the current result of the internal PLC operation	
OUT (OUT)		Y, M, S, T, C, D.b, R.b	Final logical operation type coil drive	
END (END)	END	_	Force the current program scan to end	

Ladder Diagram

Instruction List

LD	X20	Initial logical operation contact type NO (Normally Open)
OR	Y20	Parallel connection of NO (Normally Open) contact
AND	X21	Serial connection of NO (Normally Open) contact
OUT	Y20	Final logical operation type coil drive
LDI	X22	Initial logical operation contact type NC (Normally Closed)
ORI	Y21	Parallel connection of NC (Normally Closed) contact
ANI	X23	Serial connection of NC (Normally Closed) contact
OUT	Y21	Final logical operation type coil drive
LD	X24	Initial logical operation contact type NO (Normally Open)
INV		Invert the current result of the internal PLC operation
OUT	Y22	Final logical operation type coil drive
END		Force the current program scan to end

- The OUT instruction for the coil of T or C will have an explicit explanation in the section 3-9 "The OUT and RST Instructions for the Timer or Counter".
- When the PLC executes the END instruction, that will force to terminate the current scan and process both output and input component updates. All instructions in the program and subroutines after the END instruction will not be executed.
- The END instruction can be inserted into the middle of the program, it can be used to do the programming debug. The program section after the END instruction is disabled and isolated from the whole program.

3-3 The LDP, LDF, ANDP, ANDF, ORP, OPF, MEP and MEF Instructions

Mnemonic	Format	Devices	Function
LDP (LOAD PULSE)		X, Y, M, S, T, C, D.b, R.b	Initial logical operation Rising edge pulse
LDF (LOAD FALLING PULSE)		X, Y, M, S, T, C, D.b, R.b	Initial logical operation Falling edge pulse
ANDP (AND PULSE)		X, Y, M, S, T, C, D.b, R.b	Serial connection of Rising edge pulse
ANDF (AND FALLING PULSE)		X, Y, M, S, T, C, D.b, R.b	Serial connection of Falling edge pulse
ORP (or pulse)		X, Y, M, S, T, C, D.b, R.b	Parallel connection of Rising edge pulse
ORF (OR FALLING PULSE)		X, Y, M, S, T, C, D.b, R.b	Parallel connection of Falling edge pulse
MEP		_	Conversion of operation result to Rising edge pulse
MEF		_	Conversion of operation result to Falling edge pulse

Ladder Diagram

LDP	X0
ORP	X1
ANDP	X2
OUT	Y0
LDF	X3
ORF	X4
ANDF	X5
OUT	Y1
LD	X6
MEP	
OUT	Y2
LD	X7
MEF	
OUT	Y3

Instruction List

Initial logical operation Rising edge pulse contact
Parallel connection of Rising edge pulse contact
Serial connection of Rising edge pulse contact
Final logical operation type coil drive
Initial logical operation Falling edge pulse contact
Parallel connection of Falling edge pulse contact
Serial connection of Falling edge pulse contact
Final logical operation type coil drive
Initial logical operation contact type NO (Normally Open)
Conversion of operation result to Rising edge pulse contact
Final logical operation type coil drive
Initial logical operation contact type NO (Normally Open)
Conversion of operation result to Rising edge pulse contact
Final logical operation type coil drive

- The right figure takes the bit device M0 as an example to illustrate the relationship between the initial logical operation contact type NO, NC, the Raising and Falling edge pulse contacts.
- The Rising edge contact will be active at the program for one Scan Time when the associated device status changes from "OFF" to "ON".
- The Falling edge contact will be active at the program for one Scan Time when the associated device status changes from "ON" to "OFF".

3-4 The ANB and ORB Instructions

Mnemonic	Format	Devices	Function
ANB (AND BLOCK)		_	Series connection of multiple parallel circuit blocks
ORB (OR BLOCK)		_	Parallel connection of multiple contact circuit blocks

Ladder Diagram

Instruction List

LD	X0	Initial logical operation contact type NO (Normally Open)
OR	X1	Parallel connection of NO (Normally Open) contact
LD	X2	Initial (the starting point of another circuit block) logical operation contact type NO (Normally Open)
OR	Х3	Parallel connection of NO (Normally Open) contact
ANB		Series connection of multiple parallel circuit blocks
OUT	Y0	Final logical operation type coil drive
LD	X4	Initial logical operation contact type NO (Normally Open)
AND	X5	Serial connection of NO (Normally Open) contact
LD	X6	Initial (the starting point of another circuit block) logical operation contact type NO (Normally Open)
AND	X7	Serial connection of NO (Normally Open) contact
ORB		Parallel connection of multiple contact circuit blocks
OUT	M0	Final logical operation type coil drive

- To declare the starting points of the circuit block, please use an LD, LDI, LDP or LDF instruction. After completing the serial circuit block, to connect it to the preceding block by series/parallel connection should use the ANB/ORB instruction.
- No more than 8 of the ANB and ORB instructions in a batch circuit.
- Please refer to the following program example, it is used both the ANB and ORB instructions in a circuit block.

Ladder Diagram

3-5 The MPS, MRD and MPP Instructions

Mnemonic	Format	Devices	Function
MPS (POINT STORE)		_	Store the current result of the internal PLC operation
MRD (POINT READ)		_	Read the current result of the internal PLC operation
(POINT POP)		_	Pop (recall and remove) the currently stored result

Instruction List

Ladder Diagram

LD	X0	Initial logical operation contact type NO (Normally Open)
MPS		Store the current result of the internal PLC operation
AND	X1	Serial connection of NO (Normally Open) contact
OUT	Y20	Final logical operation type coil drive
MRD		Read the current result of the internal PLC operation
AND	X2	Serial connection of NO (Normally Open) contact
OUT	Y21	Final logical operation type coil drive
MPP		Pop (recall and remove) the currently stored result
AND	X3	Serial connection of NO (Normally Open) contact
OUT	Y22	Final logical operation type coil drive

- The MPS instruction stores the state of a connection point of the ladder circuit so that further coil branched can recall the value later.
- The MRD instruction recalls or reads the previously stored connection point data and forces the next contact to connect to it.
- The MPP instruction pops (recalls and removes) the stored connection point data of the last array and removes the connection point from the result. The last contact or coil circuit must connect to an MPP instruction.
- In any continuous connection circuit block, the difference between the number of the active MPS instruction and the number of the active MPP instruction shall be no greater than 11; when all connection circuit blocks are ended, the total number of the MPS instruction and the total number of the MPP instruction have been used in the program must be the same (there must has a MPP instruction corresponding to every signal MPS instruction).
- The following diagram shows the program example block with three connections:

Ladder Diagram

Instruction List

LD	X20
MPS	
AND	X21
MPS	
AND	X22
OUT	Y20
MPP	
AND	X23
OUT	Y21
MPP	
AND	X24
MPS	
AND	X25
OUT	Y22
MPP	
AND	X26
OUT	Y23

3-6 The MC and MCR Instructions

Mnemonic	Format	Devices	Function
MC (MASTER CONTROL)	- MC N0	N0~N7	Denote the start of a master control block
MCR (MCRESET)	- MCR NO	N0~N7	Denote the end of a master control block

Ladder Diagram Instruction List X0 The X0 is the condition contact LD X0 MC N0 X1 Become a master control block which is controlled by the N0 -MC Y20 X0. LD X1 M10 Status of Y20 = Status of X1 If X0 = ON then Y21 OUT Y20 Status of Y21 = Status of M10 M10 LD MCR N0 Y20 = OFFY21 = OFFOUT Y21 If X0 = OFF then MCR N0 -

- When the condition contact X0 is "ON", all instructions between the MC and MCR instructions will be executed normally.
- When the condition contact X0 is "OFF", all instructions between the paired MC and MCR instructions will NOT be executed, also all ordinary Timers and the coils which is driven by the OUT instruction will be reset; but the Retentive Timers, Counters and the status of coils which is driven by the SET / RST instruction will be kept.
- Use the MC instruction to shift the bus line (the Initial logical operation) to a point behind the conditional contact and then use the paired MCR instruction to return to the original bus line.
- A master control block allows to contain another master control block inside, which is to form a nest level. This structure at the most can have 8 levels N0~N7. The top nest level shall be the N0, and followed by N1, N2..., so the most inner level shall be the N7.
- A program example with a multiple nest levels structure is shown below:

Ladder Diagram

3-7 The SET and RST Instructions

Mnemonic	Format Devices		Function	
SET (SET)	SET YO	Y, M, S, D.b, R.b	Set component permanently ON	
RST (RESET)	RST Y0	Y, M, S, D.b, R.b, T, C, D, R, V, Z	Reset component permanently OFF	

Ladder Diagram	Instruction List	Active I/O duration time shee	
X0	LD X0	XO	
Y20	OUT Y20		
	LD X0	X1	
X1	SET Y21	×20	
RST Y21	LD X1		
	RST Y21	Y21	

- The SET instruction sets the output coil permanently "ON" when it has been operated.
- The RESET instruction resets the output coil permanently "OFF" and resets the Present Value of a Timer, Counter or Register to zero.
- The SET instruction and the RESET instruction can use the same output coil, and the number of times is unlimited.
- The RST instruction for the device C will have an explicit explanation in the section 3-9 "The OUT and RST Instructions for the Timer or Counter".

3-8 The PLS and PLF Instructions

Mnemonic	onic Format Devices		Function	
PLS (PULSE)	PLS Y0	Y, M (Except the Special M)	Rising edge pulse	
PLF (PULSE FALLING)	PLF Y0	Y, M (Except the Special M)	Falling edge pulse	

Ladder Diagram

Instruction List

LD	X0
PLS	M0
LD	X0
PLF	M1

Active I/O duration time sheet

• When $X0 = OFF \rightarrow ON$, the M0 will output a pulse for one Scan Time.

• When $X0 = ON \rightarrow OFF$, the M1 will output a pulse for one Scan Time.

3-9 The OUT and RST Instructions for the Timer or Counter

If the OUT instruction is used for the coil of the component T or C, input a Set Value is required.

• The Set Value of a Timer can be set by either using a K (Constant) or a Data Register D, R (Parameter).

• The available range of the Set Value:

Timer ID No.	Timing Unit	Type of Timer	Available Range	Real Setting Time
T0~T199	100ms			0.1~3276.7 sec.
T200~T245	10ms	(non-retentive)	1~32,767	0.01~327.67 sec.
T256~T511	1ms	((The Set Value beyond this range will be defaulted to 0)	0.001~32.767 sec.
T246~T249	1ms	Detentive Timer	*	0.001~32.767 sec.
T250~T255	100ms			0.1~3276.7 sec.

• To reset the contact or Present Value of a Retentive Timer T246~T255, must use the RST instruction.

% If the timer's Set Value is 0, its contact will become activated at the next scan time after its coil is triggered.

• The Set Value of a Counter can be set by either using a K (Constant) or a Data Register D, R (Parameter).

• The available range of the Set Value:

Counter ID No.	Type of the Counter		Available Range			
C0~C99	General	16-bit	1~32,767			
C100~C199	Latched	Up count	(The Set Value beyond this range will be defaulted to 1)			
C200~C219	General					
C220~C234	Latched	32-bit	-2 147 483 648~2 147 483 647			
C235~C255	Software High Speed Counter (Latched)	Up/Down count	2,147,400,040 2,147,400,047			
When using High Speed Counters, please refer to the section 2-7 "Software High Speed Counter".						

3-10 Significant Notes for Programming

3-10-1 Convert the Ladder Diagram to the Instruction List

The rule to convert a program from the Ladder Diagram to the Instruction List format should follow the sequence that from left to right and from top to bottom.

3-10-2 Programming Techniques

1. Put a section which with longer serial connections of contacts at the upper place of a Parallel Connection Circuit Blocks. This way will make the programming simpler and easier.

Ladder Diagram	Instruct	ion List	Ladder Di	iagram	In	structio	on List
$\begin{array}{c c} X0 \\ \hline \\ X1 \\ \hline \\ 1 \\ \hline \\ \end{array}$	LD LD AND ORB OUT	X0 X1 X2 Y0	X1 X0	X2 Y0	>	LD AND OR OUT	X1 X2 X0 Y0

2. It is recommended to place a circuit with more parallel connection of contacts on the left side.

Ladder Diagram	Instruction List		Ladder Diagram			Instruction List		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LD LD OR ANB OUT	X0 X1 X2 Y0			X0 Y0	\supset	LD OR AND OUT	X1 X2 X0 Y0

3. Although it is not an incorrect syntax to repetitively use an output coil ID number or Double Coil, the last output operation is the real effective coil. Therefore, the structure of conditional signal contacts should be modified or the output coils of the same ID number should be avoided.

Ladder Diagram	Instruction List	Ladder Diagram	Instruction List
	LD X0 AND X1 OUT Y0	X0 X1 Y0 X20 X21 X22 X22	LD X0 AND X1 LD X20 OR X22 ANI X21
X20 X21 Y0 X22	LD X20 OR X22 ANI X21 OUT Y0		ORB OUT YO LD XO AND X1 OUT MO
		X20 X21 M1 X22	LD X20 OR X22 ANI X21 OUT M1
		M0 Y0 M1	LD M0 OR M1 OUT Y0

4. Sequential Function Chart (SFC) and Step Ladder (STL)

In the universe of Automatic Control, the Electro-Control system should work closely with machine movements to get the result of the Automatic Control, i.e. the synergistic integration technology of Mechatronics, which has become popular in recent years. However, that is quite a difficult job to learn such a complicated sequential control design for machinery engineers, therefor the SFC (Sequential Function Chart) is developed accordingly.

4-1 What is the Sequential Function Chart (SFC)

The SFC is designed to create an easy way to understand the machine's movements, which has the following features:

- (1) It is not necessary to design the special sequence for stepladders of which state constantly changes, the PLC will automatically execute interlocks and double coils under different states. Only need to simply design the sequence function of every state.
- (2) Even a person who is not a machine designer can easily learn all actions and conduct jobs such as trials, adjustment, debug and maintenance.

4-1-1 The Framework of SFC

The Actual SFC SFC Schematic Diagram Initial state S0 The transfer condition, to control the movement from X20 the Initial State to State 1 The Ladder Diagram of Sequential Control State 1 S20 for State 1 The transfer condition, to control the movement from the X21 State 1 to State 2 The Ladder Diagram of Sequential Control State 2 S21 for State 2 The transfer condition, to control the movement from the X22 2 to State 3 X20, X21, X22,... X26, X27 Which are the transfer conditions for each State. The transfer condition, to control the movement from the X26 State (N-1) to State N The Ladder Diagram of Sequential Control State n S30 for State N The transfer condition, to control the movement from the State N to Initial State X27

The left is a Schematic Diagram of SFC and the right diagram is the corresponding actual SFC. The PLC will execute to start from the Initial State, then complete State $1 \rightarrow$ State $2 \rightarrow ... \rightarrow$ State N in the sequence based on states' transfer conditions and achieve a cycle of control.

4-1-2 Basic Components of SFC

1. States

(1) Initial State

The first state to execute after PLC runs. Ordinarily the Initial State is achieved by using the startup initial pulse. The Initial State is represented by a frame with double sidelines.

(2) Effective State

The Effective State refers to a state which is executive or active during the PLC processing. Under an Effective State PLC will execute the following actions in sequence:

- ① Driving the coil of the output point, timer or counter relative to the state.
- 2 Resetting the last pasted action, i.e. turning the actions which are relative to the last state into "OFF".
- ③ Transferring the machine action to the next state when the transfer condition is authorized. In generally there is a connecting line to connect the states, and it indicates the direction of the signal.

2. Transfer Condition

There is a line segment to connect between states, and on the line segment put a perpendicular short line which is used to express the related condition driving the states transfer.

4-1-3 State and Action of SFC

The VS series PLC uses step relay to indicate the state in the SFC. The diagrams below show the action of step relays under various of situations.

In the process of SFC step transferring, there are some phenomena which need to pay special attention to, as the following diagrams show.

- (A): It is a Scan Time, the activated step is transferred at the scan time. Both S21 and S22 are ON at this scan time.
- (B): Another Scan Time, it is coming after the state transfer. Although the S21 has turned OFF, it will still execute the program within the step; meanwhile, it turns Y0 from ON to OFF.

The devices driven by the OUT instruction in the step will turn OFF (OUT Y0 in the program) for the next scan time after the state transfer; but the devices driven by the SET instruction will remain ON (SET Y1 in the program).

4-1-4 Types of SFC

Based on the flow control methods of SFC, SFC has five basic types:

4-2 Compiling the Sequential Function Chart (SFC)

The SFC has its special operating method. Through the step-by-step description of compiling the SFC program in this chapter, designers can understand the methods of the SFC programming. Here, we use the application example of a fountain in park to explain the design procedure of the SFC in sequence.

The description of the park fountain function:

There is a control panel next to the park fountain and a START button on the panel for people to start up the fountain show, also a READY indicator to display whether it is under the standby state or not. When people press the start button during the standby status, a cycle of the fountain lighting and spray show will start. After a while, it is back to the standby status.

When the fountain show is activated, a series procedures will start to perform. First, the system turns to the busy status (the READY indicator OFF) and illuminates the fountain's lights. 5 seconds later, the surrounding water nozzles begin to spray. After 10 seconds, the central nozzle joins up. All the lights and water spraying will run for 20 seconds then stop, the fountain returns to the standby status and the READY indicator turns ON again.

The operating procedures for the fountain control are as follows:

- (1) When the power is ON, the PLC is in the standby status and the READY indicator is ON.
- (2) If someone presses the START button, the fountain's lights are illuminated and a 5 second timer is activated.
- (3) When the 5 second timer is reached, the surrounding water nozzles begin to spray and a 10 second timer is activated.
- (4) When the 10 second timer is reached, the central nozzle begins to spray too, and a 20 second timer is activated.
- (5) After the 20 second timer is reached, all the lights and nozzles are turned OFF and the PLC comes back to the standby status.

4-2-1 Create the Flowchart of the Sequential Procedures

According to the description of the fountain control actions, we can draw the flowchart as below. First of all, we divide those continuous actions to be completed into few individual steps. Then, insert a control condition between every two steps that could transfer activating state of a step into next step. By this method, the following procedure flowchart is produced.

4-2-2 Convert the Flowchart to the SFC

In an actual application, the external input signals and output loads must be wired to the PLC's input and output terminals, therefore it could receive the state of external signal and actually drive the load.

In this example, the START button connects to the input point X0, the output Y0 is for the READY indicator, the Y1 is for the lighting, the Y2 is for the valve of surrounding nozzles and the Y3 is for the valve of central nozzle. The state of each Step Relay in the program indicates which SFC procedure is active, and uses the Transferring Condition under the step to move the effective status to next Step Relay. At the system, the General and Latched Step Relays (S10~S899, S1000~S4095) can be used without to notice about the order of the component number, but the S0~S9 are specially assigned to the Initial State. Besides, should not reuse the same component number for the steps.

According to the note above and the I/O control requirements, could convert the flowchart to the right side SFC program. Those components T0~T2 are the PLC built-in timers, the characteristic of this timer type is up counting by the unit of 0.1 seconds.

4-2-3 Use the Ladder Master S to Edit the SFC

The programming software Ladder Master S provides the function to construct the SFC. Thus, the SFC at the previous section can use the Ladder Master S to compose at a computer, then load it to a PLC to test run and debug.

The programming of SFC with the Ladder Master S is illustrated as follows:

4-3 Description the Application Types of SFC

This section introduces various of processing flow modes about the SFC and the related precautions when to compile it.

4-3-1 Single Flow, Jump and Repeat Flow During the Flowchart Transfer

The Single Flow is the basic construction of a SFC and it is used in simple sequential controls. In the actual layout of the SFC, the JUMP instruction (represented by \blacklozenge) is used to specify a jump or repeat about the process of steps flow.

If the JUMP instruction at the Simple Flow is used to move back to an earlier step, that is called a Repeat Flow.

If the JUMP instruction at the Simple Flow is used to move forward to a later step or to another SFC, that is called a Jump Flow.

4-3-2 Selective Branch and Merge

Selective Branch : Select one of the branch flows to transfer the effective state. Selective Merge : Merge a number of branch flows into a single flow.

When the step relay S10 is effective, its following eight transfer conditions are simultaneously used for to select and move the effective state to either one of the S20, S30, S40, S50, S60, S70, S80 or S90.

Assume the S10 is effective and the transfer condition "0" is just turning ON, the activation will be transferred from the S10 to the S20, then moved to the S21 after that to the S22. At this time, the transfer condition under the S22 turns ON, the activation will move to the S11. Suppose the S10 is effective and the transfer condition "1" is ON, the activation will be transferred from the S10 to the S30, and so on.

The entry transfer conditions of every Selective Branch must be particular and unique, that should avoid more than one transfer condition is effective at the same time. If not, will lead to more than one flows executing at the same time and result in errors.

4-3-3 Simultaneously Parallel Branch and Merge

Simultaneously Parallel Branch : When the foremost transfer condition is authorized, all the first steps of branch flows become effective.

Simultaneously Parallel Merge : When all the last steps of branch flows are effective and the merge transfer condition is authorized, the branches are combined to a single flow.

When the step relay S10 is effective and its transfer condition is NO, the following S20, S30, S40, S50, S60, S70, S80 and S90 become active simultaneously. Each flow can do its own process and transfer. After a while, the S22, S32, S42, S52, S62, S72, S82 and S92 are effective and waiting the transfer condition of merging. If all the requirements above are authorized, the effective state will move to the \$11.

4-3-4 Special Notices About the SFC

The SFC must use the Ladder Masters S (LMS) to compose and join that into the project, then could be loaded and executed at the PLC. There are some rules about the state transfer. The merge operation must direct to a destination step. Furthermore, any step must bind with one and only one transfer condition. Thus, it is necessary to modify an unqualified SFC to meet the requirement.

In a SFC flow can be added with an empty step. Since the step is for connection only, it is called a Virtual Step.

4-4 Precautions About the Composition of the SFC

To create an user program for the VS PLC, the Ladder Master S provides the SFC to combine with the original ladder diagram. Be sure to understand its specifications and restrictions, in order to use it smoothly and complete the control program correctly.

① The control process within a step can use a variety of serial / parallel links, outputs and application instructions.

(2) The transfer condition between two steps can be driven by serial / parallel links.

③ The control outputs in a step may directly drive by the inner bus line. However, once a contact is inserted, the subsequent outputs and application instructions cannot directly drive from the bus line.

④ When using the OUT instruction to drive a coil in the step, the coil will turn OFF after the effective state transferred. When using the SET instruction to drive a coil ON in the step, the coil will retain ON after the effective state transferred.

- (5) When the effective state is transferring between two sequential steps, both of the states are ON at this scan time. Please refer to the above figure.
- (6) Since both the states of two sequential steps will ON at the scan time of transferring. It is necessary to add the output interlock circuits.

- ⑦ A SFC cannot be written in a subroutine.
- (B) Although the use of the jump (CJ) instruction is not prohibit inside of a SFC step, it makes the program process more complicated and should be avoided.
- ③ When there is a SFC in the PLC program, do not use the SET or OUT instruction in the interrupt subroutine to drive the step relay.

In two non sequential steps can share a timer with the same ID number. Also, it can be set with different Set Values respectively.

- (1) The MC and MCR instructions cannot be used in the SFC.
- ⁽¹⁾ The SET, RST and OUT instructions cannot be used to do the state transfer in the SFC.
- ^(I) The same step relay ID number cannot be used repeatedly in the SFC.
- ^{(III}) When designing a SFC, the ID numbers of used step relays do not need to follow through a specific sequence.
- In the SFC, the S0~S9 are the main initial step relays. However, a general step relay can also be used as an initial step relay, at the beginning of a SFC flow.

(b) Avoid using the pulse of rising/falling edge in a SFC. If necessary, can transfer the edge pulse to an auxiliary relay M in the ladder diagram first.

@ In the SFC, the sign " \checkmark " represents the RESET instruction.

If using the Ladder Master S to compose a SFC, one SFC diagram can have at most 32 columns.

Max. 32 columns

(19) When a signal is repeatedly used to transfer state at different steps, this signal must be a pulse signal. Also, since the effective state transferring between two sequential steps will cause both of the states ON for a scan time, therefore the prohibitive M1 signal should be added as shown below. That could avoid transferring from S100 to S101 immediately.

In the example of the following figure, when the state of S100 is changed from OFF to ON, it is expected that the Y1 motor rotates to drive the conveyor to move the "Bottle 2" to the position of bottle inspector X1. When the S100 changes from OFF to ON and the X1 has been turned ON already by the "Bottle 1", at the Fig. 1 that

When the S100 changes from OFF to ON and the X1 has been turned ON already by the "Bottle 1", at the Fig. 1 that will cause the state of S100 transfers to S101 immediately, thus the Y1 turned OFF at once. Therefore, it is necessary to improve the SFC become the Fig. 2 in order to successfully achieve the purpose. This kind of application is common in the automatic control, the user must understand the principle of its movements.

4-5 STL / SFC Relevant Special Components

In the tables below, the symbol "
" represents that the component is not allowed to use an instruction in the program to drive the relay or write data to the register.

Relay ID No.	Description
M9040	To prevent the step transfer. When M9040="ON", the STL state transfer function is disabled.
■M9046	STL step is working. When M9047="ON" and any relay of S0~S899="ON" than M9046="ON".
M9047	STL monitoring is enable. D9040~D9047 will be active only when M9047="ON".

Register ID No.	Description								
■D9040	1 st active STL step								
■D9041	2 nd active STL step								
■D9042	3 rd active STL step								
■D9043	4 th active STL step	When M9047="ON", the active STL step ID numbers will be stored in D9040~D9047, where the D9040 will be stored the lowest ID number, the second lowest one will be stored in D9041 and so forth.							
■D9044	5 th active STL step								
■D9045	6 th active STL step								
■D9046	7 th active STL step								
■D9047	8 th active STL step								

4-6 The Relationship Between the SFC and STL

For to programming a step by step movement program, the VS series PLCs provide SFC and STL to choose from. The relationship between these two methods is described below.

4-6-1 The Step Ladder Instruction (STL)

Mnemonic	Staircase chart	Devices	Function
STL		S	Step ladder starts
RET		_	Return to standard ladder, end of the step ladder

A series of steps is composed by the organized STL instructions and devices S. When an STL instruction appears in the program and the PLC scans to it, that means to change the original sequential procedure into the Step Flow control by the Step Ladder. While the RET instruction is scanned, that indicates the end of this Step Ladder, subsequently the vertical bus bar is reset to an ordinary initial logical operation in the Ladder Diagram. However, after the framework of the Step Flow control is completed, it should be converted into a Step Ladder, and the following important points should be noted during the conversion:

(1) Output Driving Method

As in the left diagram referred below. If inside the Step Ladder has an LD, LDI, LDP or LDF instruction, an output coil can not directly connected from the inner bus bar of the STL after one of those instructions had been used. Please change the left diagram into the right one.

(2) Location of Instructions MPS, MRD and MPP

The MPS, MRD and MPP instructions can not be directly used for the STL's inner bus bar, unless an LD, LDI, LDP or LDF instruction has been used previously.

(3) Transferring Method of STL

As in the diagram referred below, these two instructions SET S21 and OUT S40 are to drive and transfer to another step. When the active state is transferred to another step, the previous step itself will be reset to "OFF" automatically. The difference is that the SET instruction is used to drive an immediately following STL step, but the OUT instruction is used for to distant jump and drive a step which is not immediately following or at the separate STL program flow.

(4) Function of Instruction RET

Since the RET instruction represents the end of a Step Flow the RET instruction will appear eventually after a series of steps. A program may be written many Step Flows each Step Flow should put an instruction RET at the end. The instruction RET can be used as many times as required.

4-6-2 Compare the Descriptive Methods Between the SFC and STL

• Simple Flow at the SFC and STL

In diagram (a) SFC, each step has three functions and parts: to drive the output points for loaders to appoint transfer destination devices and to assign the transition conditions. Such the left SFC by the format of STL is displayed as in diagram (b), in which we adopt -1 []— as the symbol for use of STL instructions. And those STL instructions are provided with the state transfer and auto reset functions.

• Selective Branch / Merge at the SFC and STL

• Simultaneously Parallel Branch / Merge at the SFC and STL

• Jump at the SFC and STL

• Repeat at the SFC and STL

(b)STL

4-7 Examples of SFC Applications

4-7-1 Construct the Repeat / Single Run / Single Step Control Modes for a Park Fountain

This example is modified from the example of the Park Fountain in the section 4-2. It is to demonstrate the controls of Repeat / Single Run / Single Step.

Y0: READY indicator

Y1: The lighting for the fountain

- Y2: The valve of surrounding nozzles
- Y3: The valve of central nozzle

When the "Repeat" mode (X1 = ON, X2 = OFF) is selected, press the START button to execute the operation repeatedly. When the "Single Run" mode (X1 = OFF, X2 = OFF) is selected, press the START button to execute a cycle of operation. When the "Single Step" mode (X1 = OFF, X2 = ON) is selected, press the START button once can make the action to forward one step.

This program uses the special relay M9040 (flag to prevent the step transfer) to meet the purpose of single-step control. Users can make good use of this method after understanding it. The two drawings below display using the (a) SFC or (b) STL in writing the program, in order to comparison reference.

(a) Programming by the SFC

(b) Programming by the STL

	×0 −− ∕ −−−−	Control the step transfer prevent special relay. It allows step transfer at the moment $X0 = ON$, to achieve the purpose of single-step control.
		- SET S0 Activate the step S0.
	VO	- Y0 Turn the READY indicator ON.
S10		- SET S10 When X0 = ON, the active step transfers to S10.
		SET Y1 Illuminate the lighting.
		- T0 Activate the coil of 5 second timer.
011		- SET S11 When the contact $T0 = ON$, the active step transfers to S11.
		SET Y2 Drive the valve of surrounding nozzles.
		- T1 Activate the coil of 10 second timer.
010		- SET S12 When the contact $T1 = ON$, the active step transfers to S12.
		- Y3 Drive the valve of central nozzle.
		- T2 Activate the coil of 20 second timer.
	T2 ──	- SET S13 When the contact $T2 = ON$, the active step transfers to S13.
		RST Y1 Shut the lighting down.
		RST Y2 Turn the valve of surrounding nozzles OFF.
	X1 	- SET S10 When $X1 = ON$, chosen to execute the "Repeat" mode, the active step transfers to S10.
	X1 ──\∕	- SET S0 When X1 = OFF, chosen to execute the "Single Run" mode, the active step transfers to S0.
		- RET Returning to standard ladder, step ladder ends.

4-7-2 Filling Bottles

Function Description of Bottle Filling:

There is a control panel next to the bottle filling machine. The READY indicator on the front of panel that indicates at the standby status. Use the START button to activate the device and the mode selector switch to choose from a single run or repeated operation.

- (1) When the machine is ready to start operation, the READY indicator is ON.
- (2) Press the START button and the conveyor motor starts to rotate. When the bottle inspector detects that the bottle has reached the right position, the motor stops rotating.
- (3) When the nozzle lifter is ON, the nozzle going down. It is determined that in 3 seconds the filling nozzle will reach the position.
- (4) The injection valve opens and starts filling. In 5 seconds, the filling will be completed and the valve will be closed.
- (5) When the valve of the filling nozzle is OFF, the filling nozzle rises. It is determined that in 3 seconds the filling nozzle will rise to reach the position.
- (6) The filling process is completed. At this point, it returns to the state of standby if at the "Single Run" mode; it starts the conveyor motor again and processes the next bottle fill up if at the "Repeat" mode.

The two drawings below display using the (a) SFC or (b) STL in writing the program, in order to comparison reference.

(a) Programming by the SFC

(b) Programming by the STL

_M9002 ──		SET S0 Activate the step S0.
S0 ∎		- Y0 Turn the READY indicator ON.
0.10	X0	- SET S10 When X0 = ON, the active step transfers to S10.
		- Y1 Drive the conveyor motor to move forward.
		- PLS M1
		PLS M0 has been already ON for a while. Thus, pay extra attention to the X1 signal in order to make the step transfer smooth.
Q11		SET S11
		SET Y2 Drive the nozzle lifter to move down.
	то	- T0 Activate the coil of 3 second timer.
S12		- SET S12 When the contact T0 = ON, the active step transfers to S12.
		- Y3 Drive the valve open to fill up the bottle.
		- T1 Activate the coil of 5 second timer.
S13		- SET S13 When the contact T1 = ON, the active step transfers to S13.
Ĩ		RST Y2 Drive the nozzle lifter to move up.
	T2 X2	T2 Activate the coil of 3 second timer.
		- SET S10 When X1 = ON, chosen to execute the "Repeat" mode, the active step transfers to S10.
		- SET S0 When X1 = OFF, chosen to execute the "Single Run" mode, the active step transfers to S0.
		RET Returning to standard ladder, step ladder ends.

4-7-3 Traffic Lights

In this section, we choose the familiar traffic lights, as an example for the description of step-by-step movement.

There are two sets of traffic lights at the crossroads, hereby referred to as Group A lights and Group B lights as shown below. When the start button X0 is pressed, the sequential control of traffic light is activated. First, the A red and B red lights are lit. After 2 seconds, B red light goes OFF. Followed by B green light is lit for 8 seconds and flashes for 5 seconds. After that B yellow light is ON for 5 seconds, then shift to the B red ON. In 2 seconds later, Group A lights take over the operation, following the same sequences of movements as Group B lights.

Traffic lights active I/O duration time sheet:

The following demonstrates are compiling by some SFCs and STLs with different programming methods.

• Below displays simple flow programming, individually using (a) SFC and (b) STL in writing the program, in order to comparison reference.

(a) Programming by the SFC

Continue on next page

(b) Programming by the STL

Continue on next page

- Below displays Simultaneously Parallel Branch / Merge programming, individually using (a) SFC and (b) STL in writing the program, in order to comparison reference.
 - (a) Programming by the SFC

(b) Programming by the STL

M9002	
SQ X0	SET SO Activate the step SU.
	SET S10 When X0=ON, the active step transfers to S10.
	Y0 A red light is lit.
	Y3 B red light is lit.
то	T0 Activate the coil of 2 Sec. timer.
	SET S20 When the contact T0=ON, the active step transfers to both S20 and S30.
S20	
	T1 K80 Activate the coil of 8 Sec. timer.
	\sim SET S21 When the contact T1=ON, the active step transfers to S21.
	T2 Activate the coil of 0.5 Sec. timer.
	ALT Y5 When the contact T2=ON, alters the status of B green light. by 1 Sec. cycle.
	T3 Activate the coil of 5 Sec. timer.
	SET S22 When the contact T3=ON, the active step transfers to S22.
	Y4 B yellow light is lit.
	T4 Activate the coil of 5 Sec. timer.
	SET S23 When the contact T4=ON, the active step transfers to S23.
	Y3 B red light is lit. B red light is lit.
	$-$ T5 Activate the coil of 2 Sec. timer. \int T5's contact ON after 2 Sec.
	Y0 A red light is lit.
	SET S31 When the contact T5=ON, the active step transfers to S31.
	Y2 A green light is lit.
	T6 Activate the coil of 10 Sec. timer.
	\sim SET S32 When the contact T6=ON, the active step transfers to S32.
	T7 Activate the coil of 0.5 Sec. timer.
	ALT Y2 When the contact T7=ON, alters the status of A green light. The A green light flash for 5 times, by 1 Sec. cycle.
	T8 Activate the coil of 5 Sec. timer.
	SET S33 When the contacts T8=ON, the active step transfers to S33.
	Y1 A yellow light is lit.
	T9 K50 Activate the coil of 5 Sec. timer.
	SET S10 When the contact T9=ON, the active step transfers to S10.
	RET Returning to standard ladder, step ladder ends.

- Below displays Selective Parallel Branch / Merge programming, individually using (a) SFC and (b) STL in writing the program, in order to comparison reference.
 - (a) Programming by the SFC

The SFC example above via slightly modify that could execute the "General traffic light control" or "Traffic light with yellow flash control". The select signal from a switch is to the X0 input.

(b) Programming by the STL

M9002		
S0	X0	SET SO Activate the step SO.
1 1 1 1 1 1 1 1		SET S10 When X0=ON, the active step transfers to S10.
-I I-		SET Y0 Set A red light ON.
		SET Y3 Set B red light ON.
		T0 K20 Activate the coil of 2 Sec. timer.
		ALT MO When the contact T0=ON, alters the ON/OFF status of M0. This M0 is about to select either B group go (M0=ON) or A group go (M0=OFF).
		SET S20 When the contact T0=ON & M0=ON, the active step transfers to S20.
		SET S30 When the contact T0=ON & M0=OFF, the active step transfers to S30.
S20 I	1	RST Y3 Reset B red light to OFF.
		Y5 B green light is lit.
		T1 K80 Activate the coil of 8 Sec. timer.
	T1	SET S21 When the contact T1=ON, the active step transfers to S21.
S21	T2	K_5 Activate the coil of 0.5 second timer
	T2	When the contact T2=ON, alters The B green light flash for 5 times,
	M9000	ALT Y5 the status of B green light. [by 1 Sec. cycle.]
	T3	— T3 Activate the coil of 5 Sec. timer.
600		SET S22 When the contact T3=ON, the active step transfers to S22.
		Y4 B yellow light is lit.
		T4 K50 Activate the coil of 5 Sec. timer.
	T4	SET S10 When the contact T4=ON, the active step transfers to S10.
S30	I	RST Y0 Reset A red light to OFF.
		Y2 A green light is lit.
		K100 K100 A green light is lit for 10 Sec.
	T1	
S31	T2	SET S31 When the contact TT=ON, the active step transfers to S31.
	T2	T_2 Activate the coil of 0.5 Sec. timer. When the contact $T_2=ON$ alters
		ALT Y2 the status of A green light. by 1 Sec. cycle.
		T3 Activate the coil of 5 Sec. timer.
		SET S32 When the contact T3=ON, the active step transfers to S32.
S32	1	— Y1 A yellow light is lit.
		K_{50} K50 Activate the coil of 5 Sec. timer
	T4	\sim SET S10 When the contact T4=ON, the active step transfers to S10
	·	KEI neturning to standard ladder, step ladder ends.

4-7-4 Mechanical Double-Decked Parking Space

The car parking in the lower level is available to drive out. but the upper level is for storage only. When the READY indicator is ON and press a No. button on the calling panel, the decks will start to move. The decks on the upper level (No.1, 2, 3 parking spaces) can only move up or down, while the decks on the lower level (No.4, 5 parking spaces) can only move upper parking space moves to the lower level, the car picking-up action is completed, and the READY indicator will be ON again.

As in the picture above, the No. 2 button is pressed in to pick the car up. Firstly the No. 5 deck should move to the empty space at its right. When it reaches the position, the No. 2 decks begins to decline to the lower level, and then the car picking-up action is completed.

The operation in this example is composed of the following three steps to complete the car picking-up action:

- Step 1: Except for the target car, move all cars which belong to the upper parking spaces back to the upper level (if any parked currently in the lower level). The S10, S20 or S30 executes the movement in this step.
- Step 2: The deck below the target car should be removed in order to make a space for it. The S11, S21 or S31 executes the movement in this step.
- Step 3: The target car will descend to the lower level and the car picking-up action is complete. The S12, S22 or S32 executes the movement in this step.

The operation is by pressing the button to select a process flow and its following steps complete that sequentially. This operation fully featured the SFC's attributes of being easy to understand.

Below individually using (a) SFC and (b) STL in writing the program, in order to comparison reference.

(a) Programming by the SFC

(b) Programming by the STL

Continue to the right.

5 General Rules of Application Instructions

5-1 The Formats of Application Instructions

- Instruction and Operand • Each application instruction has its unique instruction mnemonic, e.g. ADD, CMP...., etc. • Some application instructions are purely made up of themselves: WDT Instruction • Most of the application instructions are constituted by instruction themselves and several "Operands": SMOV (S) (m1) (m2) (D) (n) Instruction Operand As shown above (S), (m_1) , (m_2) , (D), (n) are Operands. There are many types of Operand in application instructions, their symbolic meanings are: (S): Source Operand (device). It usually refers to the Operand with unchanged contents after executed. (S_1) , (S_2) ... represent multiple source Operands for an instruction. (D): Destination Operand (device). It usually refers to the Operand in which instruction execution outcomes are stored. $(\overline{D_1}), (\overline{D_2})$... represent multiple destination Operands for an instruction. $(\mathbf{m}), (\mathbf{n})$: Those Operands used to specify operational constants. But some $(\mathbf{m}), (\mathbf{n})$ of instruction can use Register D or R to execute indirect specification. $(\overline{m}_1), (\overline{m}_2), (\overline{n}_1), (\overline{n}_2)$... represent multiple $(\overline{m}), (\overline{n})$.
- For programming software such as the Ladder Master S, a space is needed between the instruction and each operand to separate them.

– Devices for Operand –

• Based on the needs, each application instruction owns different number of Operands. And each application instruction has different device types. The available types of each Operand device are shown as in the following table:

Operand									Dev	ices								
operana	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"
S1							•	•	٠		٠	•	٠	0	•	•		
S2							•	•	٠		٠	•	•	0	•	•		
D		•	٠		0	0												

- The "●" in the table above indicates the operand which can be modified by an Index Register V, Z; while the "○" means not modifiable.
- In the application instructions, if a D.b, R.b or V, Z is specified as the device of the operand, using V or Z for modification is prohibited.
- After organized, continuous bit devices are displayed as KnX, KnY, KnM, KnS to store data. That "n" behind K is to represent how many continuous "Nibbles" will be used.
- Those T and C in the table above refer the Present Value registers of Timer (T) and Counter (C).
- All of T0~T511, C0~C199, D and R are 16-bit registers. When the instruction specifies the process of 32-bit data, two consecutive 16-bit registers will be occupied. For example, if a 32-bit instruction specifies to use the D100 as its Operand, then a 32-bit register (which is composed of D101 and D100) will be occupied. While the D101 will assign to the upper 16 bits and the D100 is the lower 16 bits. The same rule is also applied to the T, C and R.
- The 32-bit Counter (C200~C255) can be used as the Operand of a 32-bit instruction only.
- The UnG in the table refers to the BFM in the special module. For example, U1G3 indicates the operand of this instruction is specified to the BFM #3 in the special module No. 1. Since the programming software Ladder Master S at the monitoring mode could not to read the status at the special module's BFM directly, the operand in the instruction which is appointed to the UnG will not have the correct value to display.
- The letter E in the table refers to a real number constant.
- The "\$" in the table refers to a string that is composed of ASCII code.

- 16-bit or 32-bit Instructions
Because of different Operand value sizes, some of the application instruction can be organized into 16-bit instruction
or 32-bit instruction.
MOV D0 D10 A 16-bit instruction, the content of D0 is transferred to D10.
DMOV D0 D10 A 22 bit instruction the contents of (D1 D0) are transferred to (D11 D10)
• A 32-bit instruction is displayed with a "D" (to be added directly BEFORE the instruction mnemonic), e.g. MOV
represents a 16-bit instruction, while DMOV represents a 32-bit instruction.
• The device ID. number specified by an Operant of a 32-bit instruction can be an even or odd number. In order not to
get confusion, it is recommended to use an even number, if it is possible.
• The 32-bit Counter (C200~C255) can be used as the Operand of a 32-bit instruction only.
• At the instruction list, if a sign is marked on the left side of the instruction mnemonic, the explanation is below:
① There is no other extra sign on the left of instruction, this indicates it can be executed by the way of 16-bit only.
For example, -BMOVPS D n
② There is a reverse out D on the left, this indicates that it can be either 16 or 32-bit instruction. For example:
(3) I nere is a framed D on the left, this indicates that the instruction is only 32-bit instruction. For example:
$-\underline{D}HSCS(\underline{S}_1)(\underline{S}_2)(\underline{D})$

- Pulse Execution Instructions
 Based on requires, some application instruction can be organized into continuous execution instruction or pulse execution instruction.
X20 $MOV D0 D1$ Sequential execution instruction: When X20 = "ON", the instruction will be executed once in each scan cycle.
X20 MOVP D0 D1 Pulse execution instruction: The instruction is only executed once when X20 = "OFF" \rightarrow "ON".
 A pulse instruction displayed with a "P" (to be added directly AFTER the instruction mnemonic), e.g. MOV represents a sequential execution instruction, while MOVP represents a pulse execution instruction.
 Suitable using pulse execution instructions to replace sequential execution instructions in a program, can cut down unnecessary execution time.
• When X20 = "OFF", both MOV and MOVP instuctions are not executed.
• At the instruction list, if a sign is marked on the right side of the instruction mnemonic, the explanation is below:
① There is no other extra sign on the right of instruction, this indicates that the instruction is sequential execution instruction only. For example, — INCD (S1) (S2) (D) (n)
② There is a reverse out P on the right, this indicates that it can be either a sequential execution instruction or pulse execution instruction. For example: — DMOVPS D

5-2 Data Process of Application Instructions

- The X, Y, M and S are called bit devices, because they have only two different status ("ON" or "OFF"). But the T, C D and R are called word devices because they are specially used to store data. Some bit devices can be a group together as a word device pattern, shown in the form of KnX, KnY, KnM and KnS. This organized bits become a word device, that can be used in an application instruction for storage of data.
- When bit devices are organized as a word device, each digit of a hexadecimal word is composed by 4 bit devices (a Nibble). The Kn portion of the statement identifies the range of devices included. The "n" can be a number from the range 1 to 8 and it actual represents 4×n bit devices (n digits hexadecimal word or n Nibbles). Thence, the bit devices to be used as a word component that number of organized bits is the multiple of 4. K1M0 refers to a one-digit of hexadecimal word device, that is composed of M0~M3. K2M0 refers to a two-digit of hexadecimal word device, that is composed of M0~M7. K4M0 refers to a four-digit of hexadecimal word device, that is composed of M0~M15. K5M0 refers to a five-digit of hexadecimal word device, that is composed of M0~M19. K8M0 refers to an eight-digit of hexadecimal word device, that is composed of M0~M31.
- Data transference between registers and word devices which are composed of bit devices, the change should study up by the example below.

- When bit devices are organized as a word device, the header ID number of bit device can be specified as any legally device. But recommend to specify the KnX or KnY is by the ID number ended with "0", such as the X0, X20, Y20, Y30..., while to specify the ID number of the KnM or KnS is the multiple of "8", such as the M0, M8, M16... The recommendations can improve system efficiency.
- When the Operand of an application instruction is transformed to several sequential devices, the sequential ID number at different types are referred as below:

① Word device (16 bits)

- D0; D1; D2; D3 R0; R1; R2; R3 T0; T1; T2 C0; C1; C2
- ② Double-word device (32 bits)
 D0 (D1, D0); D2 (D3, D2); D4 (D5,D4)
 R0 (R1, R0); R2 (R3, R2); R4 (R5, R4)
 T0 (T1, T0); T2 (T3, T2); T4 (T5, T4)
 C200; C201; C202

 ③ Word device which is composed of bit devices K1X20; K1X24; K1X30; K1X34
 K2Y20; K2Y30; K2Y40; K2Y50
 K3M0; K3M12; K3M24; K3M36
 K4S0; K4S16; K4S32; K4S48

5-3 Precautions of Using Application Instruction

- Flags

• The execution result is related to the Application Instruction and that will cause some change to the corresponding flags:

M9020 : Addition / Subtraction Zero Flag

M9021 : Borrow Flag

M9022 : Carry Flag

M9023 : Multiplication / Division Zero Flag

M9025 : Division Overflow Flag

M9029 : Instruction Execution Completed Flag

• When processing an Application Instruction, the status (ON/OFF) of corresponding flags will be changed according to the result; but when the Application Instruction is not executed, the status of corresponding flags will be kept. Since there are so many instructions in the program will change and cover the status of same flags, to plan a program must notice about this.

Floating Point Instructions -

• The list of relative Application Instructions for processing floating point values.

FLT(FNC49)	DECMP(FNC110)	DEZCP(FNC111)	DEMOV(FNC112)
DESTR(FNC116)	DEVAL(FNC117)	DEBCD(FNC118)	DEBIN(FNC119)
DEADD(FNC120)	DESUB(FNC121)	DEMUL(FNC122)	DEDIV(FNC123)
DEXP(FNC124)	DLOGE(FNC125)	DLOG10(FNC126)	DESQR(FNC127)
DENEG(FNC128)	INT(FNC129)	DSIN(FNC130)	DCOS(FNC131)
DTAN(FNC132)	DASIN(FNC133)	DACOS(FNC134)	DATAN (FNC135)
DRAD(FNC136)	DDEG(FNC137)		

• Every floating point number will occupy two registers.

• The format of floating point number store in registers, please refer to the section 2-13 "Numerical System".

- If the source operand of a floating point operation instruction is a constant number K or H, the instruction will automatically transform this constant number to a BIN floating point number during the processing.
- When a floating point function is used, please pay attention to the format of its operands.

6.Application Instructions

The VS series PLC has many application instructions, each instruction has its specific function. The PLC will easily achieve a complicated control system also diminish programming codes and programming development time effectively by cleverly using these instructions. We hope readers will have an in-depth understanding of the application instructions and make the best use of them.

	Mnemonic		~	Brief Function Introduction		Page			
				Bherrunction introduction	VS1	VS2	VSM	VS3	lage
Program Flo	w lı	nstructions	5		1	1			
00		CJ	Ρ	Conditional Jump	0	0	0	0	136
01		CALL	Р	Call Subroutine	0	0	0	0	137
02		SRET		Subroutine Return	0	0	0	0	137
03		IRET		Interrupt Return	0	0	0	0	138
04		EI		Enable Interrupt	0	0	0	0	138
05		DI		Disable Interrupt	0	0	0	0	138
06		FEND		First End	0	0	0	0	139
07		WDT	Ρ	Watch Dog Timer Refresh	0	0	0	0	140
08		FOR		Start of a FOR-NEXT Loop	0	0	0	0	141
09		NEXT		End of a FOR-NEXT Loop	0	0	0	0	141
Comparisor	n Ins	structions							
10	D	СМР	Р	Compare	0	0	0	0	144
11	D	ZCP	Р	Zone Compare	0	0	0	0	145
224	D	LD=		Initial In-line Compare, (S1) = (S2)	0	0	0	0	346
225	D	LD>		Initial In-line Compare, (S1) > (S2)	0	0	0	0	346
226	D	LD<		Initial In-line Compare, (S1) < (S2)	0	0	0	0	346
228	D	LD<>		Initial In-line Compare, (S1) ≠ (S2)	0	0	0	0	346
229	D	LD < =		Initial In-line Compare, (S1) ≤ (S2)	0	0	0	0	346
230	D	LD>=		Initial In-line Compare, (S1) ≥ (S2)	0	0	0	0	346
232	D	AND=		Serial In-line Compare, (S1) = (S2)	0	0	0	0	346
233	D	AND>		Serial In-line Compare, (S1) > (S2)	0	0	0	0	346
234	D	AND <		Serial In-line Compare, (S1) < (S2)	0	0	0	0	346
236	D	AND <>		Serial In-line Compare, (S1) ≠ (S2)	0	0	0	0	346
237	D	AND < =		Serial In-line Compare, (S1) ≤ (S2)	0	0	0	0	346
238	D	AND > =		Serial In-line Compare, (S1) ≥ (S2)	0	0	0	0	346
240	D	OR=		Parallel In-line Compare, (S1) = (S2)	0	0	0	0	346
241	D	OR>		Parallel In-line Compare, (S1) > (S2)	0	0	0	0	346
242	D	OR<		Parallel In-line Compare, (S1) < (S2)	0	0	0	0	346
244	D	OR<>		Parallel In-line Compare, (S1) ≠ (S2)	0	0	0	0	346
245	D	OR<=		Parallel In-line Compare, (S1) ≤ (S2)	0	0	0	0	346
246	D	OR>=		Parallel In-line Compare, (S1) ≥ (S2)	0	0	0	0	346
Move Instructi	ons	1			1	1		1	
12	D	MOV	Р	Move	0	0	0	0	146
13		SMOV	Р	Shift Move	0	0	0	0	147
14	D	CML	Р	Complement	0	0	0	0	148
15		BMOV	Р	$n \rightarrow n$ Block Move	0	0	0	0	149
16	D	FMOV	Р	$1 \rightarrow n$ Fill Move	0	0	0	0	150
17	D	ХСН	Р	Exchange	0	0	0	0	151
Code Excha	nge	Instructio	ns	1	1		1	1	1
18	D	BCD	Р	Convert BIN to BCD	0	0	0	0	152
19	D	BIN	Р	Convert BCD to BIN	0	0	0	0	152
170	D	GRY	Р	Convert BIN to Gray Code	0	0	0	0	309

6-1 Application Instruction Table

	Mnomonio		in Brief Function Introduction		Page				
FINC NO.		winemonic		Brief Function Introduction		VS2	VSM	VS3	rage
Code Excha	inge	Instructio	ns						
171	D	GBIN	Ρ	Convert Gray Code to BIN	0	0	0	0	310
260	D	DABIN	Р	Convert Decimal ASCII String to BIN Number				0	353
261	D	BINDA	Ρ	Convert BIN Number to Decimal ASCII String				0	354
Arithmetic I	nsru	uctions							
20	D	ADD	Р	Addition (S1) + (S2) \rightarrow (D)	0	0	0	0	154
21	D	SUB	Ρ	Subtraction (S1) – (S2) \rightarrow (D)	0	0	0	0	155
22	D	MUL	Ρ	Multiplication (S1) × (S2) \rightarrow (D + 1,D)	0	0	0	0	156
23	D	DIV	Ρ	Division (S1) \div (S2) \rightarrow (D),(D + 1)	0	0	0	0	157
24	D	INC	Ρ	Increment (D) + 1 \rightarrow (D)	0	0	0	0	158
25	D	DEC	Р	Decrement (D) – 1 \rightarrow (D)	0	0	0	0	158
29	D	NEG	Р	Negation $(\overline{D}) + 1 \rightarrow (D)$	0	0	0	0	160
45	D	MEAN	Р	Mean	0	0	0	0	175
48	D	SQR	Р	Square Root	0	0	0	0	178
Logical Ope	rati	on Instruct	ion	5					
26	D	WAND	Р	Logic Word AND	0	0	0	0	159
27	D	WOR	Р	Logic Word OR	0	0	0	0	159
28	D	WXOR	Р	Logic Word Exclusive OR	0	0	0	0	159
44	D	BON	Р	Check Specified Bit Status	0	0	0	0	174
Rotary Instr	ucti	ons							
30	D	ROR	Р	Rotation Right	0	0	0	0	162
31	D	ROL	Р	Rotation Left	0	0	0	0	162
32	D	RCR	Р	Rotation Right with Carry	0	0	0	0	163
33	D	RCL	Р	Rotation Left with Carry	0	0	0	0	163
Shift Instruc	ctior	is							
34		SFTR	Р	Bit Shift Right	0	0	0	0	164
35		SFTL	Р	Bit Shift Left	0	0	0	0	164
36		WSFR	Р	Word Shift Right	0	0	0	0	165
37		WSFL	Р	Word Shift Left	0	0	0	0	166
213		SFR	Р	Shift n Bit Right in 16-bit Word Data with Carry				0	343
214		SEL	P.	Shift n Bit Left in 16-bit Word Data with Carry				0	343
Data Table I	Hand	dlina Instru	uctio	pns					0.10
38		SEWR	Р	Shift Register Write (FIFO Write)	0	0	0	0	167
39		SERD	P.	Shift Register Read (FIFO Read)	0	0	0	0	168
210		FDFI	P	Delete Data from Specific Location of Table				0	340
210		FINS	P.	Insert Data into Specific Location of Table				0	341
212		POP	P.	Shift the Last Register Read (FIFO Last Read)				0	342
Data Proces	sin	a Instructio	ons						042
40		ZRST	Р	Zone Reset		0	0	0	170
40			P			0	0	0	170
12		ENCO	P	Encode		0	0	0	171
42		SUM		The Sum of Active Bite		0	0	0	172
43				Secret a Data Stack		0	0		1/3
60		SLR		Set Tabulated Date					207
140		WOUN	D						207
140		WTOD		Sum of Word to Bute					2007
141	-			Combine Pute to Word					207
142		BIOW	1						288
143			P _	Combine 4-bit Nibble to Word					289
144		DIS	P	Separate Word to 4-bit Nibble					290

ENC No		Mnomonic		Brief Eurotion Introduction		Page			
TNC NO.		Milenioni		Bherrunction introduction	VS1	VS2	VSM	VS3	lage
Data Proces	sing	g Instructio	ons		. <u></u>	1			
147	D	SWAP	Ρ	Swap High / Low Byte	0	0	0	0	291
148	D	SORT2		Sort Tabulated Data 2	0	0	0	0	292
Floating Poi	nt A	rithmetic I	nsti	ructions					
49	D	FLT	Р	BIN Integer \rightarrow BIN Floating Point Format	0	0	0	0	179
110	D	ECMP	Ρ	Compare Two BIN Floating Point Numbers	0	0	0	0	260
111	D	EZCP	Ρ	Compare a BIN Float No. to BIN Float Zone	0	0	0	0	261
112	D	EMOV	Ρ	Move Floating Point Data	0	0	0	0	262
116	D	ESTR	Ρ	Convert BIN Floating Point to Character String				0	263
117	D	EVAL	Ρ	Convert Character String to BIN Floating Point				0	265
118	D	EBCD	Ρ	Convert BIN to DEC Floating Point Format	0	0	0	0	266
119	D	EBIN	Ρ	Convert DEC to BIN Floating Point Format	0	0	0	0	266
120	D	EADD	Р	BIN Floating Point Addition	0	0	0	0	267
121	D	ESUB	Р	BIN Floating Point Subtraction	0	0	0	0	268
122	D	EMUL	Р	BIN Floating Point Multiplication	0	0	0	0	269
123	D	EDIV	Р	BIN Floating Point Division	0	0	0	0	270
124	D	EXP	Р	BIN Floating Point Number Exponent	0	0	0	0	271
125	D	LOGE	Р	BIN Floating Point Nature Logarithm	0	0	0	0	272
126	D	LOG10	Р	BIN Floating Point Common Logarithm	0	0	0	0	273
127	D	ESQR	Р	BIN Floating Point Square Root	0	0	0	0	274
128	D	ENEG	Р	BIN Floating Point Negation	0	0	0	0	275
129	D	INT	Р	BIN Floating Point \rightarrow BIN Integer Format	0	0	0	0	276
130	D	SIN	Р	Calculate Sine	0	0	0	0	277
131	D	cos	Р	Calculate Cosine	0	0	0	0	278
132	D	TAN	Р	Calculate Tangent	0	0	0	0	279
133	D	ASIN	P	Calculate Arc Sine	0	0	0	0	280
134		ACOS	P	Calculate Arc Cosine	0	0	0	0	281
135		ATAN	P	Calculate Arc Tangent	0	0	0	0	282
136	D	RAD	P	Convert Angle From Degrees to Radians	0	0	0	0	283
137		DEG	P	Convert Angle From Radians to Degrees	0	0	0	0	284
High Speed Pr	oces	sing Instruct	ions						201
50		REF	Р	I/O Refresh		0	0	0	182
51		DEEE		I/O Refresh and Filter Adjust	0	0	0	0	192
52		MTP	Г		0	0	0	0	103
53		Несе		Software High Speed Counter Set	0	0	0	0	195
54		неср		Software High Speed Counter Reset	0	0	0	0	197
55				Software High Speed Counter Zone Compare	0		0	0	107
55		800		Sneed Dataction	0	0	0	0	100
57		DISV		Pulse V Output	0	0	0	0	101
59		PLST DW/M		Pulse Width Medulation	0	0	0	0	102
50					0	0	0	0	193
59		PLOR		Hardware High Speed Counter Data Mayo	0	0	0	0	194
189				Software High Speed Counter Table Compare					319
280		HSCI		Sonware righ Speed Counter Table Compare					355
				Absolute Drum Sequences			\sim		4.00
62	טן	ABSD							199
63				Incremental Drum Sequencer				0	201
64		TTMR			0	0	0	0	202
65		STMR			0	0	0	0	203
66		ALT	P	Alternate State	0	0	0	0	204

ENC No	Mnemonic		•	Brief Function Introduction		Page			
		<u> </u>	Bherrunction introduction	VS1	VS2	VSM	VS3	lage	
Handy Instr	ucti	ons		r	1	1	1	i	1
67		RAMP		Ramp Variable Value	0	0	0	0	205
88		PID		PID Control Loop	0	0	0	0	233
90		DBRD	Ρ	Read Data From Data Bank	0	0	0	0	248
91		DBWR	Ρ	Write Data Into Data Bank	0	0	0	0	249
92		TPID		Temperature PID Control	0	0	0	0	250
93		DTRD	Р	Read Data From Data Table	0	0	0	0	257
102		ZPUSH	Ρ	Batch Store of All Index Register				0	258
103		ZPOP	Ρ	Batch Recover of All Index Register				0	258
256	D	LIMIT	Р	Limit Control				0	348
257	D	BAND	Р	Dead Band Control				0	349
258	D	ZONE	Р	Zone Shift Control				0	350
259	D	SCL	Р	Scaling	0	0	0	0	351
269	D	SCL2	Р	Scaling 2	0	0	0	0	351
External Set	tting	and Displ	ay I	nstructions	1		1	1	
70	D	ТКҮ		Ten Key Input	0	0	0	0	210
71	D	НКҮ		Hexadecimal Key Input	0	0	0	0	211
72		DSW		Digital Switch (Thumbwheel) Input	0	0	0	0	213
73		SEGD	Р	Seven Segment Decoder	0	0	0	0	214
74		SEGL		Seven Segment with Latch	0	0	0	0	215
76		ASC		Convert Letters to ASCII Code	0	0	0	0	216
77		PR		Print ASCII Code	0	0	0	0	217
78	П	FROM	Р	Read From Special Module		0	0	0	217
79		то	P.	Write To Special Module		0	0	0	210
Serial Port (Com	municatio	n In	structions					210
80		RS		Receive/Send Communication		0	0	0	222
81		PRUN	P	Parallel Run (Octal Mode)	0	0	0	0	222
82		ASCI	P	Convert HEX to ASCII	0	0	0	0	228
83		HEX	Р		0	0	0	0	229
84				Check Code	0	0	0	0	220
87			-	CPUL ink Communication	0	0	0	0	230
80				Easy Link Communication		0	0	0	201
140							0	0	244
Deal Time C							0		294
			nstr D				0	\cap	200
100					0	0	0	0	290
101					0	0	0	0	299
162		TADD	P		0	0	0	0	300
163		ISUB	P		0	0	0	0	301
164	D	HIOS	Р –	Convert Hour to Second	0	0	0	0	302
165	D	STOH	Р	Convert Second to Hour	0	0	0	0	303
166		TRD	P	Read RTC Data	0	0	0	0	304
167		TWR	P	Set RTC Data	0	0	0	0	305
Timer Instru	ictic	ons	_		1	1		1	
169	D	HOUR		Hour Meter	0	0	0	0	308
176		TFT		Timer (10 ms.)	0	0	0	0	311
177		TFH		Timer (100 ms.)	0	0	0	0	312
178		TFK		Timer (1 s.)	0	0	0	0	313
Block Data	Han	dling Instr	ucti	ons					
192	D	BK+	Ρ	Block Data Subtraction				0	322

Normal method Description of the detection of the d		Mnemonic		•	Brief Function Introduction		Page			
Block bate Hamilting low curves Unit Sec Date Subtraction			VIIIemoni			VS1	VS2	VSM	VS3	lage
193 D BKCMP> P Block Data Compare (S1) * (S2) I <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<>	Block Data I	Han	dling Instru	ucti	ons					_
194 D 8CAMP P Block Dargene (\$1) + (\$2) Image: Compare (\$1) + (\$2) Imag	193	D	BK—	Ρ	Block Data Subtraction				0	323
196DBCKUMP> PBlock Data Compare (S1) < (S2)Image: Compare (S1) < (S2)Image: Compare (S1) < (S2)Image: Compare (S1) < S2)Image: Compare (S1) <s2)< th="">Image: Compare</s2)<></s2)<></s2)<></s2)<></s2)<></s2)<></s2)<></s2)<>	194	D	BKCMP=	Ρ	Block Data Compare (S1) = (S2)				0	324
196 0 BKCMP P Bock Data Compare (S1) + (S2) In In <thin< th=""></thin<>	195	D	BKCMP>	Ρ	Block Data Compare (S1) > (S2)				0	324
197 0 BCKOP~> P Bock Dala Compare (S1) + (S2) I <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<>	196	D	BKCMP<	Ρ	Block Data Compare (S1) < (S2)				0	324
198 0 BKCMP~- P Book Data Compare (S1 > (S2) In In <thin< th=""> In <thin< th=""></thin<></thin<>	197	D	BKCMP<>	Ρ	Block Data Compare (S1) ≠ (S2)				0	324
199DBKCMP->PBiok Data Compare (SI) ≥ (S2)III <td>198</td> <td>D</td> <td>BKCMP<=</td> <td>Ρ</td> <td>Block Data Compare (S1) ≤ (S2)</td> <td></td> <td></td> <td></td> <td>0</td> <td>324</td>	198	D	BKCMP<=	Ρ	Block Data Compare (S1) ≤ (S2)				0	324
Character String Instructions 200 D STR P BNto Character String Conversion Image: Conversion	199	D	BKCMP>=	Р	Block Data Compare (S1) ≥ (S2)				0	324
200 D STR P BN to Character String Conversion Image: Conversion Im	Character S	tring	g Handling	Ins	tructions					
201 D VAL P Character String to BIN Conversion Image: Conversion I	200	D	STR	Р	BIN to Character String Conversion				0	326
202 S+ P Join Up Two Character Strings Image: String Length Detection	201	D	VAL	Р	Character String to BIN Conversion				0	328
203 LEN P Character String Length Detection Image: Character from the Right of String Image: Character from the Right of String Image: Character from the Right of String Image: Character from Specific Place of String Image: Character from Specific Place of String Image: Character from Specific Place of String Image: Character String </td <td>202</td> <td></td> <td>\$+</td> <td>Р</td> <td>Join Up Two Character Strings</td> <td></td> <td></td> <td></td> <td>0</td> <td>330</td>	202		\$+	Р	Join Up Two Character Strings				0	330
204 RIGHT P Read Character from the Right of String Image: Constraint of the Left of String Image: Constraint of t	203		LEN	Р	Character String Length Detection				0	331
205 LEFT P Read Character from the Left of String Image: Constant of String Image: Consta	204		RIGHT	Р	Read Character from the Right of String				0	332
206 MIDR P Read Character from Specific Place of String	205		LEFT	Р	Read Character from the Left of String				0	333
207 MIDW P Write Character to Specific Place of String Image: Control Instruction String String </td <td>206</td> <td></td> <td>MIDR</td> <td>Р</td> <td>Read Character from Specific Place of String</td> <td></td> <td></td> <td></td> <td>0</td> <td>334</td>	206		MIDR	Р	Read Character from Specific Place of String				0	334
208 INSTR P Search Character String .	207		MIDW	Р	Write Character to Specific Place of String				0	335
209 \$ MOV P Transfer Character String Image: Character String <thimage: character="" string<="" th=""></thimage:>	208		INSTR	Р	Search Character String from another String				0	337
Positioning Control Instructions 300 D ZRN Zero Return O O 434 301 D JOGF Jog Forward O 0 436 302 D JOGR Jog Reverse O 0 436 303 D DRVR Drive to Relative Position O 0 438 304 D DRVA Drive to Relative Position O 0 440 305 D DV2R Drive to Relative Position by 2 Stages O 0 444 307 D DV2A Drive to Relative Positioning O 4446 307 D DV1T Interrupt Constant Quantity Positioning O 4446 308 D DV2I 2 Stages Interrupt Constant Quantity Position O 0 4452 310 D DVSR IngInterrupt to Stop or Drive to Absolute Position O O 4454 309 D DVSA Interrupt to Stop or Drive to Absolute Position O O 4452 310 D MSA	209		\$ MOV	Р	Transfer Character String				0	338
300 D ZRN Zero Return O O 434 301 D JOGF Jog Forward O 0 436 302 D JOGR Jog Reverse O 0 436 303 D DRVR Drive to Relative Position O 0 438 304 D DRVA Drive to Absolute Position O 0 440 305 D DV2R Drive to Absolute Position by 2 Stages O 0 444 307 D DV1T Interrupt Constant Quantity Positioning O 444 307 D DV1T Interrupt Constant Quantity Position O 444 308 D DV2I 2 Stages Interrupt Constant Quantity Position O 448 309 D DVSR Inglinterrupt to Stop or Drive to Absolute Position O 452 310 D DVSA Interrupt to Stop or Drive to Absolute Position O 456 3131 D <td< td=""><td>Positioning</td><td>Cor</td><td>ntrol Instru</td><td>ctio</td><td>ns</td><td></td><td></td><td></td><td>1</td><td></td></td<>	Positioning	Cor	ntrol Instru	ctio	ns				1	
301 D JOGF Jog Forward O O 436 302 D JOGR Jog Reverse O O 436 303 D DRVR Drive to Relative Position O O 438 304 D DRVA Drive to Relative Position O O 440 305 D DV2R Drive to Relative Position by 2 Stages O O 444 306 D DV2A Drive to Absolute Position by 2 Stages O O 444 307 D DV1T Interrupt Constant Quantity Positioning O O 446 308 D DV21 2 Stages Interrupt Constant Quantity Position O O 448 309 D DVSR IngInterrupt to Stop or Drive to Relative Position O O 450 310 D DVSA Interrupt to Stop or Drive to Relative Position O O 455 311 D PLSV Variable Speed Pulse Output O <td>300</td> <td>D</td> <td>ZRN</td> <td></td> <td>Zero Return</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>434</td>	300	D	ZRN		Zero Return	0	0	0	0	434
302 D JOGR Jog Reverse O O 436 303 D DRVR Drive to Relative Position O 0 438 304 D DRVA Drive to Relative Position O 0 440 305 D DV2R Drive to Relative Position by 2 Stages O 0 442 306 D DV2R Drive to Absolute Position by 2 Stages O 0 444 307 D DV1T Interrupt Constant Quantity Positioning O 0 446 308 D DV2I 2 Stages Interrupt Constant Quantity Position O 0 448 309 D DVSR IngInterrupt to Stop or Drive to Relative Position O 0 452 310 D DVSA Interrupt to Stop or Drive to Absolute Position O 0 454 312 DTBL Data Table Positioning O O 463 313 D ABS Absolute Quireer Interpolation O	301	D	JOGF		Jog Forward	0	0	0	0	436
303 D DRVR Drive to Relative Position O 438 304 D DRVA Drive to Absolute Position O 440 305 D DV2R Drive to Relative Position by 2 Stages O 0 442 306 D DV2A Drive to Absolute Position by 2 Stages O 0 444 307 D DV1T Interrupt Constant Quantity Positioning O 0 446 308 D DV2I 2 Stages Interrupt Constant Quantity Position O 0 448 309 D DVSR IngInterrupt to Stop or Drive to Relative Position O 0 450 310 D DVSA Interrupt to Stop or Drive to Absolute Position O 0 452 311 D PLSV Variable Speed Pulse Output O O 454 312 DTBL Data Table Positioning O O 462 313 D ABS Absolute/ Linear Interpolation O O	302	D	JOGR		Jog Reverse	0	0	0	0	436
304DDRVADrive to Absolute PositionImage: Constraint of the time of time of the time of time of the time of time of time of the time of tim	303	D	DRVR		Drive to Relative Position	0	0	0	0	438
305 D DV2R Drive to Relative Position by 2 Stages O O 442 306 D DV2A Drive to Absolute Position by 2 Stages O O 444 307 D DV1T Interrupt Constant Quantity Positioning O O 446 308 D DV21 2 Stages Interrupt Constant Quantity Position O O 448 309 D DVSR IngInterrupt to Stop or Drive to Relative Position O O 4450 310 D DVSA Interrupt to Stop or Drive to Absolute Position O O 452 311 D PLSV Variable Speed Pulse Output O O 456 312 DTBL Data Table Positioning O O 462 314 MPG Handwheel Positioning O O 466 315 D LIR Relatively Linear Interpolation O O 466 316 D LIA Absolutely Linear Interpolation O	304	D	DRVA		Drive to Absolute Position	0	0	0	0	440
306DDV2ADrive to Absolute Position by 2 StagesOO444307DDV1TInterrupt Constant Quantity PositioningOO446308DDV212 Stages Interrupt Constant Quantity PositionOO448309DDVSRIngInterrupt to Stop or Drive to Relative PositionOO450310DDVSAInterrupt to Stop or Drive to Relative PositionOO452311DPLSVVariable Speed Pulse OutputOO456313DABSAbsolute Current Value ReadOO462314MPGHandwheel PositioningOO463315DLIRRelatively Linear InterpolationOO469Other Instructions46ANSTimed Annunciator SetOO17647ANRPAnnunciator ResetOO317188CRCPCyclic Redundancy Check - 16OO318	305	D	DV2R		Drive to Relative Position by 2 Stages	0	0	0	0	442
307DDVITInterrupt Constant Quantity PositioningImage: Constant Quantity PositionImage: Constant	306	D	DV2A		Drive to Absolute Position by 2 Stages	0	0	0	0	444
308 D DV21 2 Stages Interrupt Constant Quantity Position O 448 309 D DVSR IngInterrupt to Stop or Drive to Relative Position O 0 450 310 D DVSA Interrupt to Stop or Drive to Absolute Position O 0 452 311 D PLSV Variable Speed Pulse Output O 0 454 312 DTBL Data Table Positioning O 0 456 313 D ABS Absolute Current Value Read O 0 462 314 MPG Handwheel Positioning O O 466 315 D LIR Relatively Linear Interpolation O 0 466 316 D LIA Absolutely Linear Interpolation O 0 176 47 ANR P Annunciator Set O O 316 184 RND P Generate Random Number O O 317 188	307	D	DVIT		Interrupt Constant Quantity Positioning	0	0	0	0	446
309DDVSRIngInterrupt to Stop or Drive to Relative PositionO450310DDVSAInterrupt to Stop or Drive to Absolute PositionO452311DPLSVVariable Speed Pulse OutputO454312DTBLData Table PositioningOO456313DABSAbsolute Current Value ReadOO462314MPGHandwheel PositioningOO463315DLIRRelatively Linear InterpolationOO466316DLIAAbsolutely Linear InterpolationOO469Other Instructions46ANSTimed Annunciator SetOO17647ANRPAnnunciator ResetOO316186DUTYTiming Pulse GenerationOO317188CRCPCyclic Redundancy Check - 16OO318	308	D	DV2I		2 Stages Interrupt Constant Quantity Position	0	0	0	0	448
310DDVSAInterrupt to Stop or Drive to Absolute PositionOO452311DPLSVVariable Speed Pulse OutputOO454312DTBLData Table PositioningOO456313DABSAbsolute Current Value ReadOO462314MPGHandwheel PositioningOO463315DLIRRelatively Linear InterpolationOO466316DLIAAbsolutely Linear InterpolationOO469Other Instructions46ANSTimed Annunciator SetOO17647ANRPAnnunciator ResetOO316186DUTYTiming Pulse GenerationOO317188CRCPCyclic Redundancy Check - 16OO318	309	D	DVSR		IngInterrupt to Stop or Drive to Relative Position	0	0	0	0	450
311DPLSVVariable Speed Pulse OutputOImage: Additional system312DTBLData Table PositioningOO456313DABSAbsolute Current Value ReadOO462314MPGHandwheel PositioningOO463315DLIRRelatively Linear InterpolationOO466316DLIAAbsolutely Linear InterpolationOO469Other Instructions46ANSTimed Annunciator SetOO17647ANRPAnnunciator ResetOO316186DUTYTiming Pulse GenerationOO317188CRCPCyclic Redundancy Check - 16OO318	310	D	DVSA		Interrupt to Stop or Drive to Absolute Position	0	0	0	0	452
312DTBLData Table PositioningImage: CRCImage: PositioningImage: Posi	311	D	PLSV		Variable Speed Pulse Output	0	0	0	0	454
313DABSAbsolute Current Value ReadOO462314MPGHandwheel PositioningOO463315DLIRRelatively Linear InterpolationOO466316DLIAAbsolutely Linear InterpolationOO469Other Instructions46ANSTimed Annunciator SetOO17647ANRPAnnunciator ResetOO176184RNDPGenerate Random NumberOO316186DUTYTiming Pulse GenerationOO317188CRCPCyclic Redundancy Check - 16OO318	312		DTBL		Data Table Positioning	0	0	0	0	456
314MPGHandwheel PositioningOO463315DLIRRelatively Linear InterpolationOO466316DLIAAbsolutely Linear InterpolationOO469Other Instructions46ANSTimed Annunciator SetOO17647ANRPAnnunciator ResetOO176184RNDPGenerate Random NumberOO316186DUTYTiming Pulse GenerationOO317188CRCPCyclic Redundancy Check - 16OO318	313	D	ABS		Absolute Current Value Read	0	0	0	0	462
315DLIRRelatively Linear InterpolationOO466316DLIAAbsolutely Linear InterpolationOO469Other Instructions46ANSTimed Annunciator SetOO17647ANRPAnnunciator ResetOO176184RNDPGenerate Random NumberOO316186DUTYTiming Pulse GenerationOO317188CRCPCyclic Redundancy Check - 16OO318	314		MPG		Handwheel Positioning	0	0	0	0	463
316DLIAAbsolutely Linear InterpolationOO469Other Instructions46ANSTimed Annunciator SetOO17647ANRPAnnunciator ResetOO176184RNDPGenerate Random NumberOO316186DUTYTiming Pulse GenerationOO317188CRCPCyclic Redundancy Check - 16OO318	315	D	LIR		Relatively Linear Interpolation	0	0	0	0	466
Other Instructions Immed Annunciator Set O O 176 46 ANS Timed Annunciator Set O O 176 47 ANR P Annunciator Reset O O 176 184 RND P Generate Random Number O O 316 186 DUTY Timing Pulse Generation O O 317 188 CRC P Cyclic Redundancy Check - 16 O O 318	316	D	LIA		Absolutely Linear Interpolation	0	0	0	0	469
46ANSTimed Annunciator SetOO17647ANRPAnnunciator ResetOO0176184RNDPGenerate Random NumberOOO316186DUTYTiming Pulse GenerationOO317188CRCPCyclic Redundancy Check - 16OO0318	Other Instru	ctio	ns		1	-			-	
47 ANR P Annunciator Reset O O O 176 184 RND P Generate Random Number O O O 316 186 DUTY Timing Pulse Generation O O 317 188 CRC P Cyclic Redundancy Check - 16 O O 318	46		ANS		Timed Annunciator Set	0	0	0	0	176
184 RND P Generate Random Number O O O 316 186 DUTY Timing Pulse Generation O O O 317 188 CRC P Cyclic Redundancy Check - 16 O O O 318	47		ANR	Р	Annunciator Reset	0	0	0	0	176
186 DUTY Timing Pulse Generation 0 317 188 CRC P Cyclic Redundancy Check - 16 0 0 318	184		RND	Р	Generate Random Number	0	0	0	0	316
188 CRC P Cyclic Redundancy Check - 16 O O O 318	186		DUTY		Timing Pulse Generation	-	-	-	0	317
	188		CRC	Р	Cyclic Redundancy Check - 16	0	0	0	0	318

6-2 Program Flow Instructions

FNC	Mnemonic in Ladder Diagram	Function Description	Ар	able	e VS	
No.			1	2	Μ	3
00		Conditional Jump	0	0	0	0
01		Call Subroutine	0	0	0	0
02	SRET	Subroutine Return	0	0	0	0
03	IRET	Interrupt Return	0	0	0	0
04	EI	Enable Interrupt	0	0	0	0
05	DI	Disable Interrupt	0	0	0	0
06	FEND	First End	0	0	0	0
07		Watch Dog Timer Refresh	0	0	0	0
08	FOR n	Start of a FOR-NEXT Loop	0	0	0	0
09	NEXT	End of a FOR-NEXT Loop	0	0	0	0

When the CJ instruction executes Jump action, every device of the skipped segment will as follows:

- The action of every device in the bypassed segment during the Jump is executing -

- The status of Y, M and S will remain as same as before the Jump.
- The 10 ms. or 100 ms. timer will pause counting time.
- The 1 ms. timer will continue to count time, but its output contact will not function normally until the Jump finishes.
- T192~T199 will continue to count time and its output contact will also effective.
- High Speed Counter will continue to count and its output contact will also effective.
- A normal counter will stop counting.
- If the Reset instruction for a Retentive timer or counter is driven before Jump, the device will still be reset during the Jump.
- Applied instruction will not be executed.
- Using the CJ instruction can skip unnecessary program segment directly, so the program Scan Time can be saved.
- The CJ instruction can be used to solve the problem of double coil outputs.
- A numeric pointer or the name of a pointer can only appear once in a program; If the Pointer is specified more than once, errors will be incurred.
- As the Pointer P63 or P255 is equal to the END address in the program, to execute the "CJ P63" or "CJ P255" is equal to jump to the END of program.

FNC		Call Subroutino		2	Μ	3
01		Call Subroutine			\bigcirc	\bigcirc
FNC	SDET	Subrouting Poturn	1	2	Μ	3
02	SRET		0	0	\bigcirc	0

Operand	Devices								
	Ρ	By a	numeric Branch Pointer P or an user-defined 16 English characters Mark Point						
S	•		0						
• Numeric Branch Pointer P: P0~P1023		n Pointer P: P0~P1023	• The total amount of the Mark and Branch Pointers is 1024.						

S : the Pointer of the subroutine

- When the conditional contact X20 for the CALL instruction is "ON", the system will execute the CALL action to jump to the pointer of "EMERGENCY_STOP" and then executes the subroutine. Until the SRET instruction in the subroutine executes, the system jumps back the line immediately following the original CALL instruction and then keeps running.
- Subroutines should be written after the FEND instruction.
- If the CJ instruction and the CALL instruction are used in a program, the same Pointer is not allowed to assign for both.
- A same subroutine can be called in a program as many times as required.
- In a subroutine, a second CALL instruction is available for calling other subroutine, while subroutines can be nested for 5 levels at most.
- The Timers used in the subroutine must be selected from T192~T199.

• 2-Level Nest Subroutine Call (5 levels at the most)

FNC		Interrupt Poturn			Μ	3
03	IREI		0	\bigcirc	\bigcirc	0
FNC	ET	Enable Interrunt	1	2	Μ	3
04			\bigcirc	\bigcirc	\bigcirc	\bigcirc
FNC 05			1	2	Μ	3
		Disable interrupt			0	0

- The Timers used in general subroutines and interrupt subroutines must be selected from the T192~T199.
- When the program flow is worked between the DI and EI instructions, instructions, an interrupt demand cannot be executed immediately. The demand will be memorized and executed when the interrupt function is allowed again.
- For the pulse width of the external interrupt signal, please refer to the input reaction time varies with the series of PLC.
- If the interrupt subroutine's I/O needs processed instantly, please use the FNC50 REF immediate I/O refresh instruction.

A PLC is provided with the WDT (Watch Dog Timer), which is used to monitor operation condition of the PLC By way of the WDT to monitor the process, when the PLC's CPU runs abnormally, that will command the PL operation and turn all external output "OFF". This system achieves the protection purpose. The explanation of the WDT (Watch Dog Timer): The WDT is a hardware timer with 200 ms. set value. When PLC = "STOP" → "RUN", the value of WDT will from the content value of Special Register D9000 and while the initial value of D9000 is "200". This timer is counting downward by a timing unit of 1 ms. If the current value reaches "0" the WDT will define the timer is counting downward by a timing unit of 1 ms.	C system. C to stop
operation and turn all external output "OFF". This system achieves the protection purpose. The explanation of the WDT (Watch Dog Timer): The WDT is a hardware timer with 200 ms. set value. When PLC = "STOP" → "RUN", the value of WDT will from the content value of Special Register D9000 and while the initial value of D9000 is "200". This timer is counting downward by a timing unit of 1 ms. If the current value reaches "0" the WDT will de	
The WDT is a hardware timer with 200 ms. set value. When PLC = "STOP" \rightarrow "RUN", the value of WDT w from the content value of Special Register D9000 and while the initial value of D9000 is "200". This timer is counting downward by a timing unit of 1 ms. If the current value reaches "0" the WDT will de	
This timer is counting downward by a timing unit of 1 ms. If the current value reaches "0", the WDT will de	ill reload
that there is a system trouble. It forces the PLC to stop operation and turn all external output "OFF" to ach protection purpose.	etermine nieve the
When the system operates normally, PLC will revert its WDT timer before it executes the beginning of prog (STEP 0).	jram
There are two reasons to activate WTD (Watch Dog Timer) function: 1. Any trouble is happened in the PLC system and WDT performs the protection function.	
If the time of program execution is too long, the program's Scan Time more than the content value of D it will trigger the protection function of WDT. Below are two approaches to improve the foregoing situa make the system operate normally.	9000, tion and
For the second cause, here provide two solutions: (1) Insert WDT instruction into the program, because WDT instruction will revert the current value of WDT.	
s s	
M9000 WDT The WDT instruction reverts the current value of the WDT timer to the content value wDT in the middle of the program.	of D9000
\$	
END	
(2) Use the MOV instruction to change the content value of D9000.	
M9002 MOV K300 D9000 Set the WDT to be a timer of 300 ms	
To adopt this approach, it should be noted that at the first Scan Time of the PLC (from "STOP" to "RUN the value of WDT timer is still 200 ms. The program below can be used for the solution where necessa	N"), Iry.
M9002 MOV K300 D9000	
WDT	

FNC 08	FOR S	Start of a FOR-NEXT Loop	1	2	M 0	3
FNC 09	NEXT	End of a FOR-NEXT Loop	1	2	M	3

Operand									Dev	ices								
oporaria	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"
S							•		•				•	0	•			
• S = 1~3	• $S = 1 \sim 32,767$ (beyond the range, the set value S is regarded as 1)																	
	• $S = 1 \sim 32,767$ (beyond the range, the set value S is regarded as 1) S : the number of times to be repeated in the FOR-NEXT loop.																	
Т	he LO(OPING	FOR segme	K5 ent				• The	progr times	am se s.	gmen	it in th	e FOF	R-NEX	T loop	will b	e exec	cuted

- As in the left diagram, the LOOPING segment in program will be executed 5 sequentially at every scan time.
- In a FOR-NEXT loop, the CJ instruction can be used to jump out of the loop.
- At most 5 levels can be used for a nest FOR~NEXT loop. Be sure to note that the loops will cause the currently Scan Time extended. The Scan Time should be taken not to exceed WDT's default value, otherwise an error will occur.
- Errors will occur under the following circumstances:

NEXT

① The NEXT instruction is placed in front of the FOR instruction.

⁽²⁾ The NEXT instruction is placed behind the FEND or END instruction.

③ The FOR instruction and the NEXT instruction are not programmed as a pair.

• Multiple-level Loop Program

in program

• Use the FOR-NEXT Loop instructions to combine with the Pointer Register V, Z that will make the program more flexible. The program below will add up the content value of D0~D9 and store the result in D10.

6-3 Comparison, Move and Code Exchange Instructions

FNC	Mnemonic in Ladder Diagram	Function Description	Ap	plica	able	VS
No.			1	2	Μ	3
10	DCMPP (S1 (S2 D)	Compare	0	0	0	0
11	$\square \square $	Zone Compare	0	0	0	0
12		Move	0	0	0	0
13	$\vdash \vdash SMOVP (S) (m1) (m2) (D) (n)$	Shift Move	0	0	0	0
14		Complement	0	0	0	0
15		n→n Block Move	0	0	0	0
16	FMOVP SD n	1→n Fill Move	0	0	0	0
17		Exchange	0	0	0	0
18		Convert BIN to BCD	0	0	0	0
19		Convert BCD to BIN	0	0	0	0

F١	1C		I						5			Com	naro						1	2	Μ	3
1	0						3) (3		<u>」</u>			COM	pare						0	\bigcirc	0	\bigcirc
	Operan	Ы									Dev	ices										
	operan		Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$	'	
	S1										•	•	•	•		0	•					
	S2								•		•	•	•		•	0						
	D			•	•		0	0														
	• D occi	upie	s 3 co	onsecu	itive de	vices																
	. >	(20			S 1	(<u>5</u> 2 (D			S1 :	the co	ompai	e valu	le #1							
		Ī		CMP	K10) D1	00 N	1100			S2 :	the co	ompai	re valu	le #2							

- S2 : the compare value #2
 - D : the compare result; occupying 3 consecutive points
- Compare the content value of (\underline{S}_1) (Compare Value #1) with the value of (\underline{S}_2) (Compare Value #2), and save the result in (D) (Compare Result).
- The CMP instruction will be enabled when X20 = "ON". If $(\overline{S_1}) > (\overline{S_2})$ (K100 > D100), then M100 = "ON" If $(\underline{S_1}) = (\underline{S_2})$ (K100 = D100), then M101 = "ON" If $(\underline{S_1}) < (\underline{S_2})$ (K100 < D100), then M102 = "ON".
- When X20 = "OFF", the instruction is inactive, the "ON"/"OFF" statuses of M100, M101 and M102 will remain as same as the statuses before it is disabled.
- Please use serial or parallel links of M100~M102 to generate the result as "≥", "≤" or "≠".

FNC	Zone Compare	1	2	Μ	3
11	Zone compare	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Operand									Dev	ices								
oporaria	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"
S1														0				
S2									•	•	•			0		•		
S							٠	•	٠	٠	٠	٠	•	0	•	٠		
D			٠	•	0	0												
• D occupi	es 3 c	onseci	utive de	evices		● S1≤	S2											

X20		S 1	S 2	(\mathbf{S})	D
	ZCP	K100	K200	D100	M100

 $S{\ensuremath{\scriptscriptstyle 1}}$: the lower limit of zone compare

S2 : the upper limit of zone compare

S : the compare value

D : the compare result; occupying 3 consecutive points

- Compare the content value of (S) (Compare Value) with the values of (S1) (lower limit of zone compare) and (S2) (upper limit of zone compare), then save the result in (D) (compare result).
- The ZCP instruction will be enabled when X20 = "ON".

If $(\underline{S}) < (\underline{S}_1)$ (D100 < K100, the compare value is less than the lower limit), then M100 = "ON";

If $(\underline{S}_1) \le (\underline{S}) \le (\underline{S}_2)$ (K100 \le D100 \le K200, the content value of D100 is between the upper and lower limit), then M101 = "ON";

If $(S) > (S_2)$ (D100 > K200, the compare value is bigger than the upper limit), then M102 = "ON".

- When X20 = "OFF", the instruction is inactive, the "ON"/"OFF" statuses of M100, M101 and M102 will remain as same as the statuses before it is disabled.
- When $(\underline{S}_1) > (\underline{S}_2)$, the content value of (\underline{S}_1) will become both upper/lower limits to be compared with the (\underline{S}) .

NC 12				M0\	/P (s) (D	D				Move	Э						1	2 M 0 0
										Davi									
Oper	and	X	Y	М	S	Dh	Rh	KnX	KnY	Dev KnM	KnS	т	С	D.R	V.Z	UnG	K.H	F	"\$"
S		~				0.0	11.0	•	•	•	•	•	•	•	0	•	•	_	÷
D									•	٠	٠	•	•	٠	0	•			
• To co	x2(→ + ppy tl conte as Data erforr (0 ↓ (1 ↓ (1 ↓ (2 ↓ bit C 20 ↓	he dea ent val 0 turns the va a Trar m the 	MOV signat lue of s from alue be progra Y20 Y21 Y22 Y23 Y23 Transf shoul MOV	CS D10 ed val D100 effore it am of CS Cer Cer D0 D) (1 0 D2 ue fro will be to "C t is dis left di	D 200 200 200 200 200 200 200 200 200 20) to (E ed to I he ins n, whic	D . D200 v tructic th can when	when : on is ir be ac M90	X20 = nactive	 "ON" besid d by t MO\ tructic conte 	S : the D : th , des th he rig / K1X	e sour e dest e cont ht side (0 K1 sed. ue (D1	ce dev ination cent va e. Y20	vice to	• be trace	will re	red	as
If the	e tran 21 │──	sfer so	ource MOV	or des C200	D10	on dev]Wher	vice is n X21	a 32- = "ON	bit cou N", ma	unter, * ove the	the ins	structi ent va	on sha Ilue of	c200	e hea (32 b	ded wi its) to	ith a "I (D11,	D". D10).	
Whe the u	ta Tr n usi ınit o	ansfe ng the f "Nib b15	er Bet e MOV ble".	ween ' instru For ex		I and to trar e, (tha	Bits - nsfer c at K2 ii	lata b n the p	etwee progra	n wore am me	ds and eans 2	d bits, Nibbl	those es)	bits s	hould	be or	ganize	ed by	
		U Th 	e statu	s of bit	U 1	remains	s <	1 0 E 1 0 M7 M6	xecute	0 M4 N	1 0 0V D0 1 0 13 M2	1 K2M		0 2M0					
	[0 0 b15	F 0 0	ill up w	vith "O") 0	بر 0	1 0	1	0	1 0	MU D	0 D b0	1					

NC 13			S	M0\	/P (<u>s</u> (m	1) (m 2) (D	n		Shift	Move)					1	2 M
										Dev	ices								
Oper	and	Х	Y	M	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"
S	;							•	•	•	•	•	•	•	0	•			
m	1																0		
m	2																0		
)								•	•	•	•	•	•	0	•			
• m1	= 1~	4		• m2	= 1~	 M1		• n =	- m2~	4									
<u></u>											о . н				of two	ofer			
	X20		CMC) (<u>m1</u>)	(m ²) (n)			S ∶ti m1∶ti	ne sou he sou	irce d irce p	evice ositior	of trar 1 of th	nster e first	diait ta	o be n	noved
F			SMC	DV DC) K3	K2	D1 P	(2			m2 : tl	he nur	nber o	of sou	rce di	aits to	be mo	oved	10100
											D : tl	he des	stinatio	on dev	/ice	gite te			
											n :tl	he des	stinatio	on pos	sition f	for the	first d	igit	
• Th:-								- 4 -						·				0	
 This 	Instru	uction	i can t	be use	ed to r	eorga	nize d	ata.											
• The	The instruction can select different operation modes, it is based on the status of Special Relay M9168.																		
	- When the M9168 = "OFF" D0 (BIN 16-bit Value) D1 (BIN 16-bit Value) D1 (BIN 16-bit Value)																		
Wh	- When the M9168 = "OFF" D0 (BIN 16-bit Value) D1 (BIN 16-bit Value) b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0																		
	When the M9168 = "OFF" D1 (BIN 16-bit Value) D0 (BIN 16-bit Value) D1 (BIN 16-bit Value) b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0																		
b15 b	When the M9168 = "OFF" D0 (BIN 16-bit Value) D1 (BIN 16-bit Value) 15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 Convert D0 into a BCD number. The PLC will identify Convert D1 into a BCD number. The PLC will identify Convert D1 into a BCD number. The PLC will identify																		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		
	D0 (BIN 16-bit Value) D1 (BIN 16-bit Value) 1014 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 Convert D0 into a BCD number. The PLC will identify it as an operational error when the BCD's value exceeds 9999 or D0's value is negative. V Convert D1 into a BCD number. The PLC will identify exceeds 9999 or D1's value is negative. 103 102 101 100 103 102 101 1															10 ⁰			
				_															
		Ma					DOL		¹ 61		V		V			\checkmark		V	
		pos	ve the sition a	aesign nd con	ated d nbine t	he digi	ts with	the sp D1.	ecified		10 ³		10	2		101		10 ⁰	
											Co	nvert t	he con e it to f	hbined	value	into a B	BIN val	ue	
										V h15	14 613		1610	-9 h8	h7 hf	3 b5 b	4 63	h2 h1	
										DIJI	14 013		D1	(BIN 1	6-bit V	alue)	4 03	02 01	
																,			
- Wh	nen tl	he M	9168 :	= "ON	" —														
				l	D0									D)1				
b15 k	b14 b13	3 b12 I	b11 b10	b9 b8	3 b7	o6 b5	b4 b3	3 b2 k	o1 b0	b15 k	o14 b13	b12 b1	1 b10	o9 b8	b7 b6	6 b5 b	4 b3	b2 b1	b0
↓	^{1.} Nibł	/`	grd. N	libblo	2 ^{nc}	Nibb		1 st. Niik			I. Nibb		2rd. Ni		ond.	Nibble	_/ \	t. Nibł	
4	INIO	JIC	5 1		2		NC		JDIE	4		JIC 1	5 IVI 	DDIE	2		5 1	INIDA	
										b15 b	V 014 b13	b12 b1	1 b10	o9 b8	b7 bf	 }_b5_b	4 b3	 b2b1	b0
													.1						
										4 th	^{I.} Nibb	ble	3 ^{rd.} Ni	bble D	2 ^{nd.} 1	Nibble	e 1 ^s	^{it.} Nibł	ble

FI	√C _			CM			7				Com	nleme	nt					1	2	Μ	3
1	4	1 1			- 🗖 🕓	3) (1)					COIII	pierin	5111					\bigcirc	\bigcirc	\bigcirc	0
	Operand									Dev	ices										
	oporaria	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"	'	
	S							•	•	•					0	•					
	D								•	•	•	٠	•	•	0	•					
	X20 →)	CML	<u>S</u> D0	D D1							S : the D : the	e sour e dest	ce dev inatior	/ice of n devi	f trans ce	fer				

- Invert all the content bits from the designated (S) (status of each bit, "0" inverts to "1" or "1" inverts to "0") and copy the result to (D).
- When X20 = "ON", all of contents of D0 are inverted and copied to D1.
- When X20 turns from "ON" to "OFF", the instruction is inactive besides the content value of D1 will remain as same as the value before it is disabled.

b15														b0	
1 0	1	0	1	0	1	0	0	1	0	1	0	1	0	1	D0
							X2	20=	ON						
b15						١	V							b0	
0 1	0	1	0	1	0	1	1	0	1	0	1	0	1	0	D1

Operand									Dev	ices								
operand	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"
S							•	•	•	•	•		•	0	•	•		
D										•	٠							
n																0		
X20)	FMO	<u>(S</u> V K0) (<u>D</u> D1() (n)0 K5)					S : the D : the n : the	e sour e head e leng	ce dev d ID of th of ti	vice o desti ne blo	f trans nation ock to l	fer devic ce mo	e ved	
I				c) to	(\mathbf{n})	reaiste	ers wh	ich he	aded	with (D).							

When the $X20 = "ON"$	
$K_0 \xrightarrow{\text{D100}} D100$	0
└──> D101	0
└─> D102	0
└─> D103	0
→ D104	0

FNC	Mnemonic in Ladder Diagram	Function Description	Ap	plic	able	VS
No.			1	2	Μ	3
20	$\square \square $	Addition $(S1)+(S2) \rightarrow (D)$	0	0	0	0
21		Subtraction $(S1) - (S2) \rightarrow (D)$	0	0	0	0
22		Multiplication $(S1) \times (S2) \rightarrow (D+1,D)$	0	0	0	0
23		Division $(S1) \div (S2) \rightarrow (D), (D+1)$	0	0	0	0
24		Increment (D)+1 \rightarrow (D)	0	0	0	0
25		Decrement (D) – 1 \rightarrow (D)	0	0	0	0
26	WAND (S) (S2 D	Logic Word AND $(S1) \land (S2) \rightarrow (D)$	0	0	0	0
27		Logic Word OR $(S1) \lor (S2) \rightarrow (D)$	0	0	0	0
28		Logic Word Exclusive OR (S1)★(S2)→(D)	0	0	0	0
29		Negation $(\overline{D})+1 \rightarrow (D)$	0	0	0	0

6-4 Arithmetic and Logical Operation Instructions

0 1C	C D ADD S1 S2 D Addition (S1)+(S2) \rightarrow (D) 1 2 M 3 Operand Devices X Y M S D.b R.b KnX KnY KnM KnS T C D,R V,Z Ung K,H E "\$" S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S1 S2 S1 S2 S1 S2 S1 S2 S2 S1 S2 S3 S3 S3 S3 S3 S4 S4 S5 S4 S5 S4 S5 S4 S5 S5 S5 S4 S5																	
-									Dev	ices								
Operand	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"
C I <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<>																		
S2	Period Devices Devices X Y M S D.b R.b KnX KnY Kn8 T C D.R V,Z UnG K,H E "\$" S1 Image: S1 Image: S2 I																	
D								•	•	•	•	•	•	0	•			
)[ADD	<u>(S1</u> P D0) <u>(\$2</u>) D1	D D2	mand		will be	adda	d to th	S1:t S2:t D:t	he sun he adc he sun	nmand lend n	d and the		will be	2	
stored at	u = "C the sp	v⊢⊢″- ecifie	→ "ON d des	v", th tinatic	e sum on dev	mand ice (D	(D0) 2).	wiii de	e adde	d to th	ie ad	aend (רט), a	ind th	e sum	WIII De	9	
 16-bit Op When the turns "ON When the When the 	+ erasult l". e result e result	1 n of an of an	0 5 5 1 opera 1 opera	D0 D1 D2 ation a ation i	stores excee s less	in the ds 32, than -	D e 767, tł –32,7	and it i he Ca 68, th	s equa rry Fla e Borr	al to "(g M90 ow Fla	D", th D22 tu ag MS	e Addii ırns "O 9021 tı	tion / S N". Irns "C	Subtra DN".	action .	Zero F	Flag M	19020
X20 ├── ├ • When X2 in (D5, D) 20 = ")4). +	DADI ON", 100, – 1 99,5	(S1 D D0 the ir 000 00) (S2) D2 nstruc (D1, (D3, (D5,	D D4 D1 D1 D1 D2) D2) D4)	vill ad	ld the	data	in (D	1, D0) and	d (D3,	D2) ti	ogeth	ner an	d sto	re the	e total
 32-bit Op When the 	eratio result	n of an	opera	ation	stores	in the	De	and it i	s equ	al to "()", th	e Addit	tion / S	Subtra	iction .	Zero F	lag M	19020

When the result of an operation exceeds 2,147,483,647, the Carry Flag M9022 turns "ON".

When the result of an operation is less than -2,147,483,648, the Borrow Flag M9021 turns "ON".

	┨		SUB	PS	1) (S 2) (D]			Subt	ractic	on (S	1) – (S2) –	→ (D)		1	2 N
Operand									Dev	ices								
operand	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"
S1														0				
S2														0		•		
D														0				
X20)	SUB	(<u>S1</u> P D0) <u>S</u> 2 D1	D D2						S1 : th S2 : th D : th	e min e sub e diffe	uend traher erence	nd e				
When X2 be stored	0 = "(I at th	DFF"- e dest	→ "ON inatior	l", the 1 devi	subtra ce (D2	ahend 2).	(D1)	will be	subtr	acted	from t	the mi	nuenc	d (D0)	, and t	he dif	ferenc	e will
	_	1	0	D0 D1														
			5	D2														

• 16-bit Operation

When the result of an operation stores in the D and it is equal to "0", the Addition / Subtraction Zero Flag M9020 turns "ON".

When the result of an operation exceeds 32,767, the Carry Flag M9022 turns "ON".

When the result of an operation is less than -32,768, the Borrow Flag M9021 turns"ON".

• When X20 = "ON", the instruction will subtract (D3, D2) from (D1, D0) and store the difference in (D5, D4).

• 32-bit Operation

When the result of an operation stores in the D and it is equal to "0", the Addition / Subtraction Zero Flag M9020 turns "ON".

When the result of an operation exceeds 2,147,483,647, the Carry Flag M9022 turns "ON".

When the result of an operation is less than -2,147,483,648, the Borrow Flag M9021 turns "ON".

155

FNC 22		┥ ├──		MUL	P (S1) (S	2) D)			Mult	iplica	ation ((S1)×	(S2)	\rightarrow (D	+1,D)) 1	2 M 0 0
	Dperand X Y M S D.b R.b KnZ KnY KnS T C D,R V,Z Ung K,H E "\$" S1 I																		
Oper	DevicesXYMSD.bR.bKnXKnYKnMKnSTCD,RV,ZUnGK,HE"\$"S1IIIIIIIIIIIIS2IIIIIIIIIIIDIIIIIIIIIIX20S1S2DS1S1the multiplicand S2 : the multiplier D : the product (of a multiplication)																		
S	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		
	S2 Image: S2																		
• Whe	D S1 : the multiplicand X20 S1 : the multiplicand MUL D0 D1 D2 S1 : the multiplicand S2 : the multiplier D : the product (of a multiplication) When X20 = "ON", the multiplicand (D0) will be multiplied by the multiplier (D1), and the product will be stored at the destination device (D3, D2). Image: Constraint of the product (D3, D2)																		
	S2 : the multiplier D : the product (of a multiplication) When X20 = "ON", the multiplicand (D0) will be multiplied by the multiplier (D1), and the product will be stored at he destination device (D3, D2). $\frac{10 D0}{\times 5 D1}$ $50 (D3, D2)$																		
• Тис	16 h	it dat		200 m		nd tog	othory	will pro	aduaa	0.00	hit pr	duct							
• Whe M90	en the D23 tu X20	e proc irns "(luct of DN".	an op (S	eratio	n stor	es in t	he (D) and	it is e	qual to	o "O",	the Mu	ultiplic	ation ,	/ Divis	ion Ze	ro Fla	g
• Whe D4).	en X2	0 = "	OFF"-	→"ON	", the	instru) ction \	vill mu	ultiply	(D1, D	00) by	(D3,	D2) an	d stor	e the	produ	ct in (I	D7, D6	6, D5,
		-	×	100,00 — 10 1,000,	000	(D1, (D3, (D7,	D0) D2) D6, [)5, D₄	- 4)										
• Two	32-b	it data	a sour	ces mi	ultiplie	ed tog	ether	will cre	eate a	64-bit	t prod	uct.							
• The nega	Most ative)	: Sign	ificant	Bit (M	SB) o	f a 64	-bit pr	oduct	indica	ites a	positi	/e or	negativ	ve ("0"	' repre	esents	it is p	ositive	e; "1"
• Whe M90	en the)23 tu	e proc Irns "(luct of ON".	an op	eratio	n stor	es in t	he (D) and	it is e	qual to	o "O",	the Mu	ultiplica	ation ,	/ Divis	ion Ze	ro Fla	g

Dorond									Dev	ices								
peranu	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"
S1							•	•	•	•	٠	•	•	0	•	•		
S2							•	•	•	•	•	•	•	0	•	•		
D									•	•	•	•	•		•			
)	DIVF	S1) 2 D0	<u>S</u> 2 D1	D D2						S1 : th S2 : th D : th	ne divi ne divi ne qua	dend sor otient a	and re	maind	ler		
When X2 the destir	0 = "(nation	- "OFF devic	→ "OՒ e (D2)	√", th while	e divic the re	dend (emaine	D0) w der wi	ill be a Il be s	divideo tored	d by th in (D3	ie divi).	sor (D	1), an	d the	quotie	nt will	be st	ored a
			10		`					,								
		÷Г	- 3	ם 1מך	, 													
(Duotic		_ 3															
Re	mainc		1	2 	- }													
In case o a compo	f the 1 nent v	l 6-bit i vill indi	nstruc icate a	tion, a a posi [,]	a 16-b tive or	it quo negat	tient a tive ("(nd a ⁻ 0" rep	16-bit resent	remaiı ts it is	nder a positi	are pro ve: "1	ducea " nea	d. The ative).	e Most	Signi	ficant	Bit of
When the		iont of	00.00	orotic		- 30	tho (P	مح . المحم (litioo		- "O"	the M	ultiplic	nation		ion 7		
M9023 tu	yuuu urpo "(anop	eralic	n stor	esini	ine (D) and	n is e	quarte	50,	the ivi	unipiic	alion	/ DIVIS			ıg
		JN .																
When the	e quot	ient of	an op	eratic	on exc	eeds (32,767	7, the	Divisic	on Ove	erflow	Flag N	M9025	turns	"ON"			
When the	e quot	ient of	an op	eratic	on exc	eeds (32,767	7, the	Divisic	on Ove	erflow	Flag N	M9025	turns	"ON"			
When the	e quot	ient of	an op	peratic	on exc	eeds (32,767	7, the	Divisio	on Ove	erflow	Flag N	Л 9025	turns	"ON"			
When the)	ient of	an op	eratic	on exc	eeds (32,767	7, the	Divisio	on Ove	erflow	Flag N	M9025	turns	"ON"			
When the X20)	ient of	an op (<u>S</u> /P D	0 D2	DA	eeds (32,767	7, the	Divisic	on Ove	erflow	Flag N	M9025	turns	"ON"			
When the X20	0 = "(- DDIN - DDIN	an op <u>(S</u> /P Di → "ON	0 D2	on exc	eeds (32,767 01. D0	7, the	Divisio De divi	on Ove	erflow	Flag N	И9025 . (D3. 1	i turns D2), a	"ON"	e auoti	ent w	ill be
When the X20 H X2 When X2 stored at	0 = 0	DN . ient of DDI\ DDI\ OFF" – estinal	an op (<u>S</u> /P Di → "ON tion de	1) (S2 0 D2 1", the evice) D D4 divide (D5, D	eeds (end (D 14) whi	32,767 01, D0	7, the) will k rema	Divisio be divi	on Ove ded b <u>y</u> will be	y the of store	Flag N divisor d in (E	И9025 • (D3, I 07, D6	5 turns D2), a	"ON" nd the	e quoti	ent w	ill be
When the X2(H	0 = "(DIN . ient of DDI\ DFF" – estinat	an op (<u>S</u> /P D → "ON tion de — 300	1) (S2 0 D2 1", the evice) D D4 divide (D5, D	eeds (end (D 14) whi 0)	32,767)1, D0 ile the	7, the) will b rema	Divisio be divi	ded by will be	y the o store	Flag N divisor d in (E	√9025 • (D3, ∣ 07, D6	i turns D2), a i).	"ON" nd the	e quoti	ent w	ill be
When the X20 H	0 = "(DIN . ient of DDIN OFF" – estinat	an op (<u>§</u> /P D → "ON tion de <u>- 300</u>) (S2 0 D2 0 D2 0 (1 0 (1	on exc) (D) D4 divide (D5, D D1, D D3, D	eeds (end (D 4) whi 0) 2)	32,767)1, D0 ile the	7, the) will b rema	Divisio De divid inder v	ded b <u></u> will be	y the o store	Flag M divisor d in (E	м9025 • (D3, I 07, D6	5 turns D2), a i).	"ON"	e quoti	ent w	ill be
When the X2(H 1 When X2 stored at	0 = "(the d	- DDI\ - DDI\ OFF" - estinat ÷	an op (S) /P D(→ "ON tion de - 300 - 11 27	1) (S2 0 D2 1", the evice (0 (1) D D4 divide (D5, D D1, D D3, D D5, D	eeds (end (D (4) whi 0) 2) 4)	32,767 01, D0	7, the) will b rema	Divisio pe divi	ded by will be	y the o store	Flag M divisor d in (E	м9025 • (D3, I 07, D6	5 turns D2), a i).	"ON"	quoti	ent w	ill be
When the X2(H When X2 stored at	0 = "(the d	DIV . ient of DDIV OFF" – estinat	(S) (P) → "ON → "ON - 300 - 11 - 27 - 3	1) (S2 0 D2 1", the 10 (1) 10 (1) 10 (1) 10 (1)) (D) D4 divide (D5, D D1, D D3, D D5, D D7, D	eeds (0) 2) 4) 6)	32,767 01, D0 ile the	7, the) will t rema	Divisio be divid	ded by will be	y the o store	Flag N divisor d in (E	м9025 • (D3, I 07, D6	5 turns D2), a	"ON"	quoti	ent w	ill be
When the X20 H I When X2 stored at Re	0 = "(the d	DFF"- estinat	an op (\underline{S}) $/P D_1$ \rightarrow "ON tion de -300 -11 27 -3	1) (S2 0 D2 ", the evice 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1)) D D4 divide (D5, D D1, D D3, D D5, D D7, D	eeds (14) whi 0) 2) 4) 6)	32,767	7, the) will t rema	Divisio be divin inder v	ded by will be	y the of store	Flag M divisor d in (E	м9025 (D3, I)7, D6	5 turns D2), a).	"ON"	quoti	ent w	ill be
When the X20 When X2 stored at Re In case o Significar	0 = "(the d Quoti emaine f the 3	- DDI\ - DDI\ OFF" - estinat ÷ ent der 32-bit i	an op (S /P D → "ON tion de - 300 - 11 27 - 3 nstruc mpon	1) (S2 0 D2 1", the evice of the second se) D D4 divide (D5, D D1, D D3, D D5, D D7, D s usec ill india	eeds (14) whi 0) 2) 4) 6) I, a 32 cate a	-bit qu	7, the) will b rema uotien ve or	Divisio be divid inder t and a negati	ded by will be a 32-b ve ("0	y the of store it rem " repr	Flag M divisor d in (E aindel esents	(D3, 1 07, D6 r are p s it is p	D2), a). produc	"ON" nd the eed. T e; "1"	e quoti he Mc nega	ent w ost tive).	ill be
When the X20	0 = "(0 = "(the d Quoti emaine f the 3 of Bit c	DFF" - estinat ÷ ent der 32-bit i of a co	(S) /P D → "ON tion de - 300 - 11 277 - 3 nstruc mpon	1) (S2 0 D2 0", the evice 0 <) D D4 divide (D5, D D1, D D3, D D5, D D7, D s usec ill indic	eeds (end (D 4) whi 0) 2) 4) 6) I, a 32 cate a	-bit qu	, the) will t rema uotien ve or	Divisio be divid inder v t and a negati	ded by will be a 32-b ive ("0	y the e store it rem " repr	Flag M divisor d in (E aindel esents	//9025 (D3, I D7, D6 r are p s it is p	D2), a D2), a).	"ON" nd the ced. T e; "1"	he Mc	ent wi ost tive).	ill be
When the X2(When X2 stored at Re In case o Significar When the M9023 tu	0 = "(the d Quoti emaine f the 3 of the 3 of the 3 of the 3	- DDI\ - DDI\ OFF" - estinat ent - der - 32-bit i of a co ient of ON":	an op (S /P D → "ON tion de - 30(- 11 - 3 nstruc mpon an op	1) (S2 0 D2 0", the evice) D D4 divide (D5, D D1, D D3, D D5, D D7, D s usec ill india	eeds (end (D (4) whi 0) 2) 4) 6) 1, a 32 cate a cate a	-bit qu positi	7, the) will to rema Juotien ve or) and	Divisio be divid inder v t and a negati it is ec	ded by will be a 32-b ve ("0 qual to	y the of store it rem "repr "0", 1	Flag M divisor d in (E ainder esents	(D3, I D7, D6 r are p s it is p ultiplica	D2), a D2), a). oroduc positiv ation /	"ON" nd the eed. T e; "1"	he Mc nega on Ze	ent wi ost tive). ro Fla	ill be
When the X20 When X2 stored at Re In case o Significar When the M9023 tu When the	0 = "(the d Quoti emaine f the 3 f the 3 of Bit c e quot	DIV : ient of DDIV OFF" - estinat ent der 32-bit i of a co ient of DN".	(S) /P D(→ "ON tion de - 30(- 11 27 - 3 mstruc mpon an op f an op	1) (S2 0 D2 1", the evice (0 (1) 0 (1) (1) 0 (1) (1) 0 (1) (1) 0 (1) (1) 0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)) D D4 divide (D5, D D1, D D3, D D5, D D7, D s usec ill indie on stor	eeds (end (D 4) whi 0) $\frac{2}{4}$ 6) 1, a 32 cate a res in t ceeds	-bit qu positi the D 2,147	7, the) will t rema Jotien ve or) and ,483,6	Divisio be divid inder v t and a negati it is ec 647, th	a 32-b ve ("0 qual to e Divis	y the of store " repr "0", 1 sion C	Flag N divisor d in (E ainder esents the Mu Overflo	۲ (D3, ا D7, D6 s it is p ultiplica w Flag	D2), a D2), a). oroduc positiv ation / g M90	"ON" nd the e; "1" Divisi 25 turr	he Mc nega on Ze	ent wi ost tive). ro Fla N".	ill be
When the X20 When X2 stored at Re In case o Significar When the M9023 tu When the	0 = "(the d Quoti emaine f the 3 f the 4 f the 3 f the 4 f th	DFF" - estinat ent [der] 32-bit i of a co ient of DN". tient o	an op (S) /P Di → "ON tion de - 300 - 11 - 3 mpon an op f an op	1) (S2 0 D2 0 D2 0 (1) 0 (1) (1) 0 (1) (1) 0 (1) (1) 0 (1) (1) 0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)) D D4 divide (D5, D D1, D D3, D D5, D D7, D s usec ill indic on stor	eeds (end (D 4) whi 0) 2) 4) 6) I, a 32 cate a cate a cate a	-bit qu positi the D 2,147	, the) will t rema uotien ve or) and ,483,6	Divisio be division inder v t and a negati it is eco 647, th	a 32-b ve ("0 qual to e Divis	y the of store "repr "0", 1 sion C	Flag N divisor d in (E esents the Mu Overflo	r are p s it is p ultiplica	D2), a D2), a). oroduc positiv ation / g M90	"ON" nd the eed. T e; "1" Divisi 25 turr	he Mo nega on Ze	ent wi ost tive). ro Fla N".	ill be
When the X20 When X2 stored at Re In case o Significar When the M9023 tu When the	0 = "(the d Quoti emaine f the 3 at Bit c e quot irms "(DIV : ient of DDIV OFF" – estinat ent [der] 32-bit i of a co ient of DN". tient o	(S) /P D → "ON tion de - 30(- 11 - 3 - 3 mpon an op f an op	1) (S2 0 D2 1", the evice of 0 (1) 0 (1) (1) 0 (1) (1) 0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)) D D4 divide (D5, D D1, D D3, D D5, D D7, D s usec ill india on stor	eeds (end (D 4) whi 0) 2) 4) 6) 1, a 32 cate a cate a res in t	-bit qu positi the (D 2,147	7, the) will k rema ve or) and ,483,6	Divisio be divid inderv t and a negati it is ec 547, th	a 32-b ve ("0 qual to e Divis	y the of store " repr "0", 1 sion C	Flag N divisor d in (E ainder esents the Mu Overflo	r are p s it is p ultiplica	D2), a D2), a). oroduc cositiv ation / g M90	"ON" nd the e; "1" Divisi 25 turi	he Mc nega on Ze	ent w tive). ro Fla N".	ill be
When the X2(When X2 stored at When X2 stored at Re In case o Significar When the M9023 tu When the M9023 tu When the	0 = "(the d Quoti emaine f the 3 of Bit c e quot guot	DFF" - estinat ÷ ent der 32-bit i of a co ient of ON". tient o	an op (S /P D → "ON tion de - 300 - 11 27 - 3 nstruc mpon an op f an op	1) (S2 0 D2 0 D2 0 (1) 0 (1) (1) 0 (1) (1) 0 (1) (1) 0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)) D D4 divide (D5, D D1, D D3, D D5, D D7, D s usec ill indic on stor	eeds (end (D 4) whi 0) 2) 4) 6) 1, a 32 cate a cate a res in t ceeds	-bit qu positi the D 2,147	, the) will t rema uotien ve or) and ,483,6	Divisio be divid inder v t and a negati it is ec 647, th	a 32-b ve ("0 qual to	y the of store "repr "0", 1 sion C	Flag N divisor d in (E esents the Mu)verflo	r are p s it is p ultiplica	D2), a D2), a). oroduc positiv ation / g M90	"ON" nd the e; "1" Divisi 25 turr	he Mc nega on Ze	ent wi tive). ro Fla N".	ill be g
When the X20 When X2 stored at When X2 stored at Re In case o Significar When the M9023 tu When the M9023 tu M9023 tu M902	0 = "(the d Quoti emaine f the 3 at Bit 6 a quot irrns "(a quot	DFF" - estinat correction correct	an op (\underline{S}) /P Di \rightarrow "ON tion de -300 -300 -11 27 -3 mpon an op f an op f an op f an op	1) (S2 0 D2 0 D2 0 (1) 0 (1) (1) 0 (1) (1) 0 (1) (1) 0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)) D D4 divide (D5, D D1, D D3, D D5, D D7, D s usec ill india on stor on exc	eeds (end (D 4) whi 0) 2) 4) 6) 1, a 32 cate a cate a res in t ceeds PLC v	-bit qu positi the (D 2,147	7, the) will b rema ve or) and ,483,6	Division be division inder v t and a negati it is ec 647, th nat as	a 32-b ve ("0 qual to e Divis	rflow y the of store "repr "0", 1 sion C	Flag M divisor d in (E ainder esents the Mu Dverflo	(D3, I O7, D6 o7, D6 ultiplica w Flag	D2), a D2), a). oroduc cositiv ation / g M90	"ON" nd the e; "1" Divisi 25 turn	he Mo nega on Ze	ent w tive). ro Fla N".	g
When the X20 When X2 stored at When X2 stored at Re In case o Significar When the M9023 tu When the M9023 tu M9023 tu M9025 tu M9025 tu M9025 tu M9025 tu M9025 tu M9025 tu M902	0 = "(the d Quoti emaine f the 3 at Bit c equot ivrns "(e quot	DDIV DOFF" - estinat ent c aco ient of S2-bit i iof a co ient of ON". tient o ient aco	an op (S /P D → "ON tion de - 300 - 11 27 - 3 mstruc mpon an op f an op f an op f an op s equa utoma ve divit	1) (S2 0 D2 0 D2 1", the evice () (1) (1) (1) (1) (1) (1) (1)) D D4 divide (D5, D D1, D D5, D D5, D D7, D s usec ill indie on stor on exc on exc	eeds (end (D 4) whi 0) 2) 4) 6) 1, a 32 cate a res in t ceeds PLC v	-bit qu positi the D 2,147	, the) will the rema uotient ve or) and ,483,6 gard the it is the ivisor;	Division be division inder v t and a negati it is eco 647, the hat as he result if eith	a 32-b will be a 32-b ve ("0 qual to e Divis an op ult of c	erflow y the of store " repr "0", 1 sion C eratio opperational a divide	Flag M divisor d in (E aindel esents the Mu)verflo	 (D3, I (D3, I (D7, D6 r are p s it is p ultiplication w Flag w Flag 	D2), a D2), a D2	"ON" nd the e; "1" Divisi 25 turn dend a positiv	he Mc nega on Ze ns "OI	ent wi ost tive). ro Fla N".	g ve ther

4 '		D	INC							Incre	ement	t (D)-	+1 →	(D)			0	0
₩C 5 -	┥┝──	D	DEC		\sum					Decr	remer	nt (D)) – 1 -	→ (D)			1	2
Operand		V	м			Dh	KaX	KaV	Dev	vices	-			V 7	11-0			" • "
D	X	Y	IVI	5	D.D	R.D	KNX	Kn Y					D,R	V,Z	OnG	к,п	E	2
X2	0 		D P D10) 0	conto	nt vali	io of a	doctio	ation ((D100)	D : the	e dest	ination	n devi	ce			
 When X2 If the inst 	0 = "C ructior	DFF" - 1 is nc	→"ON ot a pu	", the Ise (P	conte) instru	nt valı uction	ue of a , the c	destina destina	ation (ation ((D100) D100)	will b will in	e increas	eased e its v	by or alue ir	ne. n ever	y scar	n cycle	9.
 In a 16-b to the de 	it oper stinatio	ation, on de	when vice.	a valı	ue of "	+32,7	767" is	s react	ned, tł	he nex	t incre	ement	of "1"	will w	vrite a	value	of "–	32,76
In a 32-b	it oper	ation,	when	a valu	ue of "	+2,14	17,483 an dev	3,647"	is rea	ched,	the ne	ext inc	remer	nt of "	1" will	write		
	· - 2,	147,4			ie ues	, '		лсе.		6 0								
The instr	uction	opera	ation re	esult v	vill nev	er lea	d to a	iny cha	ange (ot a fla	ıg.							
)							D · the	- dest	inatior	n devi	Ce			
X2	0	DEC	<u>D</u> P D10))1							D : the	e dest	inatior	1 devi	се			
X2 ⊣⊣ • When X2	0 0 = "0	DEC	<u>(</u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>))1 ", the	conte	nt valı	ue of c	destina	ation ((D100)	D : the	e dest e dec	inatior	n devi d by c	ce one.			
X2 	0 0 = "C ruction	DEC DFF" -	D PD10 → "ON ot a pu))1 ", the Ise (P	conte) instru	nt valu	ue of c , the c	destina	ation ((D100) D100)	D : the will b will de	e dest e dec ecreas	inatior reased se its v	n devi d by c value	ce one. in eve	ry sca	n cyc	e.
X2 H When X2 If the inst In a 16-b to the de	0 0 = "C ructior it oper stinatio	DEC DFF" - n is no ration, on de	D PD10 → "ON ot a pu when vice.))1 ", the Ise (P a valu	conte) instru ue of "	nt valu uction -32,7	ue of c , the c 768" is	destina destina s react	ation (ation (ned, th	(D100) D100) he nex	D : the will b will de t decr	e dest e dec ecreas emen	inatior reased se its v t of "1	n devi d by c value " will v	ce one. in eve write a	ry sca i value	n cyc e of "⊣	le. -32,76
X2 When X2 If the inst In a 16-b to the de In a 32-b "+2,147,	0 0 = "C ructior it oper stinatio it oper 483,64	DFF" - DFF" - n is no ration, on der ation, 17" to	D P D10 → "ON ot a pu when vice. when the de))1 Ise (P a valu a valu	conte) instru ue of " ue of " ion de	nt valu uction –32,7 –2,14 evice.	ue of c , the c 768" is 17,483	destina destina s react 3,648"	ation (ation (ned, th is rea	(D100) D100) he nex ched,	D : the will b will de t decr the ne	e dest e dec ecreas emen ext inc	inatior reased se its v t of "1 remer	n devi d by c value " will n nt of "	ce one. write a 1" will	ry sca i value write a	n cyc e of "+ a valu	e. -32,76 e of
X2 H When X2 If the inst In a 16-b to the de In a 32-b "+2,147, The instr	0 0 = "C ructior it oper stinatio it oper 483,64 uction	DFF" - n is no ration, on der ation, 17" to opera	D P D10 → "ON ot a pu when vice. when the de))1 Ise (P a valuestinat	conte) instru ue of " ue of " ion de vill nev	nt valu uction -32,7 -2,14 evice. ver lea	ue of c , the c 768" is 17,483 d to a	destina destina s react 3,648" any cha	ation (ation (ned, th is rea ange ((D100) D100) he nex ched, of a fla	D : the will b will de t decr the ne	e dest e dec ecreas emen ext inc	inatior reased se its v t of "1 remer	n devi d by c value " will v	ce in eve write a 1" will	ry sca i value write :	n cyc e of "+ a valu	e. -32,76 e of
X2 H When X2 If the inst In a 16-b to the de In a 32-b "+2,147, The instr	0 0 = "(ructior it oper stination it oper 483,64 uction	DFF" - n is no ation, on de ation, 17" to opera	\bigcirc P D10 \rightarrow "ON ot a pu when vice. when the de ation re))1 Ise (P a valu estinat	conte) instru ue of " ion de vill nev	nt valu uction -32,7 -2,14 evice. rer lea	ue of c , the c 768" is 17,483 d to a	destina destina s react 3,648" any cha	ation (ation (ned, th is rea ange o	(D100) D100) he nex ched, of a fla	D : the will b will de the ne ag.	e dest e dec ecreas emen ext inc	inatior reased se its v t of "1 remer	n devi d by c value " will v	ce in eve write a 1" will	ry sca i value write :	n cyc e of "+ a valu	le. -32,76 e of
X2 H When X2 If the inst In a 16-b to the de In a 32-b "+2,147, The instr	0 0 = "C ructior stinatio it oper 483,64 uction	DFF" - n is no ration, on de ation, 47" to opera	(D) $P D10$ $\rightarrow "ON$ of a pu when vice. when the de ation re))1 Ise (P a valu estinat	conte) instru ue of " ion de vill nev	nt valu uction -32,7 -2,14 evice. /er lea	ue of c , the c 768" is 17,483 d to a	destina destina s reach 3,648" any cha	ation (ation (ned, th is rea ange o	(D100) D100) he nex ched, of a fla	D : the will b will de the ne	e dest e dec ecreas emen ext inc	inatior reased se its v t of "1 remer	n devi d by c value " will v	ce in eve write a 1" will	ry sca i value write :	n cyc e of "+ a valu	le. -32,76 e of
X2 When X2 If the inst In a 16-b to the de In a 32-b "+2,147, The instr	0 0 = "C ructior it oper stination it oper 483,64	DFF" - n is no ration, on de ation, 17" to opera	D P D10 → "ON ot a pu when vice. when the de ation re))1 Ise (P a valu estinat	conte) instru ue of " ion de vill nev	nt valu uction -32,7 -2,14 evice. ver lea	ue of c , the c 768" is 17,483 d to a	destina destina s reach 3,648" any cha	ation (ation (ned, th is rea ange o	(D100) D100) he nex ched, of a fla	D : the will b will de the ne	e dest e dec ecreas remen ext inc	inatior reased se its v t of "1 remer	n devi d by c value " will n	ce in eve write a 1" will	ry sca i value write :	n cyc e of " + a valu	le. -32,76 e of
X2 When X2 If the inst In a 16-b to the de In a 32-b "+2,147, The instr	0 0 = "C ructior it oper stination it oper 483,64	DFF" - n is no ration, on de ation, 17" to opera	D P D10 → "ON ot a pu when vice. when the de ation re))1 Ise (P a valu a valu estinat	conte) instru ue of " ion de vill nev	nt valu uction – 32,7 – 2,14 evice. ver lea	ue of c , the c 768" is 17,483 d to a	destina destina s react 3,648" any cha	ation (ation (ned, th is rea ange o	(D100) D100) he nex ched, of a fla	D : the will b will de the ne	e dest e dec ecreas remen ext inc	inatior reased se its v t of "1 remer	n devi d by c value " will n	ce in eve write a 1" will	ry sca i value write :	n cyc e of " + a valu	le. - 32,76 e of
X2 H When X2 If the inst In a 16-b to the de In a 32-b "+2,147, The instr	0 0 = "C ructior it oper stinatio it oper 483,64	DFF" - n is no ration, on de ation, 17" to opera	(D) $P D10$ $\rightarrow "ON$ of a pu when vice. when the de ation re))1 Ise (P a valu estinat	conte) instru ue of " ion de vill nev	nt valu uction -32,7 -2,14 evice. ver lea	ue of c , the c 768" is 17,483 d to a	destina destina s reach 3,648" any cha	ation (ation (ned, th is rea ange o	(D100) D100) he nex ched, of a fla	D : the will b will de the ne ag.	e dest e dec ecreas emen ext inc	inatior reased se its v t of "1 remer	n devi d by c value " will n	ce in eve write a 1" will	ry sca i value write a	n cyc 2 of "+ a valu	le. -32,76 e of
X2 H When X2 If the inst In a 16-b to the de In a 32-b "+2,147, The instr	0 0 = "(ructior it oper stination 483,64 uction	DFF" - n is no ration, on der ation, 17" to opera	D P D10 → "ON ot a pu when vice. when the de ation re))1 Ise (P a valuestinat	conte) instru ue of " ion de vill nev	nt valu uction -32,7 -2,14 evice. ver lea	ue of c , the c 768" is 17,483 d to a	destina destina s reach 3,648" any cha	ation (ation (ned, th is rea ange o	(D100) D100) he nex ched, of a fla	D : the will b will de t decr the ne	e dest e dec ecreas emen ext inc	inatior reased t of "1 remer	n devi d by c value " will n nt of "	ce in eve write a 1" will	ry sca i value write a	n cyc e of " + a valu	e. -32,76 e of

FNC	Logic Word AND (S1) \wedge (S2) \rightarrow (D)	1	2	Μ	3
26		\bigcirc	\bigcirc	\bigcirc	\bigcirc
FNC	Logic Word OB (S1) \vee (S2) \rightarrow (D)	1	2	Μ	3
27		0	0	\bigcirc	\bigcirc
FNC	Logic Word Exclusive OR	1	2	Μ	3
28	$(S1) \forall (S2) \rightarrow (D)$	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Operand									Dev	ices								
oporaria	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"
S1							•		•	•	•		•	0	•			
S2										•	•			0		•		
D								٠	•	•	•	•	•	0	•			

X20		S 1)	S 2	\bigcirc
	WAND	D0	D1	D2

S1 : the source device #1 S2 : the source device #2

- D : the operation result
- When X20 = "ON", two 16-bit content data in the (D0) and (D1) execute the logic AND operation and restore the result in (D2).
- The logic AND operation result for each bit is: $0 \wedge 0 = 0$, $0 \wedge 1 = 0$, $1 \wedge 0 = 0$ or $1 \wedge 1 = 1$; any "0" at the parallel bits will cause a result of "0".

0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	D0
0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	D1
							,	, X2	0 =	ON						
0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	D2

- S1 : the source device #1
- S2 : the source device #2
- D : the operation result
- When X21 = "ON", two 16-bit content data in the (D3) and (D4) execute the logic OR operation and restore the result in (D5).
- The logic OR operation result for each bit is: $0 \lor 0 = 0, 0 \lor 1 = 1, 1 = 1$; $0 = 1 \text{ or } 1 \lor 1 = 1$; any "1" at the parallel bits will cause a result of "1".

0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	D3
0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1]D4
			-	-	-	-	`	X2	1=	ON		-	-			_
0	1	1	1	0	1	1	1	0	1	1	1	0	1	1	1	D5

- S1 : the source device #1
- S2: the source device #2
- D : the operation result
- When X22 = "ON", two 16-bit content data in the (D6) and (D7) execute the logic XOR operation and restore the result in (D8).
- The logic XOR operation result for each bit is: 0 ♥ 0 = 0, 0 ♥ 1 = 1, ♥ 0 = 1 or 1 ♥ 1 = 0; the same statuses at the parallel bits will cause a result of "1".

[0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	D6
[0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	D7
								1	X2	2=	ON						
[0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	D8

FNC 29	NEGP (D				Nega	tion	(D)+	-1 →	(D)			1	2 M 3 ○ ○ ○
					Dev	/ices								
Operand X Y	M S	D.b	R.b K	KnX Kr	Y KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"
) : th				to be	invort		
X20	• D0					L	J. UK	5 30101		EVICE	10 06	IIIVEIU	eu	
 When X20 = "OFF" - and then added with value of D. The op 	→ "ON", ea "1". The re eration cha	ch sing sult wil anges tl	gle bit p I be sto he posi	attern o pred in (itive or 1	of (D0) v D0). Th negative	vill be ir ie instru symbo	iverte ictior ol of a	d ("0" i selec a value	invertets the	ed int comp exam	o "1" a plemer ple,	and vi nt of "	ce ve 2" for	rsa) the
Before Execution	10 D0			Befor	e Execu	tion -	-100	D0						
	X20 =	OFF-	→ON	• •	_		\downarrow ×	20 =	OFF-	→ON				
Atter Execution	-10 D0			Afte	r Execu	tion	100							
• The absolute value of	D100 can	be gen	erated	with the	e followi	ng prog	gram.							
M9000	D100 M0	K15	f the 15 /alue of	s ^{th.} bit (l D100 i	VSB) of s negat	D100 i ve, whe	s equ ere M	al to " 0 = "(1", it i ON"; c	ndicat otherw	tes tha vise, N	at the $10 = $	conte OFF"	nt
M0	P D100 W	hen M0 alue of I	0 = "OF D100 w	$F^* \rightarrow $ " vill be in	ON", we verted i	e will tal nto a po	ke a r ositive	negativ e from	ve valı a neg	ue for pative.	D100,	wher	e the	
The absolute value of	D0 can be	genera	ated wit	th the fo	ollowing	progra	m.							
	D0 If the nega	e 15 ^{th.} k ative. T	oit (MSE herefor	B) of D(re, the a) is equa absolute	al to "1" value	, it in of D0	dicate can b	s that e gen	the co erated	ontent d throu	value ugh op	of D(oposit) is te.

6-5 Rotary and Shift Instructions

FNC	Mnemonic in Ladder Diagram	Function Description	Ap	plica	able	VS
No.			1	2	Μ	3
30		Rotation Right	0	0	0	0
31		Rotation Left	0	0	0	0
32		Rotation Right with Carry	0	0	0	0
33		Rotation Left with Carry	0	0	0	0
34	⊢ ⊢ SFTR∎ (S) (D) (n1) (n2)	Bit Shift Right	0	0	0	0
35		Bit Shift Left	0	0	0	0
36		Word Shift Right	0	0	0	0
37		Word Shift Left	0	0	0	0
38		Shift Register Write (FIFO Write)	0	0	0	0
39	⊢⊢ ⊢ SFRD∎ (S) (D) (n)	Shift Register Read (FIFO Read)	0	0	0	0

		SI	FTR	PS	D	n 1	(n2)			Bit S	hift Ri	ght					1	2
35		SI	FTL	PS) D	<u>(n1)</u>	<u>n</u> 2			Bit S	hift Le	ft					1	2
									Dov	ioos								
Operan	d x	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D.R	V,Z	UnG	K,H	E	"\$"
S	•	•	•	•	0	0							,	,		,		· ·
D		•	٠	٠														
n1																0		
n2			nonto					nonto	• 0	1	1004		0		1	0		
• • • • • • • • •				•0	occup		compo		• 11		1024			112 -				
	20 	SFTF	RP X	<u>s) (D</u> 0 M() (<u>n1</u>)) K16) (<u>n</u> 2) 5 K4]			S : the mo D : the to n1: da n2: nu	e devid oved i e devid be sh ta len mber	ce ID i n ce ID ifted gth to of the	numbe numbe be sh bits ir	er of s er of ti iifted a	ource he des at the d	heade stinatio destin	er to b on hea ation	e ader
 Pick the the length 	e contin gth of (uous (n2), the	n1) le en use	ngth k e the r	bit dev numbe	ices d er of (n	lestina 12) sou	tion w urce bi	hich h t devi	ieadeo ces wl	d by (hich h	D) an eaded	d shift d by (the d	estina ill in th	tion to ne vac	the ri ancy.	ght b
When >	(20 = "(OFF" –	→"ON	I", the	devic	es coi	mpose	ed of N	/10~N	115 (16	6 bits)	will b	e mov	ed 4 k	oits to	the rig	ght, als	so the
status	X0~X	(3 WIII I	be mo	oved II	nto IVI I	2~IVI	15 to t	iii in tr	ie vac	ancy	ot exc	eeain	g dits.				1	
			<		440		[Length	desig	nated	by (n 1)				>		
X3 X2		X 0	M15	M14 r	VI13 IV		11 M1		M8	M17	M6	VI5 N	/14 M	3 102	2 M1] ´ Com	onen
		(5)-		_^Ĺ		-(4)	/	<i>1</i>	(3)			-(2)		/Ĺ(1)→	which excee	n are eding
		U				0	Move	(n 2) hi	ts to th	ne riah	t	>	0			0	the sp	bace c
										0							\bigcirc	
)	(21		(3	<u>5)</u>) (n1)	<u>(n2</u>)												
	(21 	SFTL	X	5) (D 0 MC) (n1)) K16	(n2) K4												
 Pick the length 	(21 	UOUS (LP X n1) le en use	D D MC ngth k e the r) (n1)) K16 pit dev	K4 K4 ices d	lestina 12) sou	tion w urce bi	hich h t devi	leaded	d by (D) an eadeo	d shift I by (the d	estina ïll in th	tion to	the leancy.	eft by
 Pick the the length When > status of the statu	$\begin{array}{c} 21 \\ \hline \\ \end{array}$	- SFTL uous (12), the OFF" - (3 will I	LP X n1) le en use → "ON be mo	D 0 MC ngth k e the r J", the) (n1)) K16 bit dev numbe devic nto M(K4 ices d er of (r es col)~M3	estina 12) sou mpose to fill i	tion w urce bi ed of N	hich h t devir И0~N vacan	eaded ces wi 115 (10 cy of e	d by (hich h 6 bits) excee	D) an eadeo will b ding b	d shift I by (e mov its.	the d	estina ill in th bits to	tion to ne vac the let	o the le ancy. ft, also	eft by o the
 Pick the length When > status of statu	(21 e contin gth of ((21 = "(of X0~)	- SFTI uous (12), the OFF" - (3 will I	(S LP X n1) le en use → "ON be mo	D O MC ngth k e the r V", the bved in) (n1)) K16 bit dev numbe devic nto M(K4 ices d er of (r es coi)~M3 Lengt	estina 12) sou mpose to fill i h desig	tion w arce bi ed of N in the gnatec	hich h it devi M0~N vacan l by(n M6	eaded ces wi 115 (10 cy of 6 1)	d by (hich h 6 bits) excee	D) an eaded will b ding b	d shift I by (e mov its. 2 M	the d the d f ed 4 k	estina ill in th bits to	tion to ne vac the let	o the le ancy. ft, also	eft by o the
 Pick the length When > status of Compone which are exceeding the space 	$\begin{array}{c c} & (21 \\ \hline \\ e \text{ contin} \\ \text{gth of } (f) \\ (21 = "f) \\ ($	- SFTI uous (12), the OFF" (3 will I M14 1 1	(<u>P</u> X <u>n</u> 1) le en use → "ON be mo	D D O MC ngth b the r J", the bved in) (n1)) K16 Dit devident (11) M	K4 ices d er of (r)~M3 Lengt	estina 12) sou mpose to fill i th desig	tion w urce bi ed of N in the gnatec 	hich h t devid M0~-N vacan I by(n	115 (10 ces wi 115 (10 cy of e 1)	d by (nich h 6 bits) excee M4 N	D) an eaded will b ding b	d shift I by (e mov its.	the d 5) to f ed 4 t 1 M0	estina iill in th bits to	tion to ne vac the let	the leancy. ft, also 2×1	o the
 Pick the length When > status of Compone which are exceeding the space (n1) 	$\begin{array}{c c} & (21 \\ \hline \\ gth of (f) \\ (21 = "f) \\ (21 = "f$	- SFTI uous (12), the OFF" (3 will I M14 1	(<u>P</u> X n1) le en use → "ON be mo M13 N	D D O MC ngth k e the r J", the bved in M12 N C C) (n1)) K16 bit device the device (111 M) 	K4 ices d er of (r)~M3 Lengt	estina 12) sou mpose to fill i h desig	tion w urce bi ed of N gnatec M7 -(3) n^2 bit	hich h t devid M0~-N vacan by(n M6	e left	d by (hich h 6 bits) excee M4 N 	D) an eaded will b ding b	d shift I by (e mov its.	the d the d 4 k the d 4 k the d 4	estina iill in th bits to	tion to ne vac the let	the lancy. ft, also 2×1	eft by the X0
 Pick the length When 2 status of Component which are exceeding the space (n1) 	$\begin{array}{c c} & (21 \\ \hline \\ e \text{ contin} \\ gth of (f) \\ (21 = "(of X0 \sim)) \\ \hline \\ (21 = "(of X0 \sim)) \\ (21 = "(of X0 \sim)) \\ \hline \\ (21 = (of X0 \sim)) \\ (21 = (of X0 \sim)) \\ \hline \\ ($	- SFTI uous (12), the OFF" (3 will I M14 1	(<u>LP X</u> n1) le en use → "ON be mo M13 N	D O MC ngth k e the r J", the byed in M12 N 2) (n1)) K16 bit device a device to MC 4111 M 	K4 ices d er of (r)~M3 Lengt	estina 12) sou mpose to fill i h desig 2 M8 Move (tion w urce bi ed of N n the gnatec M7 -(3)	hich h it devid M0~N vacan by(n M6	e left	d by (hich h 6 bits) exceer	D) an eaded will b ding b	d shift I by (e mov its.	the d the d 4 k the d 4 k the d 4 k the d 4 k the d 4	estina iill in th bits to	tion to ne vac the lef	the leancy. ft, also 2×1	eft by the X0
 Pick the length When > status of Compone which are exceeding the space (n1) 	$\begin{array}{c c} & (21 \\ \hline \\ gth of (r) \\ (21 = "r) \\ (21 = "to f X0 \\ \hline \\ M15 \\ \hline \\ M15 \\ \hline \\ M15 \\ \hline \\ of \end{array}$	- SFTI uous (12), the OFF" (3 will I 	(<u>P</u> X <u>n</u> 1 le en use → "ON be mo	D MC ngth k the r J", the bved in) (n1)) K16 bit devident (111 M) (111 M)	K4 ices d er of (r es coi)~M3 Lengt	estina 12) sou mpose to fill i h desig	tion w urce bi ed of N in the gnatec M7 -(3)	hich h t devid M0~-N vacan by(n M6	e left	d by (hich h 6 bits) excee M4 N 	D) an eaded will b ding b	d shift I by (e mov its.	the d 5) to f ed 4 t 1 M0	estina iill in th bits to	tion to he vac the lef	e the leancy. ft, also	o the
 Pick the length When > status of Component which are exceeding the space (n1) 	(21) e conting gth of (f (21 = "f) of $X0 \sim Y$ M15 M15 M15 M15 M15	- SFTI uous (12), the OFF" (3 will I 	(E P X n1) le en use → "ON be mo	D MC ngth k e the r J", the ved in M12 N 2) (n1)) K16 bit device a device (111 M (111 M (111 M (111 M	K4 ices d er of (r es col)~M3 Lengt	estina 12) sou mpose to fill i h desig	tion w urce bi ed of N n the gnatec M7 -(3)	hich h it devia M0~N vacan by(n M6	e left	d by (hich h 5 bits) exceer M4 N 	D) an eaded will b ding b	d shift I by (e mov its.	the d the d 4 k the d 4 k the d 4 k	estina ill in th bits to	tion to the lef	e the leancy. ft, also	o the ↓ × 0

FNC 38			S	FWF	RP (3	S) (D) (n				Shift	Regis	ster W	rite (F	IFO V	Vrite)		1	2 M 0 0
Oper	and									Dev	ices								
Oper	anu	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"
S	;							•	•	•		٠	•	•	0	•			
D)								•	•	•	•	•	•		•			
n																	0		
• D o	ccupie	es n co	ompor	ients		• n = 2	~512												
 A se head each cont FIFC 	eries c ded b n time cent va) data	f wor y D this alue c stac	d data , the instruc of the k.	a can size is ction i desigi	be use s assig s enat nated	ed for gned b bled, th device	the Fl by n ne cor e S	FO (Fi and ti ntent v will be	irst In, he sta value c move	First (ck's fii of the i ed to th	Dut) da rst dev ndicat ne pos	ata sta vice is or will sition 1	ack ac desig be ac hat is	ccess. Inated dded v desig	The I to be vith "1 nated	FIFO c the in " firstl by the	data st dicato y, and e indic	ack is or. Wh then ator in	nen the n the
Th de	ie soui signat	ce de ed by	S	<d9< td=""><td>D8</td><td> Li</td><td>D6</td><td>s desiç D5</td><td>D4 D4 D0 =4</td><td>by n D3 D0=3</td><td>D2 D0=2</td><td>D1 I In D0 = 1</td><td>D0 dicator</td><td>The D0~</td><td>FIFO c D9, wl</td><td>lata sta here th</td><td>ack is c e D0 is</td><td>ompo the in</td><td>sed by dicator</td></d9<>	D8	Li	D6	s desiç D5	D4 D4 D0 =4	by n D3 D0=3	D2 D0=2	D1 I In D0 = 1	D0 dicator	The D0~	FIFO c D9, wl	lata sta here th	ack is c e D0 is	ompo the in	sed by dicator
 Supplements Supplements The ≥ ((pose ome " cent va D0 re n) –	at the 1" an alue c cords 1) an	e very d the of D0 v s the p d the	begin conte vill be positic	ning th nt valu come n whe ction is	nat D0 ue of E "2" ar ere it is s activ	= 0. 0100 v nd the writte e aga ry Fla	At the vill be conte en to th in, it w	e first t move nt valu ne FIF vill not	ime X d to th ue of [O data to writ "ON"	20 = ' le D1. D100 v a stacl ce data	"OFF" At th vill be < at th a into	→ "O e seco move e last the sta	N", the ond tin ed to th time. ack ar	e cont ne X20 ne D2, If the ny mor	ent va 0 = "(and s conte re and	Ilue of DFF"– so fortl nt valu the va	D0 w → "ON n. ue of E alue o	ill ", the 00 is f D0 will

- This SFWR instruction is usually used jointly with the SFRD instruction (refer to the next page) to achieve the write / read control of the FIFO data stack.
- This SFWR instruction can be used jointly with the FNC212 POP instruction to achieve the write / read control of the FILO (First In, Last Out) data stack.

6-6 Data Processing Instructions

FNC	Mnemonic in Ladder Diagram	Eunction Description	Ар	plica	able	VS
No.			1	2	Μ	3
40		Zone Reset	0	0	0	0
41	H H DECOP (S) (D) (n)	Decode	0	0	0	0
42	H H ENCOP S D n	Encode	0	0	0	0
43		The Sum of Active Bits	0	0	0	0
44	$\vdash \vdash \blacksquare BON \blacksquare (S) (D) (n)$	Check Specified Bit Status	0	0	0	0
45	H H MEANP (S D n	Mean	0	0	0	0
46	$\vdash \vdash ANS (S) (m) (D)$	Timed Annunciator Set	0	0	0	0
47		Annunciator Reset	0	0	0	0
48		Square Root	0	0	0	0
49		BIN Integer → Binary Floating Point Format	0	0	0	0

• This instruction can reset a 32-bit counter. It's prohibited if that (D1) designates to a 16-bit counter while (D2) designates to a 32-bit counter.

Devices x Y M S D.b R.b KnX KnY	3																		0	0
Upperation X Y M S D.b R.b KnX KnY Kn	0.										Dev	rices								
S Image: Simple Sim	Oper	and .	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"
D S: the source device to be count Y20 S: D Y20 <t< td=""><td>S</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>•</td><td>٠</td><td>•</td><td>٠</td><td>•</td><td>•</td><td>0</td><td>•</td><td>•</td><td></td><td></td></t<>	S								•	•	٠	•	٠	•	•	0	•	•		
	D									•	•	•	•		•	0	•			
be stored in D10. If all of the 16 bits of D0 are inactive (equal to "0"), then the Zero Flag M9020 = "ON". ⊥ ⊥ ⊥ ∪ ∪ ⊥ ∪ ⊥ ∪ ∪ ⊥ ∪ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥	Whe	X20 - en X2() D = "(SUM	S D0	D D10 tructic] on is to	o coun	it the r	numbe	er of a	S : the D : the ctive b	e sour e dest oits wi	rce de inatior thin th	vice to n devie e 16 b	b be c ce to s vits of	ount store p D0, ar	proces	sed d amou	ata ınt wi
Image: Arrow of the state	be s	tored	l in D1	0. lf a	all of tl	ne 16	bits of	D0 ai	re ina	ctive (e	equal	to "0"), ther	the Z	ero Fl	ag M9	9020 =	= "ON'		
D0 D1		[0	1 1	1	0	0 0	1	0 1	1 0	0	0 1	1	1	X20	= 0	N ≯ [8		
When a 32-bit instruction DSUM is used, 🕦 will still occupy 2 registers.								DO)									D10		
	W/ha	n a 3	2_hit i	netruc	tion F	MIP	ie ueo	d D) will c	still occ	י עמער	2 roais	tore							
	vvne	li a o	2-0111	nstruc		50101	is use	a, D) will s		Supy 4	2 regis	ilers.							

Operand - S D n • The 16-b	X it instru	Y •	M • n = 1	S ● ~15	D.b O	R.b	KnX	KnY	Dev KnM	ices	1								
S D n • The 16-b	X it instru	Y • iction, r	M • n = 1	S ● ~15	D.b 0	R.b	KnX	KnY	KnM										
S D n • The 16-b	it instru	• Iction, r	• n = 1	•	0		•			KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"	
D n • The 16-b	it instru	• Iction, r	• n = 1	● ~15	0				•	•	•	•	•	0	•	•			
n • The 16-b X20	it instru	iction, r	n = 1	~15															
• The 16-b	it instru	iction, r	n = 1	~15									0			0			
X20	_	,				• The	32-bit	instru	ction, r	∩ = 1~	·31								
		BON	D0	M0	K5					D : the sto n : the	e dest pred e desi	inatior gnate	n devia d posi	e whe tion bi	ere sp it to be	ecified e spec	d resu cified	ılts are	
Copy the	status	of the	n	th. bit	at the	desig	gnated	d sour	ce dev	vice 🔇	s) to t	he de	stinatio	on dev	vice (D .			
When X20) = "Ol	N", the	e stat	rus of	b5 at	the D	0 will k	ne cor	nied to	M0.									
	"O				f MO					he etc		fore it	in dia	ام م ا ما					
When A20		FF, UI	ie sta	alus o		viirren	nama	s san	ie as i	ne sta	ius de	elore II	IS UIS	ableu					
b15 0 (D 1	1 (0 0) 1	1	0 (b5) 0	0	1 1	1	b0 1 [00 <u>X2</u>	20 = 0		M0 =	OFF			
b15 0 (0 0	0	1 1	1 1	1	0 (b5) 1	1	1 1	0	b0 0 [00 X2	20 = 0		M0 =	ON			
NC 45			D	MEA	NP	S	D (n)			Mear	٦					1	2 N	
----------	----	---	---	-----	----	-----	-----	-----	-----	-----	------	---	---	-----	-----	-----	-----	-----	------
Opera	nd									Dev	ices								
opora		Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"
S								٠						•		•			
D									•	•	•	•	•	•	0	•			
n						1								0			0		

• The 16-bit instruction, S occupies n components • The 32-bit instruction, S occupies ($n \times 2$) components • $n = 1 \sim 64$

- S : the head ID of source devices to be generated a mean
- D : the destination device where the mean is stored

n : the number of consecutive devices to be generated a mean

- The instruction sums up the content values of consecutive (n) devices which headed with (S), then generates a mean value and stores it to a designated device (D).
- When X20 = "ON", it will generate a mean of content values of the 5 consecutive registers (D0~D4) and store it in D10.

$$\frac{(D0) + (D1) + (D2) + (D3) + (D4)}{5} \xrightarrow{X20 = ON} (D10)$$

$$\frac{100}{150} \xrightarrow{D1} \\ 200 \\ 02 \\ 88 \\ 100 \\ 04 \\ x20 = ON \\ 127 \\ D10 \\ x20 = ON \\ 127 \\ 010 \\$$

- Ignore the remainder if any remainder appears during the operation process.
- If the some of the consecutive source devices exceed the available range, only the devices within the prescribed range will be processed.

FNC 46		$\vdash \vdash ANS (S) (m) (D)$										Timed Annunciator Set							2 N	∕ 3 ○ ○
FNC 47											Annu	Inciat	or Res	set				1	2 N	∕ 3 ○ ○
Оре	erand	and X Y M S D.b R.b KnX KnY KnN									ices KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"	

• S = T0~	T199	•	m = 1	1~327	67	• D	= S90)0~S9	99
D									

X20 X21		(\mathbf{S})	(\mathbf{m})	\bigcirc
	- ANS	Τ0	K15	S900

 ${\rm S}\,$: the timer is used to be detected and cause alarm

 \bigcirc

m : the set value of timer configuration

0

D : the annunciator

• The instruction ANS is used exclusively to drive the output of an annunciator step relay.

- When X20 and X21 turn "ON" for more than 1.5 seconds simultaneously, the annunciator S900 is driven "ON". After S900 = "ON" and when X20 or X21 turns "OFF", the contact of the non-retentive T0 becomes "OFF" and its present value is returned as "0", but the S900 will remain "ON".
- When both X20 and X21 are "ON" but this duration is less than 1.5 seconds, then either one of them turns "OFF", the present value of T0 will be returned as "0".
- Do not use a timer which has been assigned to this instruction.

X0 ANRP

- The instruction ANR is used exclusively to reset the annunciator step relay. When each time the ANR instructinon is operated, annunciators which had been activated are sequentially reset one-by-one.
- When $X0 = "OFF" \rightarrow "ON"$, the instruction ANR will be executed and an active annunciator will be reset to "OFF".
- If the instruction ANR is executed and if there are more than one active annunciator, the active annunciator with smallest ID number will be reset. When the instruction ANR is executed once again, at this moment the active annunciator with the smallest ID number (that was the second smallest at the last time) will be reset. And so forth to reset other active annunciators one-by-one.

Application Example of Timed Annunciator Set

- When the special auxiliary relay M9049 = "ON" and any assigned annunciator of S900~S999 is activated, then M9048 = "ON" and D9049 will display an activated annunciator number. If there is more than one annunciator being activated simultaneously, D9049 will display the smallest active annunciator ID number.
- The following chart is an ANS (Timed Annunciator Set) / ANR (Annunciator Reset) application

X20: Forward Switch	Y20: Forward Device	S900: Forward Annunciator
X21: Backward Switch	Y21: Backward Device	S901: Backward Annunciator
X22: Front End Position Switch	Y27: Alarm Indicator	

X23: Back End Position Switch

X27: Annunciator Reset Button

X20 Y20	X22 ──│∕	 When the forward switch contact X20 = "ON", the forward device Y20 = "ON" and remain. Y20 will become "OFF" when the object reaches the front end position (X22 = "ON").
X21 Y21	X23 ──\∕\──	When the backward switch contact $X21 = "ON"$, the backward device $Y21 = "ON"$ and remain. Y21 will become "OFF" when the object reaches the back end position (X23 = "ON").
M9000 Y20 Y21 M9048 N27	X22 	 M9049 When M9049 = "ON", the alarm monitor will be activated, where M9048 and D9049 are effective. ANS T0 K60 S900 If Y20 = "ON" for more than 6 seconds and does not reach the front end position, then S900 = "ON". ANS T1 K60 S901 If Y21 = "ON" for more than 6 seconds and does not reach the back end position, then S901 = "ON". Y27 The alarm indicator Y27 = "ON" if any one of annunciator is "ON".
		ANRP After the problem is cleared, press X27 once to reset the annunciator.
		END

FNC	Square Boot	1	2	Μ	3
48	Square noor	0	\bigcirc	\bigcirc	0

Operand									Dev	ices								
operand	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"
S													•					
D													•		•			
• The 16-b	S-bit instruction, $S = 0 \sim 32,767$ • The 32-bit instruction, $S = 0 \sim 2,147,483,647$																	

- S : the source device for performing mathematical square root
- D : the destination device to store the result
- This instruction performs a square root operation on the content value of device (\underline{S}) and stores the result to the destination device (\underline{D}) .
- It performs a square root operation on the content value of D0 and stores the result at D1 when X20 = "ON".
- For the result, only the integer part will be taken, while the decimal part will be ignored; when any decimal is ignored, M9021 = "ON".
- The Zero Flag M9020 = "ON" when the operation result is equal to "0".
- (S) must be a positive; a negative will be determined an error operation by PLC and the M9067 will be set "ON".

6-7	High	Speed	Processing	Instructions
-----	------	-------	------------	--------------

FNC	Mnemonic in Ladder Diagram	Euroction Description	Ар	plica	able	VS
No.			1	2	Μ	3
50		I/O Refresh	0	0	0	0
51		I/O Refresh and Filter Adjust	0	0	0	0
52	$\vdash \vdash MTR (S) (D_1 (D_2) (n)$	Input Matrix	0	0	0	0
53		Software High Speed Counter Set	0	0	0	0
54		Software High Speed Counter Reset	0	0	0	0
55	$\vdash \vdash \Box HSZ (S1) (S2) (S) (D)$	Software High Speed Counter Zone Compare	0	0	0	0
56	$\vdash \vdash \blacksquare SPD (S1 (S2 (D)))$	Speed Detection	0	0	0	0
57	$\vdash \vdash \blacksquare PLSY (S1 (S2) (D)$	Pulse Y Output	0	0	0	0
58	$\vdash \vdash \vdash PWM (S) (S2) (D)$	Pulse Width Modulation	0	0	0	0
59	$\vdash \vdash \square PLSR (S1) (S2) (S3) (D)$	Pulse Ramp	0	0	0	0

2 Μ 3 FNC 1 REFFP (n) I/O Refresh and Filter Adjust 51 Devices Operand Х Y Μ S D.b R.b KnX KnY KnM KnS Т С D,R V,Z UnG K,H Е "\$' n 0 Ο • $n = 0 \sim 60$ n: the setting for response time (unit = ms) (\mathbf{n}) X20 REFF K1 • When X20 = "ON", response time of external inputs X0~X7 will be changed into 1ms and the "ON"/"OFF" statuses of X0~X7 will be reloaded into the input data memory. • To avoid noise intervention, usually there will be a filter with response time of approximately 10ms on the PLC's input point to filter out noise; Therefore, it is unable to capture a rapid input signal that width is less than 10ms. • The external inputs X0~X7 are equipped with software digital filters on, which we can use the REFF instruction to adjust response time. The following figure shows the input configuration of $X0 \sim X7$: **Digital Filter** Input Point Buffere To select and renew 0_0 the status from one When the REFF instruction is performed, the set time (n)X0 0ms digital filter buffer for the instruction will be loaded. which corresponds to the response set When the PLC's power When the PLC's power -is turned "OFF" \rightarrow "ON", 1ms time. is turned form "OFF" to D9020 = 10 (default). 'ON" or the END instruction is performed Can use the MOV D9020 Χ7 Input data memory instruction to set the 10ms value. 11ms <u>60</u>0 60ms • As shown in the figure above, the external inputs X0~X7 have built-in digital filters with 0~60 ms adjustable range. The rules to set the response time of input contacts $X0 \sim X7$ are described as follows: ① When the PLC's power is turned form "OFF" to "ON", the content value of D9020 will be set to 10 and response time will be set to 10ms. ② Could adjust the response time by using the MOV instruction to load a new value to the D9020. ③ Use the REFF instruction to adjust the response time during the program is in execution. Program's step 0 Response time of the external inputs X0~X7 is set up by the content value of D9020; (could use the MOV instruction to load a new response time to the D9020. M9000 By the data at the buffer of 0 ms response time digital filter to renew the external REFF K0 $\leq \gamma$ inputs X0~X7 and store that to the input data memory. Even the response time of the external input X0~X7 digital filter is adjusted to 0 ms, (actually there is still having a few to dozens of µs response time delay. M9000 By the data at the buffer of 20 ms response time digital filter to renew the REFF K20 < external inputs X0~X7 and store that to the input data memory. { The response time of the external input X0~X7 is adjusted to 20 ms. END • When the interrupt function, the high speed counter or the SPD (FNC56) instruction is used in the program, the

 When the interrupt function, the high speed counter or the SPD (FNC56) instruction is used in the program, the response time of the corresponding input terminal will be automatically adjusted to 0 μs. However, there is still having a few to dozens of μs response time delay.

-NC		1.1	N/	тр	$\overline{\mathbf{C}}$		$\overline{\mathbf{n}}$				Innut	Matri	iv.					1	2	Μ	1
52			IVI	П	<u> </u>						input	Iviatii	~					0	\bigcirc	\bigcirc	
Oper	hand									Dev	ices										
Oper	anu	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	" \$	'	
S	3	0																			
D	1		0																		
D	2		0	0	0																
n	1																0				
•Ss	hould	desig	nate to	an X v	with the	e last d	igit of t	he ID i	s "0" (e	e.g. X0	, X10),	S οςςι	ipies c	onseci	utive 8	points					
• D1 :	should	d desi	gnate t	oaYv	vith the	e last d	igit of t	he ID is	s "0"(e	.g. Y0,	Y10), E	D1 occi	upies (consec	utive r	n points					
• D2 : • n =	shoulo = 2~8	d desi	gnate a	a Y, M c	or S wit	h the la	ast dig	it of the	e ID is '	'0"(e.g	. Y0, M	10, S2	0), D2	occup	ies cor	nsecuti	ve (8×r	n) poir	nts.		

X0		\bigcirc	D 1	D 2	(\mathbf{n})
\neg	MTR	X20	Y20	M0	K2

- $\ensuremath{\mathsf{S}}\xspace$: the head point for the matrix scan inputs
- D1 : the head point for the matrix scan outputs
- D2 : the head point of the result matrix-table (storage components)
- n : the number of array rows of the matrix scan
- This instruction reads the status of switches through the matrix scan technique. It needs to use consecutive 8 inputs (which are headed by <u>S</u>) and <u>n</u> outputs (which are headed by <u>D</u>). By the sequential outputs to scan and read the status of inputs, then the result is reflected in the storage components which are headed by <u>D</u>. Therefore, total 8×<u>n</u> of the external "ON"/"OFF" status are received.

- From the diagram above, X20~X27 and Y20~Y21 constitute two rows of array matrix input circuit. When X0 = "ON", the instruction is ready for execution then 16 (8×2) "ON"/ "OFF" statuses at the array matrix will be read and stored in the components of M0~M7 and M10~M17.
- When X0 = "OFF", the instruction is inactive and the statuses of M0~M7 and M10~M17 will remain as same as the statuses before it is disabled.
- Using the MTR instruction to read one row of the external array switches will take two Scan Times. If the PLC's Scan Time is less than 10ms, then one row in the array will spend 20ms to read the "ON"/ "OFF" status of external inputs. Since this instruction can connect at most 8 of array rows to read 64 ($8 \times 8 = 64$) external switches, to reload that once will take 16 Scan Time or 160ms. Therefore, the coordination between the response rate of external switches and the loading time of the instruction should be considered when this instruction is used.
- Usually, the instruction's conditional contact uses the M9000 (permanently "ON", "a" contact).
- When this instruction performs to scan and reload status once, it will let the Execution Completed Flag M9029 = "ON" for one Scan Time.
- The MTR instruction can only be used once in the program and should appoint to a transistor output unit.

										20110	0011	ipuio						
. .									Dev	ices								
Operand	X	Y	M	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"
S1							•	•	•	•	•	•	•	0	•	٠		
S2							•	•	•		•		•	0	•	٠		
S												•						
D				•	0	0												
• 5 = 020	55~02	.55		• D C	iccupie	5 3 00	ISECUL	ive coi	npone	115, 511	Julu u	se tu~	- 15 II U		esignai	es lo a	11	
M90 All of the output im When K1 When K2 If (S1) > (00 count nmedia 00 > 00 ≤ 200 < S2, t	DHS ing va ately a the Pr the Pr the Pr the th	Z K1 Ilue ar and irre esent esent esent esent ue valu	nd res espec Value Value Value	S2) 200 200 200 of C2 of C2 of C2 of C2 S1) will	(S) C255 Duts c the S 55, the 55, the 55, the beco	D Y0 Y0 of this can Ti en Y0 K200, en Y2 me bo	instruc me. 1 = "Of then = "Of oth of	S1 S2 S D ction a fhe res N". f1 = " N". the Up	: the s : the ll usec : the c ure pro sults o ON".	et val bet val D No. destin destin f the :	ue of of the ation of ed with zone of	the low the up softwor of the on interr compa	ver lim per lir vare hi compa rupt in rison	hit at th nit at t gh spo arison usertion are sh ared w	ne zor he zo eed co result n, the own a	ne con ounter outpr Y0~Y as follo	npare mpare r to be uts ⁄2 will ows:
 This in There the DF same Both the perform not be instructed. 	is no l ISCT time s he Sof med to perfo	ion is imitati can or shoulc tware com rmed becau	a 32-k on on hly be d not e High pare v if the l	bit inst the n used exceed Speed vhen t Presen ere is	ruction once i d "8". d Cour here is nt Valu	n; the r of us in the nter ar s an e ie of S unter i	DHS2 ing tin progra nd the xterna oftwa	Z shou nes at am. H DHSC I signa re Hig	uld be bout th lowev CS, DF al to th h Spe	alway ne DHS er, the HSCR, ne inpu ed Co us, the	s ente SCS, total DHS ut of ti unter re is r	ered w DHSC of the Z, DH ne cou is cha	hen us R and se inst SCT in unter. unged ye the	ses th DHS2 ructio Instruct The c by a t	is inst Z instr ns per ions a ompar ransfe pare ag	ruction forme re onl re acti rring	n. s, wh d at th y on sh	ile he all
not ha	s the o	compa	are ou	tputs.		unteri	input :	signai	5. 1110	is, the	leisi	101 118	ve the	comp	aleau	lion, i		lise

Operand									Dev	ices								
Speranu	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"
S1							•	•	•	•	٠	•	•	0	•	٠		
S2							•	•	•	•	•	•	•	0	•	•		
	2 oorig		1 50	000		1/60/	1/62 0	orioo S	4 - 1	200.0	0				_ 1	1 000 (
 VSI / VSI 16-bit ins 	z serie	s = 16 = 0	1~30	,000		32_hi	t instru	ction S	$1 = 1^{-1}$	-200,00	183.6	17	• F	N = Y0	= 1~ ~	1,000,0	000	
		11 02	1 02	,101		02.01			2 I	2,147	-100,0-	+ <i>1</i>	- L	- 10	10			
Va	h		S	1) (S2 (D					S1 : th	ne frec	quency	of pu	ulses t	o be c	output	
	J	PLS	/ K5	00 D	100 `	Y0					S2 : th	ne nur	nber o	f puls	es to k	ce out	put	
											D : th	ne pul:	se out	put po	pint			
 (S1) designed to the first of the M934 (S2) designed to the first of the first	ynates VS1 o 2000,00 value value gnates value value gnates use a conce put po ne. pulse pecial 40 dis uction condit b, befc 340 is ng. So M93- 41 is a	s the of S_2 s the n of S_2 s the n of S_2 s the n of S_2 s the particular trans litional plays t which ion co ore to a alreace, this in 40 is ") is le) is ev umbe) is ev) is ev) is ev) is le oulse o istor r l conta l also ut fundes. the sta tis rel ntact activa dy "Ot nstruct OFF",	pulse is from ss that ceed er of or qual to ss that output main u act X2 turns ction a ated t becor te this N", it in ction w, , it ind	n 1, required n 1 to ing the utput p 0, the n 0, the not, the not, the not, the not, the not, the not, the o the instru- not, the nes (instru- not, the nes (instru- not) (instru- not) (instru- not) (instru- not) (instru- not) (instru- not) (instru- not) (instru- not) (instru- not) (instru- not) (instru- not) (instru- instru- not) (instru- ins	ency to 50,00 egards e uppe pulses e quar ne PLC . It ca omes "; Wh Y0~Y(0 axis axis Y0 DFF". loction, es that be ex that a lag of	ie ava o(Hz; ' s it as er limit s, the a htity of C will r n only "OFF" ien the 3 are t 3 are t 5 2 and shoul t axis ecuted ixis Y0 the ax	Allable VSM c 1. of the vailat pulse egard desig desig ' durin e X20 I he sar is exe d pay Y0 is c d ever is RE is Y0.	range or VS3 e range le range es is un that a nate t nate t occon attent occupio thoug ADY to	e, rega ge is o nlimite is an o o the pulse nes "C elow w succe ion to ied by gh the o acce	ards it ards it 2~2,1 d for operat coint ` outpu N" ag e use essfull the st other cond other cond	as th 47,48 contin ing er Y0~Y ut, pul- gain, if the Y y, will atus c releva- lition c d exe	e max 3,647. Juous o ror and 3 to be se out t will re 0 as a contin of the I ant ins contac cute th	000Hz imum output d the I e the p outs w estore n exal uously VI9340 truction t is "C nis ins"	z; VSM value. ts. M9067 bulse c vill be to ger mple t y occu). pn to g N [°] . tructio	1-28M 7 will b putput stopp herate o des upy the genera	L is fro be "ON devic ed an pulse cribe t e axis ate pul	om 1 V". e and d the es from the Y0, Se or
When the	axis	Y0 is c	output	ting p	ulse, t	he MS	1341 tu	is ro. irns "(DN".									
The M934 When the When the	42 is a numl conc	a posit ber of lition c	ioning pulse contac	outpu outpu t is "C	oleted uts ass DFF", 1	flag c signec the M§	of the a l by (<u>S</u> 9342 v	axis Y(axis A) is a vill also). rrived 5 turn	, the N "OFF	19342 '.	turns	"ON".					
The M934 The stop is not arri abnormal	43 is a flag tu ved y I.	a flag f urns "(et, the	or abi DN" a pulse	norma t the r e outp	I stop nomei utting	at the nt that will be	axis \ the Ye stop	70. 0 is ge bed pr	enerati omptl	ing pu y. The	lses a e M93	and the 43 wil	e num I turn '	ber of ON" t	pulse o indio	es assi cate th	igned ne sto	by (S2) p is
when the The M934 When eith the stop s	e conc 45 or l ner or signal	M9346 M9346 Ne of the is clea	is the s is the ne sig ar, this	e stop nals is instru	signa signa "ON" uction	ine M9 Il of th ', the \ must	9343 v e axis (0's pi be rea	vIII also Y0. ulse or activat	o turn utputti ed to	ng at enable	this in e puls	struct e outp	ion wil putting	l be si agair	toppe 1.	d pror	nptly.	After
The (D93 When the	51, D instru	9350) uction	displa is exe	ay the ecuted	currer , that	nt spee will dis	ed of a splay t	axis Y(he cu). rrent p	oulse f	reque	ncy o	f the a	xis Y0	's outp	out.		
The (D93 When the axis Y0's	53, D powe	9352) er swit	displa ches es	ay the "ON",	numb the in	er of p itial va	oulses alue is	that th 0. Aft	ne axis erwar	s Y0 h ds, tha	as be at will	en out displa	tput. ay the a	accun	nulate	d num	nber o	f the

• The related special devices are summarized below: (=: Means read only	<i>y</i> .)
--	-------------

Relay ID No.	Description
■M9340	Y0 axis's status. "OFF" means the Y0 is in the READY status, it is available for a positioning instruction; while "ON" = BUSY, the Y0 has been occupying.
■M9341	Y0 axis's pulse output monitor. "ON" means pulse is generating.
■M9342	Y0 axis's positioning completed flag.
■M9343	Y0 axis's positioning abnormal stop flag.
M9345	Y0 axis's stop flag (with gradually slow down).
M9346	Y0 axis's immediately stop flag.
■M9360	Y1 axis's status. "OFF" means the Y0 is in the READY status, it is available for a positioning instruction; while "ON" = BUSY, the Y1 has been occupying.
■M9361	Y1 axis's pulse output monitor. "ON" means pulse is generating.
■M9362	Y1 axis's positioning completed flag.
■M9363	Y1 axis's positioning abnormal stop flag.
M9365	Y1 axis's stop flag (with gradually slow down).
M9366	Y1 axis's immediately stop flag.
■M9380	Y2 axis's status. "OFF" means the Y0 is in the READY status, it is available for a positioning instruction; while "ON" = BUSY, the Y2 has been occupying.
■M9381	Y2 axis's pulse output monitor. "ON" means pulse is generating.
■M9382	Y2 axis's positioning completed flag.
■M9383	Y2 axis's positioning abnormal stop flag.
M9385	Y2 axis's stop flag (with gradually slow down).
M9386	Y2 axis's immediately stop flag.
■M9400	Y3 axis's status. "OFF" means the Y0 is in the READY status, it is available for a positioning instruction; while "ON" = BUSY, the Y3 has been occupying.
■M9401	Y3 axis's pulse output monitor. "ON" means pulse is generating.
■M9402	Y3 axis's positioning completed flag.
■M9403	Y3 axis's positioning abnormal stop flag.
M9405	Y3 axis's stop flag (with gradually slow down).
M9406	Y3 axis's immediately stop flag.

Register ID No.		Description
■D9350	Lower 16 bits	The Y0's current speed.
■D9351	Upper 16 bits	(unit: Hz).
D9352	Lower 16 bits	The Y0's current location (Present Value, PV). The initial value is 0.
D9353	Upper 16 bits	For the PLSY or PLSR instruction, that is the amount of output pulses.
■D9370	Lower 16 bits	The Y1's current speed.
■D9371	Upper 16 bits	(unit: Hz).
D9372	Lower 16 bits	The Y1's current location (Present Value, PV). The initial value is 0.
D9373	Upper 16 bits	For the PLSY or PLSR instruction, that is the amount of output pulses.
■D9390	Lower 16 bits	The Y2's current speed.
■D9391	Upper 16 bits	(unit: Hz).
D9392	Lower 16 bits	The Y2's current location (Present Value, PV). The initial value is 0.
D9393	Upper 16 bits	For the PLSY or PLSR instruction, that is the amount of output pulses.
■D9410	Lower 16 bits	The Y3's current speed.
■D9411	Upper 16 bits	(unit: Hz).
D9412	Lower 16 bits	The Y3's current location (Present Value, PV). The initial value is 0.
D9413	Upper 16 bits	For the PLSY or PLSR instruction, that is the amount of output pulses.

• During this instruction is being executed, any modify to the content value of (\underline{S}_2) will be treated as invalid, but the value of (\underline{S}_1) can be altered by the program to change the frequency.

• There is no limitation on the using number of this instruction in a program, and the output points Y0~Y3 can generate pulses at the same time.

- There is no limitation on the using number of this instruction in a program, and the different output points Y0~Y3 can generate pulses at the same time.
- Since the pulse output function of Y0~Y3 are the same, below we use the Y0 as an example to describe the related special devices.

The M9340 displays the status of the Y0 axis.

Any instruction which is related to the axis Y0 and is executed successfully, will continuously occupy the axis Y0, until the condition contact becomes "OFF".

Therefore, before to activate this instruction, should pay attention to the status of the M9340.

If the M9340 is already "ON", it indicates that axis Y0 is occupied by other relevant instruction to generate pulse or positioning. So, this instruction will not be executed even though the condition contact is "ON".

When the M9340 is "OFF", it indicates that axis Y0 is READY to accept and execute this instruction.

The M9341 is a pulse output monitor flag of the axis Y0. When the axis Y0 is outputting pulse, the M9341 turns "ON".

The M9342 is a positioning completed flag of the axis Y0.

When the number of pulse outputs assigned by (S_2) is arrived, the M9342 turns "ON". When the condition contact is "OFF", the M9342 will also turn "OFF".

The M9343 is a flag for abnormal stop at the axis Y0.

The stop flag turns "ON" at the moment that the Y0 is generating pulses and the number of pulses assigned by (\underline{S}_2) is not arrived yet, the pulse outputting will be stopped promptly. The M9343 will turn "ON" to indicate the stop is abnormal.

When the condition contact is "OFF", the M9343 will also turn "OFF".

The M9345 is the stop signal of the axis Y0.

When the signal is "ON", the pulse output frequency of this instruction at Y0 will slow down then stop. After the stop signal is clear, this instruction must be reactivated to enable pulse outputting again.

The M9346 is the immediately stop signal of the axis Y0.

When the signal is "ON", the Y0's pulse outputting will be stopped promptly. After the stop signal is clear, this instruction must be reactivated to enable pulse outputting again.

The (D9351, D9350) display the current speed of axis Y0.

When the instruction is executed, that will display the current pulse frequency of the axis Y0's output.

The (D9353, D9352) display the number of pulses that the axis Y0 has been output. When the power switches "ON", the initial value is 0. Afterwards, that will display the accumulated number of the axis Y0's output pulses.

I	
Relay ID No.	Description
■M9340	Y0 axis's status. "OFF" means the Y0 is in the READY status, it is available for a positioning instruction; while "ON" = BUSY, the Y0 has been occupying.
■M9341	Y0 axis's pulse output monitor. "ON" means pulse is generating.
■M9342	Y0 axis's positioning completed flag.
■M9343	Y0 axis's positioning abnormal stop flag.
M9345	Y0 axis's stop flag (with gradually slow down).
M9346	Y0 axis's immediately stop flag.
■M9360	Y1 axis's status. "OFF" means the Y0 is in the READY status, it is available for a positioning instruction; while "ON" = BUSY, the Y1 has been occupying.
■M9361	Y1 axis's pulse output monitor. "ON" means pulse is generating.
■M9362	Y1 axis's positioning completed flag.
■M9363	Y1 axis's positioning abnormal stop flag.
M9365	Y1 axis's stop flag (with gradually slow down).
M9366	Y1 axis's immediately stop flag.
■M9380	Y2 axis's status. "OFF" means the Y0 is in the READY status, it is available for a positioning instruction; while "ON" = BUSY, the Y2 has been occupying.
■M9381	Y2 axis's pulse output monitor "ON" means pulse is generating

■M9380	Y2 axis's status. "OFF" means the Y0 is in the READY status, it is available for a positioning instruction; while "ON" = BUSY, the Y2 has been occupying.
■M9381	Y2 axis's pulse output monitor. "ON" means pulse is generating.
■M9382	Y2 axis's positioning completed flag.
■M9383	Y2 axis's positioning abnormal stop flag.
M9385	Y2 axis's stop flag (with gradually slow down).
M9386	Y2 axis's immediately stop flag.
■M9400	Y3 axis's status. "OFF" means the Y0 is in the READY status, it is available for a positioning instruction; while "ON" = BUSY, the Y3 has been occupying.
■M9401	Y3 axis's pulse output monitor. "ON" means pulse is generating.
■M9402	Y3 axis's positioning completed flag.
■M9403	Y3 axis's positioning abnormal stop flag.
M9405	Y3 axis's stop flag (with gradually slow down).
M9406	Y3 axis's immediately stop flag.

Register ID No.		Description
■D9350	Lower 16 bits	The Y0's current speed.
■D9351	Upper 16 bits	(unit: Hz).
D9352	Lower 16 bits	The Y0's current location (Present Value, PV). The initial value is 0.
D9353	Upper 16 bits	For the PLSY or PLSR instruction, that is the amount of output pulses.
■D9370	Lower 16 bits	The Y1's current speed.
■D9371	Upper 16 bits	(unit: Hz).
D9372	Lower 16 bits	The Y1's current location (Present Value, PV). The initial value is 0.
D9373	Upper 16 bits	For the PLSY or PLSR instruction, that is the amount of output pulses.
■D9390	Lower 16 bits	The Y2's current speed.
■D9391	Upper 16 bits	(unit: Hz).
D9392	Lower 16 bits	The Y2's current location (Present Value, PV). The initial value is 0.
D9393	Upper 16 bits	For the PLSY or PLSR instruction, that is the amount of output pulses.
■D9410	Lower 16 bits	The Y3's current speed.
■D9411	Upper 16 bits	(unit: Hz).
D9412	Lower 16 bits	The Y3's current location (Present Value, PV). The initial value is 0.
D9413	Upper 16 bits	For the PLSY or PLSR instruction, that is the amount of output pulses.

6-8 Handy Instructions

FNC	Mnomonic in Ladder Diagram	Europian Description	Ap	plica	able	VS
No.			1	2	Μ	3
61	$\vdash \vdash \blacksquare SER \blacksquare (S1) (S2) (D) (n)$	Search a Data Stack	0	0	0	0
62	$\vdash \vdash \blacksquare ABSD (S1) (S2) (D) (n)$	Absolute Drum Sequencer	0	0	0	0
63	$\left - \right \left - \overline{\text{INCD (S1 (S2 (D) (n))}} \right $	Incremental Drum Sequencer	0	0	0	0
64	$\vdash \vdash TTMR (D) (n)$	Teaching Timer	0	0	0	0
65	$\vdash \vdash STMR \ (S \ (m) \ (D))$	Special Timer	0	0	0	0
66		Alternate State	0	0	0	0
67	$\vdash \vdash RAMP (S_1 (S_2)))$	Ramp Variable Value	0	0	0	0
69	$\left - \right \left - \left[\text{SORT } (S) (m_1) (m_2) (D) (n) \right] \right $	Sort Tabulated Data	0	0	0	0

F	NC											Coor		Noto C	tool				1	2	M	3
6	51				SER	F ()	1) (32)		\square			Sean	chal	Jala S	lack				0	0	0	0
																					_	
	Opera	and									Dev	ices										
	open	ana	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"		
	S1	1									•		•	•								
	S2	2												•		0		•				
	D													•	•							
	n														0			0				
	• The	16-b	it instr	uction,	n = 1	~256,	S1 occ	cupies	n com	onent	s, D oc	cupies	5 con	nponer	nts.							
	• The	32-b	it instr	uction,	n = 1	~128,	S1 occ	cupies	(2×n) (compo	nents,	D occi	upies 1	0 com	ponent	s						
		X20 —)	SER	(S1) D0	<u>S</u> 2 D10	D D20	(n) K10			S1 S2	: the to b 2 : the	head e sea comp	device rched are da	e ID nu ata soi	umbei urce a	r of a c at the s	defined search	d data	a stac	k	

D : the search result's storage head device ID number

The result of the search

- n : the search stack length of the searched data
- The data stack is assigned by (n) consecutive devices which headed with (S_1) . This instruction will compare the content value at the specified (S_2) to each device in the data stack, and store the comparison result into 5 consecutive devices headed with (D).
- For a search data stack formed by D0~D9. When X20 = "ON", this instruction uses the D10 to compare with the stack D0~D9 and store the result into D20~D24. (Assume the content value of parameter D10 = 100.)

	Data Position Number	Data Stack for Searching	$\begin{array}{c} Content \\ Value \ of \\ D0 \sim D9 \end{array}$	Compare Data Source	Compare Decision	 Result Storage Device	Content Value	Description
\square	0	S1 D0	100		Equal value	(D)	4	Total number of the equal
	1	D1	120			D20	4	comparison result
	2	D2	100		Equal Value	D21	0	Data position number of the
	3	D3	85	S 2			0	first equal value
(\mathbf{n})	4	D4	125	D10		022	0	Data position number of the
_	5	D5	60	100	Min. Value	DZZ	0	last equal value
	6	D6	100		Equal Value	022	5	The Min. value data position
	7	D7	95			D23	5	number
	8	D8	100		Equal Value	D24	0	The Max. value data position
\downarrow	9	D9	210		Max. Value	024	9	number

- The content value at the D+3 and D+4 will record the larger data position number when there's more than one minimum or maximum value in the data stack.
- All the content values of D20~D22 will be "0" when there's no equal value.
- For a 32-bit instruction, (\underline{S}_1) , (\underline{S}_2) and (\underline{D}) will designate a 32-bit register while (\underline{n}) will designate a 16-bit register.

∠ '	1 1	_ D,	ABS	DS	1) (S 2) (D)	(\mathbf{n})			Abso	lute D	Drum	Seque	encer				2
Operand									Dev	ices								
Operand	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"
S1											•							
S2												•						
D					0	0												
n																0		
of 8 • The 32-k • When S ² of 8	it instru desigi	uction, nates te	S1 occ o K <i>n</i> X,	cupies , K <i>n</i> Y, I	(4×n) ≺ <i>n</i> M o	compo r K <i>n</i> S,	onents, that Ki	D occ n must	upies (be K8	2×n) c and the	ompor e ID nu	nents. umber	of the >	K, Y, M	or S m	ust be	a mult	iples
• The 16-b	oit instru	uction,	S2 = 0	C0~C1	99	•	The 32	-bit ins	tructior	n, S2 =	C200	~C258	5	• n =	= 1~64			
X2 ──	0	ABSI	(S1 D D0) <u>S</u> 2 C0	D (M0	n K4			S1 : th S2 : th D : th	e hea e ID n e num	d devi umbe 1ber d	ice ID er of th levice	numb ne cou ID nur	er of t nter fo	the con or the c of the	mparis compa compa	son ta arison arison	ble resul

• The instruction is a multi-section compare instruction and generally is operated for multi-section absolute drum sequencer.

	Lower Limit	Upper Limit	Comparison Value	Comparison Result
	S 1 D0 = 50	D1 = 200		D M0 = 1
	D2 = 0	D3 = 50	S 2	M1 = 0
Ű	D4 = 80	D5 = 120	C0 = 100	M2 = 1
	D6 = 120	D7 = 300		M3 = 0

• When X20 = "ON", the Present Value of the selected counter C0 is compared against a user defined data table [(D0, D1), (D2, D3), (D4, D5) and (D6, D7), there are 4 groups of upper/lower limit], and the results are stored on M0~M3 respectively.

At each group, if the condition is met [Lower Limit \leq Comparison Value \leq Upper Limit], the corresponding output point will be turned "ON"; Otherwise, the comparison value is not placed between Upper Limit and Lower Limit, the corresponding output point will be turned "OFF".

• When X20 = "OFF", the "ON"/ "OFF" statuses at M0~M3 will remain as same as before it is disabled.

- For a multi-section incremental comparison output, the instruction's Execution Completed Flag M9029 will turn "ON" for a Scan Time while a circulation is completed.
- When X20 = "ON" \rightarrow "OFF", the Present Values of C0 and C1 will be reset to "0" and M0 \sim M4 will be turned "OFF".

 $\overline{(n)}$ = 2 can be applied to a 10 ms unit Timer

 When X20 = "ON" → "OFF", the content value of D1 will be reset to "0" but the content value of D0 will remain as same as the value before it is disabled.

$\begin{bmatrix} C \\ 5 \end{bmatrix} \vdash \vdash _ STMR(\texttt{S} \textcircled{\texttt{m}} \textcircled{\texttt{D}})$									Special Timer					1	2 I 0 0			
									Dev	ices								
Operand	х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	т	С	D.R	V.Z	UnG	K.H	E	"\$"
S	~			-							•	-	,	,		,		
m													0			0		
D		•	•		0	0												
• S = T0-	~T199		•	m = 1	1~32,	767		• D (occup	ies 4 c	ompo	onents	;					
X20 (S) (m) (D) STMR T0 K20 Y20 STMR T0 K20 Y20 Step Step Step																		
 The STMR instruction is operated exclusively to produce the OFF-delay, the delay trigger and a flashing circuit. When X20 = "ON", the STMR instruction starts to be performed. Since the (m) = 20, the T0 become a 2 seconds setting value Timer. 																		
X20											•	The	Y20 is	an O	FF-de	lay ou	tput.	
Y20				2	Sec.			2 Sec.			•	• The whe	Y21 w	ill hav	e one signal	delay turne	outpu d from	it 1
Y21				2	Sec.		2	2 Sec.			•	• The	Y22 a	DFF". nd Y2	3 are o	desigr	ned for	r Iv to
Y22 2 Sec. 2 Sec																		
Vaa							Γ					for th	ne flas	shing (circuit.			
Flashi X20 ⊢	ng Cin M3 	rcuit	STMF	R TO	K10	M0		• P tr	erform nen the	n a ser e M1 a	ial link nd M	("b, N 2 will p	IC" cc perfori	ontact m the	of M3 flashir	after 2 ng circ	X20, suit.	

• If X20 = "ON" and PLC turns from STOP to RUN, please clear D3 as "0" at the beginning of the program.

FNC	Sort Tabulated Data	1	2	Μ	3
69	Soft labulated Data	\bigcirc	\bigcirc	0	0

Operand	Devices																	
operand	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"
S													0					
m1																0		
m2																0		
D													0					
n													0			0		
Each of t	he S a	nd D re	espect	ively o	ccupie	(m1×r	n2) cor	nponei	nts	•	m1 = 1	~32	•	m2 = '	1~6	•	n = 1~	m2

X20		(\mathbf{S})	(m 1)	(m 2)	\bigcirc	(\mathbf{n})
	SORT	D0	K5	K4	D100	D200

S : the head register ID number of the original data array	: the	: tl	the head r	egister II	D number	of the	original	data arra	y
--	-------	------	------------	------------	----------	--------	----------	-----------	---

- m1 : the number of data record sets to be sorted
- m2 : the number of data at an arrangement for each set
- D : the head register ID number of the data array where to store the sorted results
- n : to assign the nth data in an arrangement as the sort basis

Original Data Array (Starting from the appointed register (\underline{S}))

		Data Arra	ingement						
	1	2	3	4					
	Student ID	Philology	Mathematics	History					
	(D0)	(D5)	(D10)	(D15)					
	1	80	70	75					
	(D1)	(D6)	(D11)	(D16)					
	2	65	70	90					
(m 1)	(D2)	(D7)	(D12)	(D17)					
	3	90	65	80					
	(D3)	(D8)	(D13)	(D18)					
	4	75	90	65					
	(D4)	(D9)	(D14)	(D19)					
	5	80	85	95					
k (m2)									

 The SORT instruction is used to sort an data array that has a serial of data record sets (the number of sets is designated by (m)). Each set has a grouped arrangement (the number of grouped data at each arrangement set is designated by (m2)) while (n) is used to assign the nth arrangement as the routing basis to sort the data array.

The (S) is to designate the head register ID number of the original data array to be sorted and the (D) is to designate the head register ID number of the data array where to store the sorted results.

- When X20 = "ON", the SORT instruction is starting to perform. This instruction needs take 4 (the content of (<u>m</u>)) scan cycles to complete the sort action. When the sort process is completed, the instruction's Execution Completed Flag M9029 = "ON" for a Scan Time and the sort action will be stopped.
- Both of the arrays (S) and (D) will separately occupy $(m_1) \times (m_2)$ consecutive registers.
- The SORT instruction can be used once only in the program.

		when D	200 = 4	
		Data Arra	ingement	
	1	2	3	4
	Student ID	Philology	Mathematics	History
	(D100) 4	(D105) 75	(D110) 90	(D115) 65
	(D101) 1	(D106) 80	(D111) 70	(D116) 75
(m 1)	(D102) 3	(D107) 90	(D112) 65	(D117) 80
	(D103) 2	(D108) 65	(D113) 70	(D118) 90
	(D104) 5	(D109) 80	(D114) 85	(D119) 95
	-	(m		
			12)	

Sorted Data Result Array (Starting from the appointed register D) when D200 = 4

	Data Arrangement										
	1	2	3	4							
	Student ID	Philology	Mathematics	History							
	(D100)	(D105)	(D110)	(D115)							
	2	65	70	90							
	(D101)	(D106)	(D111)	(D116)							
	4	75	90	65							
(<u>m</u> 1)	(D102)	(D107)	(D112)	(D117)							
	1	80	70	75							
	(D103)	(D108)	(D113)	(D118)							
	5	80	85	95							
	(D104)	(D109)	(D114)	(D119)							
	3	90	65	80							
	← (m2);										

Sorted Data Result Array (Starting from the appointed register (D))

when $D_{200} = 2$

FNC	Mnomonio in Laddor Diagram	Eurotian Description	Ар	plica	licable	
No.			1	2	Μ	3
70	TKY S D1 D2	Ten Key Input	0	0	0	0
71		Hexadecimal Key Input	0	0	0	0
72	$\vdash \vdash DSW (S) (D1 (D2 (n)))$	Digital Switch (Thumbwheel) Input	0	0	0	0
73		Seven Segment Decoder	0	0	0	0
74	$\vdash \vdash \overline{SEGL \ (\mathbb{S} \ (\mathbb{D} \ (\mathbb{n})))}$	Seven Segment with Latch	0	0	0	0
76	$\vdash \vdash ASC (S) (D)$	Convert Letters to ASCII Code	0	0	0	0
77	$\vdash \vdash PR(S)(\mathbb{D})$	Print ASCII Code	0	0	0	0
78	$\vdash \vdash \boxed{\mathbb{D}FROM\mathbb{P} (m1) (m2) (D) (n)}$	Read FROM a Special Module		0	0	0
79	$\vdash \vdash \blacksquare TOP (\mathfrak{m}) (\mathfrak{m}) (\mathfrak{m}) (\mathfrak{m})$	Write TO a Special Module		0	0	0

6-9 External Setting and Display Instructions

• The instruction creates the Hexadecimal Keyboard Input by matrix scan of 4 consecutive external input points initiating from (\underline{S}) and 4 consecutive external output points initiating from (\underline{D}_1) . The value input by the keyboard is stored in (\underline{D}_2) . And the instruction uses 8 consecutive devices which starting from (\underline{D}_3) to store the status of the keys.

- In the left diagram, the Hexadecimal Keyboard is connected with X20~X23 and Y20~Y23. When X20 = "ON", the instruction is active. The value input by the keyboard is placed in D0 and the status of those keys are restored in M0~M7.
- M9029 will turn "ON" for a Scan Time when the instruction is performed for a scan.
- If there are several keys being pressed at the same time, only the first key activated is effective.
- If the special coil M9167 is already "ON", the HKY instruction can be used for input a hexadecimal value 0 ~ F.
- The HKY instruction can be used once only in the program.
- This instruction is only recommended for use with transistor output model.

	• The $A \sim F$ keys are defined as function keys
F E D C B (A) Function Keys <	 Ine A~F keys are defined as function keys. If a function key is pressed, the corresponding key's
ψ ψ ψ ψ ψ M5 M4 M3 M2 M1 M0 Keys' Status Outputs	status output will turn "ON" and remain the same status, until other function key has been pressed then the previous output will change "ON" \rightarrow "QFE"
	For example, when $\widehat{(A)}$ is pressed, M0 will turn and
	remain "ON". And if $\overbrace{\mathbb{F}}$ is pressed after that, M5 will tur
	turn and remain "ON" while $M0 = "OFF"$.
Status Outputs of the Keys	
If the keys $(\underline{A}) \sim (\underline{F})$ are pressed, the correspondence	onding key's status output M0~M5 will turn "ON".
During the period when any one of the function keys are released.	keys $\bigcirc \ \sim \bigcirc \ \bigcirc $
During the period when any one of the number k when all the number keys are released.	keys $\bigcirc \sim \bigcirc$ is pressed, M7 = "ON"; And M7 = "OFF"
When the conditional contact $X0 = "OFF"$, the ir disabled; However, M0~M7 will all turn "OFF".	nput value will remain as same as the statuses before it is
Notice	
When the instruction is performed, it should take	e 8 PLC's Scan Times to effectively capture a key. When the
When the instruction is performed, it should take PLC's Scan Time is too long or too short, it may shown as follows:	e 8 PLC's Scan Times to effectively capture a key. When the affect to read the key input signal incorrectly. The solution is
When the instruction is performed, it should take PLC's Scan Time is too long or too short, it may shown as follows: If the PLC's Scan Time is too short, this may pos points then it will cause to read the keyboard inc Scan Time at 20ms.	e 8 PLC's Scan Times to effectively capture a key. When the affect to read the key input signal incorrectly. The solution is esibly does not have enough time to pick the status from input correct. Please use the constant Scan Time function to fix the
When the instruction is performed, it should take PLC's Scan Time is too long or too short, it may shown as follows: If the PLC's Scan Time is too short, this may pos points then it will cause to read the keyboard inc Scan Time at 20ms.	e 8 PLC's Scan Times to effectively capture a key. When the affect to read the key input signal incorrectly. The solution is solve a not have enough time to pick the status from input correct. Please use the constant Scan Time function to fix the
When the instruction is performed, it should take PLC's Scan Time is too long or too short, it may shown as follows: If the PLC's Scan Time is too short, this may pos points then it will cause to read the keyboard inc Scan Time at 20ms.	e 8 PLC's Scan Times to effectively capture a key. When the affect to read the key input signal incorrectly. The solution is solved to be a solved to be a solved to be a solved to be a solved to be a solved correct. Please use the constant Scan Time function to fix the correct. Time at 20ms
When the instruction is performed, it should take PLC's Scan Time is too long or too short, it may shown as follows: If the PLC's Scan Time is too short, this may pos points then it will cause to read the keyboard inc Scan Time at 20ms. M9000 M9039 To fix the PLC	e 8 PLC's Scan Times to effectively capture a key. When the affect to read the key input signal incorrectly. The solution is solve a not have enough time to pick the status from input correct. Please use the constant Scan Time function to fix the cost and Time at 20ms
When the instruction is performed, it should take PLC's Scan Time is too long or too short, it may shown as follows: If the PLC's Scan Time is too short, this may pos points then it will cause to read the keyboard inc Scan Time at 20ms. M9000 M9039 To fix the PLC MOV K20 D9039 To fix the PLC	e 8 PLC's Scan Times to effectively capture a key. When the affect to read the key input signal incorrectly. The solution is solved the status from input correct. Please use the constant Scan Time function to fix the correct Scan Time at 20ms
When the instruction is performed, it should take PLC's Scan Time is too long or too short, it may shown as follows: If the PLC's Scan Time is too short, this may pos points then it will cause to read the keyboard inc Scan Time at 20ms. M9000 M9039 To fix the PLC MOV K20 D9039 To fix the PLC HKY X20 Y20 D0 M0	e 8 PLC's Scan Times to effectively capture a key. When the affect to read the key input signal incorrectly. The solution is solved the status from input correct. Please use the constant Scan Time function to fix the C's Scan Time at 20ms e the keyboard's reading response slow down. Please use the function at every 20 ms.
When the instruction is performed, it should take PLC's Scan Time is too long or too short, it may shown as follows: If the PLC's Scan Time is too short, this may pos points then it will cause to read the keyboard inc Scan Time at 20ms. M9000 MOV K20 D9039 To fix the PLC MOV K20 D9039 To fix the PLC	e 8 PLC's Scan Times to effectively capture a key. When the affect to read the key input signal incorrectly. The solution is solution is the solution is correct. Please use the constant Scan Time function to fix the C's Scan Time at 20ms e the keyboard's reading response slow down. Please use the function at every 20 ms.
When the instruction is performed, it should take PLC's Scan Time is too long or too short, it may shown as follows: If the PLC's Scan Time is too short, this may pos points then it will cause to read the keyboard inc Scan Time at 20ms. M9000 M9039 To fix the PLC MOV K20 D9039 To fix the PLC HKY X20 Y20 D0 M0 If the PLC's Scan Time is too long, this will cause timer interrupt function to do the keyboard scan Main program FEND	e 8 PLC's Scan Times to effectively capture a key. When the affect to read the key input signal incorrectly. The solution is solved to read the key input signal incorrectly. The solution is solved to read the key enough time to pick the status from input correct. Please use the constant Scan Time function to fix the C's Scan Time at 20ms the keyboard's reading response slow down. Please use the function at every 20 ms.
When the instruction is performed, it should take PLC's Scan Time is too long or too short, it may shown as follows: If the PLC's Scan Time is too short, this may pos points then it will cause to read the keyboard inc Scan Time at 20ms. M9000 M9039 To fix the PLC MOV K20 D9039 To fix the PLC MOV K20 D9039 To fix the PLC HKY X20 Y20 D0 M0 If the PLC's Scan Time is too long, this will cause timer interrupt function to do the keyboard scan Main program FEND ITA20 : is the time interru	e 8 PLC's Scan Times to effectively capture a key. When the affect to read the key input signal incorrectly. The solution is solved to read the key input signal incorrectly. The solution is solved to read the key enough time to pick the status from input correct. Please use the constant Scan Time function to fix the C's Scan Time at 20ms the keyboard's reading response slow down. Please use the function at every 20 ms.
When the instruction is performed, it should take PLC's Scan Time is too long or too short, it may shown as follows: If the PLC's Scan Time is too short, this may pos points then it will cause to read the keyboard inc Scan Time at 20ms. M9000 M9039 To fix the PLC MOV K20 D9039 To fix the PLC MOV K20 D9039 To fix the PLC MOV K20 D9039 If the PLC's Scan Time is too long, this will cause timer interrupt function to do the keyboard scan Main program FEND ITA20	e 8 PLC's Scan Times to effectively capture a key. When the affect to read the key input signal incorrectly. The solution is solved ones not have enough time to pick the status from input correct. Please use the constant Scan Time function to fix the S's Scan Time at 20ms
When the instruction is performed, it should take PLC's Scan Time is too long or too short, it may shown as follows: If the PLC's Scan Time is too short, this may pos points then it will cause to read the keyboard inc Scan Time at 20ms. M9000 MOV K20 D9039 To fix the PLC MOV K20 D9039 To fix the PLC HKY X20 Y20 D0 M0 If the PLC's Scan Time is too long, this will cause timer interrupt function to do the keyboard scan Main program FEND ITA20 ITA20 REF X0 K8 The refresh instruct	e 8 PLC's Scan Times to effectively capture a key. When the affect to read the key input signal incorrectly. The solution is solved to read the key input signal incorrectly. The solution is correct. Please use the constant Scan Time function to fix the C's Scan Time at 20ms the keyboard's reading response slow down. Please use the function at every 20 ms.
When the instruction is performed, it should take PLC's Scan Time is too long or too short, it may shown as follows: If the PLC's Scan Time is too short, this may pos points then it will cause to read the keyboard inc Scan Time at 20ms. M9000 MOV K20 D9039 To fix the PLC MOV K20 D9039 To fix the PLC MOV K20 Y20 D0 M0 If the PLC's Scan Time is too long, this will cause timer interrupt function to do the keyboard scan Main program FEND ITA20 M9000 REF X0 K8 The refresh instruct M9000 HKY X0 Y0 D0 M0	e 8 PLC's Scan Times to effectively capture a key. When the affect to read the key input signal incorrectly. The solution is saibly does not have enough time to pick the status from input correct. Please use the constant Scan Time function to fix the 's Scan Time at 20ms' 's Scan Time at 20ms down. Please use the function at every 20 ms.
When the instruction is performed, it should take PLC's Scan Time is too long or too short, it may shown as follows: If the PLC's Scan Time is too short, this may pos points then it will cause to read the keyboard inc Scan Time at 20ms. M9000 MOV K20 D9039 To fix the PLC MOV K20 D9039 To fix the PLC MOV K20 Y20 D0 M0 If the PLC's Scan Time is too long, this will cause timer interrupt function to do the keyboard scan Main program FEND ITA20 ITA20 HKY X0 Y0 D0 M0 REF X0 K8 The refresh instruct HKY X0 Y0 D0 M0	e 8 PLC's Scan Times to effectively capture a key. When the affect to read the key input signal incorrectly. The solution is easibly does not have enough time to pick the status from input correct. Please use the constant Scan Time function to fix the C's Scan Time at 20ms C's Scan Time at 20ms e the keyboard's reading response slow down. Please use the function at every 20 ms. pt pointer, this interrupt section will be executed every 20ms. tion for input points X0~X7
When the instruction is performed, it should take PLC's Scan Time is too long or too short, it may shown as follows: If the PLC's Scan Time is too short, this may pos points then it will cause to read the keyboard inc Scan Time at 20ms. M9000 MOV K20 D9039 To fix the PLC MOV K20 D9039 To fix the PLC MOV K20 D9039 HKY X20 Y20 D0 M0 If the PLC's Scan Time is too long, this will cause timer interrupt function to do the keyboard scan Main program FEND ITA20 ITA20 HKY X0 Y0 D0 M0 REF X0 K8 The refresh instruct HKY X0 Y0 D0 M0 REF Y0 K8 The refresh instruct IRET	e 8 PLC's Scan Times to effectively capture a key. When the affect to read the key input signal incorrectly. The solution is saibly does not have enough time to pick the status from input correct. Please use the constant Scan Time function to fix the cost of the second state of the sec

																					_
FI		1.1	C								Sovo	n Soc	mont	Doco	dor			1	2	Μ	3
7	'3 「		3	EGD			<u>」</u>				0606	11066	mem	Deco	uei			0	0	\bigcirc	С
	•																				
	Operan	d								Dev	ices										
	operan	X	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	" \$	"	
	S							•	•	•		•	٠	•	0	•	•				
	D								•	•	•	•	٠	•	0	•					
	×	20	SEG	(<u>s</u> D D() ([) K2`	D) (20					S : the D : de	e sour	ce de of de	vice to coded	be de outpu	ecode uts	d				

- When X20 = "ON", decode the content value (nibble format 0~F) of D0's lowest four bits (b0~b3) into a code for a seven-segment display and output it through Y20~Y27.
- The output structure of SEGD is shown in the following table.

(S	Comp	osition	of the					\mathcal{D}				
Hexadecimal Number	Bit Format	seven se	egment	display	b7	b6	b5	b4	b3	b2	b1	b0	Data Displayed
0	0000				0	0	1	1	1	1	1	1	0
1	0001				0	0	0	0	0	1	1	0	;
2	0010				0	1	0	1	1	0	1	1	2
3	0011]			0	1	0	0	1	1	1	1	3
4	0100]	b0		0	1	1	0	0	1	1	0	4
5	0101				0	1	1	0	1	1	0	1	S
6	0110	b5	b6	b1	0	1	1	1	1	1	0	1	8
7	0111				0	0	1	0	0	1	1	1	7
8	1000	b4		b2	0	1	1	1	1	1	1	1	8
9	1001				0	1	1	0	1	1	1	1	9
А	1010]	b3		0	1	1	1	0	1	1	1	8
В	1011				0	1	1	1	1	1	0	0	6
С	1100				0	0	1	1	1	0	0	1	6
D	1101]			0	1	0	1	1	1	1	0	d
E	1110				0	1	1	1	1	0	0	1	8
F	1111	1			0	1	1	1	0	0	0	1	F

۲I	١C				<u>sc (</u>	<u> </u>	<u></u>					Conv	ort I o	ttore t			10		1	2	Μ	3
7	6			~		3						COIN			J AGO				0	\bigcirc	\bigcirc	0
	Oper	and									Dev	ices										
	opon	and	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$	"	
	S							Ke	y-in ei	ght En	glish l	etters	from c	compu	ter							
	D												٠		٠		•					
	• D o	occupi	es (the	e inputt	ed nur	nbers	of Engl	ish lett	ers in S	5 ÷ 2)	compo	onents										
		X2()			S	D)		S : the	esour	ce of l	Englis	h lette	rs will	be cc	nverte	ed to A	SCII	code	es	
	╞			ASC	ABC	DEFG	GH D()		D : th	e dev	rice w	here ,	ASCII	code	es are	store	ed				
	• Whe	en X20) = "(DN", E	Englisł	n lettei	rs A ~	H wil	be co	onverte	ed into	o ASC	ll code	es anc	l store	ed in D)0~D3	3.				

b15	b0	
42H(B)	41H(A)	DO
44H(D)	43H(C)	D1
46H(F)	45H(E)	D2
48H(H)	47H(G)	D3
<u>\</u>		

Higher 8 bits Lower 8 bits

• If M9161 = "ON", each English letter will take a whole register for to store a converted ASCII code, where the lower 8 bits (b7~b0) of the register is to store the ASCII code and higher 8 bits (b15~b8) will all fill with "0".

<u>b15</u>	b0	
00H	41H(A)	D0
00H	42H(B)	D1
00H	43H(C)	D2
00H	44H(D)	D3
00H	45H(E)	D4
00H	46H(F)	D5
00H	47H(G)	D6
00H	48H(H)	D7
00H 00H	47H(G) 48H(H)	D6 D7

Higher 8 bits Lower 8 bits

• If the English letters contents in (S) is less than 8 characters, the difference is made up with "Space Key" Char (ASCII code 20H).

X Y M S D.b R.b RX RY KM KNY KMX KNY	peran	d			-					Dev	ices		-			1		_	
Social product and the status of the st	s	X	Y	M	S	D.b	R.b	KnX	KnY	KnM	KnS	T	C	D,R	V,Z	UnG	K,H	E	"\$
Social S	D		•									•	-	-					
S: the source devices where ASCII codes are store D: the output points to export the ASCII codes The instruction will read ASCII codes of 4 (or 8) source registers (started from (§) and each coed will take a bytel And then, orderly output the ASCII codes to the designated consecutive 8 output points (started from (§)). The process referred above designates 8 points from Y27 (the first bit) to Y20 (the last bit), those are the data output points. It also designates Y30 as the scan signal and Y31 as the monitoring signal. There are two operation modes for the PR instruction, depending on the status "ON"/"OFF" of M9027. M9027 = "OFF" • To generate the 8 words of sequence outputs. The operation sequence diagram is shown below: Activation Scan Signal Y30 Montoring signal Y31 • If you thin struction is performed, the instruction is disabled then the data output will be discontinued. When X20 turns "ON" again, data will be transferred from the first letter. M9027 = "ON" • To generate the 16 words of sequence outputs. The operation sequence diagram is shown below: M9027 = "ON" • If you thin struction is performed, the instruction is disabled then the data output will be discontinued. When X20 turns "ON" again, data will be transferred from the first letter. M9027 = "ON" • To generate the 16 words of sequence outputs. The operation sequence diagram is shown below: M9027 = "ON" • To generate the 16 words of sequence outputs. The operation sequence diagram is shown below: M9027 = "ON" • The activation signal M9027 = "ON" • To generate the 16 words of sequence outputs. The operation sequence diagram is shown below: M9027 = "ON" • The activation signal M9027 = "ON" • The code "00H" (NUL) represents the end of the string and the following words will not be processed. • The code "00H" (NUL) represents the end of the string and the following words will not be activated until X20 turns "OFF".	S occi	upies 4 co	ompon	ients	•	Doco	upies	10 cor	nponei	nts	I					1 1			
butput points. It also designates Y30 as the scan signal and Y31 as the monitoring signal. There are two operation modes for the PR instruction, depending on the status "ON"/"OFF" of M9027. M9027 = "OFF" • To generate the 8 words of sequence outputs. The operation sequence diagram is shown below: Activation Y27-Y20 1" word T T T T: The period of one PLCs Scan Time Scan signal Y30 Monitoring Signal Y31 • If X20 turns "OFF" • To generate the 16 words of sequence outputs. The operation sequence diagram is shown below: Monitoring Signal Y31 • If X20 turns "OFF" during the instruction is performed, the instruction is disabled then the data output will be discontinued. When X20 turns "ON" again, data will be transferred from the first letter. M9027 = "ON" • To generate the 16 words of sequence outputs. The operation sequence diagram is shown below: Activation Y27-Y20 1" word Y27-Y20 1" word Y27-Y20 1" word Y27-Y20 1" to period of one PLC's Scan Time Scan Scan Scan Scan Scan Scan Scan	The ins And the	(20 	PR will re rly out	S (D0 N ead AS tput th abov	D (20 SCII cc le ASC e desi	des o Il cod gnates	f 4 (or es to s 8 po	8) so the de ints fr	urce r esigna om Y2	egiste ted cc 27 (the	S : the D : the rs (stai insecu	sour outp rted fi tive 8	ce dev out poi rom (3 outpu Y20 (tl	vices v nts to (3) and ut poir ne las	where expo d eac nts (st t bit),	ASCII rt the A h coed arted fi those a	code: SCII o will ta rom (are the	s are s codes ake a k D)). e data	tore yte)
Activation signal X20 Is word Image: Word	output There a — M9 • To gr	points. are two c 027 = "(enerate	It also operat DFF" the 8	ion m words	odes f	Y30 a or the quence	e outp	scan structi outs.	signal ion, de The op	and Y epend	ing on	the m the s uence	tatus e diag	ring si "ON"/ ram is	gnal. "OFF shov	" of M9 vn belo	027. w:		
Y27-Y20 1" word 2" word 3" word 3" word 3" word 1" word	Activa signa	ation I X20								- <u>\$</u>				-		o O bito	De		
Y27-Y20 1" word 2" word 3" word 8" word 1 4" word 1 4" word 3" word Scan signal Y30 1 1 T Word 3" word D 3" word D 3" word D 3" word D D 3" word D D 3" word D D 3" word D<			- ~ /~		\ /					·\$\$\									IS
Scan signal Y30 T Word 5" word D2 6" word 5" word D2 6" word T Word D2 6" word T Word D2 6" word T Word D2 6" word D2 D2 D2 D2 D2 <td>Y27~</td> <td>-Y20</td> <td></td> <td>st word</td> <td>2nd</td> <td>word</td> <td>X 3^{rt} V</td> <td>word</td> <td>X</td> <td></td> <td>X 8th v</td> <td>vord</td> <td>Χ</td> <td></td> <td>)1 4</td> <td>4th word</td> <td>3</td> <td>rd word</td> <td>-</td>	Y27~	-Y20		st word	2 nd	word	X 3 ^{rt} V	word	X		X 8 th v	vord	Χ)1 4	4 th word	3	rd word	-
Scan signal Y30 Monitoring signal Y31 • If X20 turns "OFF" during the instruction is performed, the instruction is disabled then the data output will be discontinued. When X20 turns "ON" again, data will be transferred from the first letter. • M9027 = "ON" • To generate the 16 words of sequence outputs. The operation sequence diagram is shown below: Activation	-		Т	T ⁻	г	T : The	perioc	d of on	e PLC's	» s Scan	Time)2 (6 th word	5	th word	-
Monitoring signal Y31	signa	an I Y30)3 8	B th word	7	th word	
 The operation sequence diagram is shown below: Activation signal X20 Y27-Y20 Y^{1st} word Y^{2nd} word Y^{2nd} word Y^{1st} last word Y^{2nd} word		ontinuec	d. Whe	en X2	0 turns	"ON"	agair	n, data	a will b	be tran	sferred	d fron	n the f	irst let	ter.				
Activation signal X20 Y27~Y20 The activation signal does not have to be active all the time. T T T T T : The period of one PLC's Scan Time Scan signal Y30 Monitoring signal Y31 Execution Completed Flag M9029 S The code "00H" (NUL) represents the end of the string and the following words will not be processed. If X20 always stays "ON", the output will be stopped automatically when all data export is finished. Meanwhile M9029 will not be activated until X20 turns "OFF".	disco — M9	027 = "		Lucrd	s of se	equen	ce ou	tputs.	The o	operat	on sec	queno	ce dia	gram	is shc	wn bel	OW:		
 Y27-Y20 1" word 2" word I ast word I ast	disci — M9 • To gi	027 = " enerate	the 16	o word					•••••										
Scan signal Y30 Monitoring signal Y31 Execution Completed Flag M9029 • The code "00H" (NUL) represents the end of the string and the following words will not be processed. • If X20 always stays "ON", the output will be stopped automatically when all data export is finished. Meanwhile M9029 will not be activated until X20 turns "OFF".	disci — M9 • To gi	027 = " enerate Activ signa	the 16 /ation al X20										\leq		/ V				
 signal Y30	disci — M9 • To g	027 = " enerate Activ signa	the 16 vation al X20 '~Y20			ord	2 nd wc				last wo				<u> </u>	The ac does n active a	tivatic ot hav all the	on sigr ve to b time.	ial ie
 Signal Y31	• To g	027 = " enerate Activ signa Y27	the 16 vation al X20 '~Y20 can			ord	2 nd wo	ord The pe		one Pl	last wo	ord an Tin	ne		<u> </u>	The ac does n active	tivatic ot hav all the	ve to b time.	ial ie
 Execution Completed Flag M9029	• To g	027 = " enerate Activ signa Y27 So signa	the 16 vation al X20 - ~Y20 - - - - - - - - - - - - - - - - - - -		1 st wo	ord T	2 nd wc	Ind The pe		one Pl	last wo	ord Ann Tin	ne			The ac does n active a	tivatic ot hav all the	on sigr ve to b time.	ial ie
 The code "00H" (NUL) represents the end of the string and the following words will not be processed. If X20 always stays "ON", the output will be stopped automatically when all data export is finished. Meanwhile M9029 will not be activated until X20 turns "OFF". 	 − M9 • To g 	027 = " enerate Activ signa Y27 So signa Moni signa	the 16 vation al X20 '~Y20 - can al Y30 al Y31		1 st wo	ord T	2 nd wc	rd The pe		one Pl	last wc	an Tin	ne			The ac does n active	tivatic ot hav all the	on sigr ve to k time. -	ial be
- HORDON HORD A TRANSPORTAL AUTOUT LIGHT FOR THE ANTALY INCIDENT A COMPANY AND A COMPANY	 disci M9 To g 	027 = " enerate Activ signa Y27 So signa Moni signa ion Comp Flag M	the 16 vation al X20 '~Y20 can al Y30 al Y31 oleted /9029		T T	ord T	2 nd wc	rd The pe		one Pl	last wc	ord an Tin	ne			The ac does n active	tivatic ot hav all the	on sigr ve to b e time. -	ial De

C 3	┝┥⊦	D	FRO	MP	(m 1) (m 2) (D) (1	D Read FROM a Special Module 1 2 M O O O O											
										5									
Opera	and	.								Dev	ICes	_						-	
	>	(Y	M	S	D.b	R.b	KnX	KnY	KnM	KnS	T	С	D,R	V,Z	UnG	K,H	E	"\$"
m1	1													0			0		
m2	2													0			0		
D		_							•	•	•	•	•	•	0				
n					<u> </u>				ļ					0			0		
For t	the VS2	otru	SM SE	P coo	11 = 1	$\sim 8; to$	r the V	S3 ser	ies, m1	$= 1 \sim$	16	•	m2 = ($) \sim 32,7$	67	ononto	• n	_ 19	0 767
- 1110		3110	iotion,	D 000	upico i	reomp		5 - 11	10 02-1	511 11 131	uction,	D OCC	Jupics	(2/11)	comp	ononic) - 11	1 0	2,101
╞	X20 	—[FRO	m M K2) (m2) 2 K5	D (D0	n) K4		m m: D n	1 : the 2 : the : the : the	positi initial initial numb	on nu numk devic per of	imber ber of t e of st BFMs	of the he BF orage to be	speci Ms to spac read t	fied sp be re e for re from th	pecial ad eading ne spe	modu g up E ecial n	ile BFMs nodule
The N	Main Ur	nit c	of the	VS se	ries P	LC use	es this	s instru	uction	to rea	d BFN	1s dat	ta of th	ne Spe	ecial N	lodule	e.		
Since	e the (m	1) =	= K2,	(m 2) =	= K5,	<u>n</u> =	K4 ar	nd wh	en X2() = "C)N", 4	word	data a	at the	BFM	#5~B	FM #	8 in th	e
spec	ified No	. 2	Spec	ial Mc	dule	will be	read a	and st	ore in	to D0-	-D3.								
The (to ac	m1) is to cess th	o ap e cl	opoint losest	t a Sp t Spec	ecial N cial Mo	Nodule odule,	e, the and s	availa o on.	ble nu	Imber	is fror	n K1 t	to K16	. For	the M	ain Un	iit, K1	repres	sents
Wher	n X20 ic	")FF"	the ind	structi	on will	not h	o norf	ormer	1 hut ti	na dat	a whi	ch har	h road	nrovi	ouelus	will otil	l rem	ain
****		0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Juaou		not o	o pon	onnoc	but u	io dai	awin	onnac	11000	provi	ouory	will Oth	TOTIN	
se typ a c • If a	etting va be of sp decimal a Main l	lue: eci me Jnit	al mo ethod	vario odule ł , such rough	the Bl	eratior differe 0, #1, FM to	nt nur #9 mana	nber o nber o), #10 ge the	bout the bout the bout the bout the bout the bout the bound of the bou	ne mo 1 regis ule, th	dule. ters.	Each The II	BFM i D num	d the S	BFM	pace. registe	The c ers is d	liffere	nt Lin
— Tł • Th 	h e Num he 16-bir	ibe ins	e r of E structi FROM	Data C ion I K1	Group K0	os n (1 D0 K	to be ר) 4	e Tran	sferre	ed —	• Tr	ne 32- -	bit ins	tructio FROM	n 1 K1	К4	D100	(n) K2	
• Th ha	ne numb s the sa	er o	D0 D1 D2 D3 of the	e data	group with ($\frac{3FM \#}{3FM \#}$ $\frac{3FM \#}{3FM \#}$ $\frac{3FM \#}{2FM \#}$ $\frac{3FM \#}{n} = 2$	0 1 2 3 e tran: 2 in the	sferred a 32-b	d is de	etermin	ned by	/ the (n . ($ \begin{array}{c} D100 \\ D101 \\ D102 \\ D103 \\ \hline n) = \end{array} $]]<]]< 4 in th	- [BF BF BF BF BF	M #4 M #5 M #6 M #7	ructio	n
The r	related	spe	cial d	levice	for thi	s instr	uction	1:											
R	elay ID	No).							Γ	Descri	ption							
	M9028	3		Prevei When When	nting t M902 M902	o ope 8 is "(8 is "(rate th DFF", DN", F	ne FRO disallo ROM/	OM/TC ows in /TO in) repe terrup an int	atedly t durin errupt	Ig FR(subro	OM/TC) is in is inef	opera fective	ation. e.			

Jperand				1	1	1		1	Dev	ices		1			1			
	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"
m1													0			0		
m2													0			0		
5							•	•	•	•	•	•		0		•		
Eor the \	(\$2 or \	/SM 86	nios m	 1	~ fo	r tha V	S3 sor	ios m1	 _ 1~	16		m2 – (\sim 32.7	67		0		
• The 16-b	oit instru		S occi	unies r			• Th	he 32-h	hit instr		Soco		2×n)	comp	onents	• n :	= 1~3	2 767
			0 0000		roomp		, 11			dotion,	0 000		2/11)	comp			1 0	2,101
¥2	0	(m 1) (r	n2) (S) (n)			m	1 : the	positi	on nu	mber	of the	speci	fied sp	pecial	modu	ıle
		ТО	K2 k	(0 D)) K1			m	2 : the	initial	numb	per of t	he BF	Ms to	be wr	itten		
I								S	: the	initial	devic	e of da	ata so	urce s	torage	e spac	e	
								n	: the	numb	er of l	BFMs	to be	writte	n to th	e spec	cial m	odule
The Mair	u Unit d	of the '	VS se	ries Pl	LC use	es this	instru	uction	to writ	e data	a into I	BFMs	at the	Spec	ial Mo	dule.		
Since the	e (m 1) =	= K2.	(m ₂) =	= K0, (<u>n</u>) =	K1 an	d whe	en X20) = "O	N", ar	ו 1 wc	ord dat	a at th	ne D0	of the	Main	Unit v	vill be
written in	to spe	cified	No. 2	Spec	ial Mo	dule's	BFM	#0.		,								
The (m 1)	is to a	ppoint	a Sp	ecial N	Nodule	e, the	availa	ble nu	Imber	is fron	n K1 t	o K16	. For t	the Ma	ain Un	it, K1	repres	sents
to acces	s the c	losest	t Spec	cial Mo	odule,	and s	o on.									,		
10 00000																		
When X2	0 is "C	DFF", t	the ins	structi	on will	not b	e perf	ormed	d but tl	he BFI	Ms' da	ata wh	ich ha	d writ	ten pre	evious	ly will	still
When X2 remain.	0 is "C)FF", 1	the ins	structi	on will	not b	e perf	ormec	d but tl	he BFI	Ms' da	ata wh	ich ha	d writ	ten pre	evious	ly will	still
When X2 remain.	0 is "C)FF", †	the ins	structi	on will	not b	e perf	ormec	d but tl	he BFI	Ms' da	ata wh	ich ha	d writ	ten pre	evious	ly will	still
When X2 remain.	0 is "C 5 FM N)FF", † umbe	the ins	structi	on will	not b	e perf	ormec	d but tl	he BFI	Ms' da	ata wh	ich ha	d writ	ten pre	evious	ly will	still
When X2 remain.	0 is "C F M N)FF", t umbe s Spe	the ins	structi	on will	not b	e perf	ormec	f BEM	ne BFl	Ms' da	emon/)	which	d writ	ten pre	evious	ly will	still
When X2 remain. The B • The VS setting	0 is "C F M N S serie g value	DFF", 1 umbe s Spe s and	the ins er (m ²) cial M variou	odule us ope	on will has theration	not b ne cor n statu	npone ses al	ents of	f BFMs	he BFl s (Buff dule.	Ms' da er Me Each	emory) BFM	which s a 16	n are u S-bit sp	used to	o store The d	ly will the iffere	still
 When X2 remain. The B The VS setting type o a deci 	0 is "C FM N S serie y value f spec mal m	DFF", 1 umbe s Spe s and ial mo ethod	the ins er (m ²) cial M variou dule h such	odule odule nas a as #	has theration	not b ne cor n statu nt nun #9	npone ses al nber c #10	ormec ents of bout th of BFN	f BFMs ne mo 1 regis	s (Buff dule. ters.	Ms' da fer Me Each The IE	emory) BFM i D num	which s a 16 ber of	n are u S-bit sj BFM	ten pre used to pace. registe	evious o store The d ers is c	ly will the ifference	still nt I in
 When X2 remain. The E The VS setting type o a deci If a Maximum content of the type of type of type of the type of type of	0 is "C FM N S serie value f spec mal m	DFF", 1 umbe s Spe s and ial mo ethod	the inst er (m ²) cial M variou dule f , such	odule lodule los openas a e l as #	has theration differe 0, #1,	not b ne cor n statu nt nur #9	npone ses al nber c , #10	ents of bout th of BFN	f BFMs ne mo 1 regis	s (Buff dule. ters.	Ter Me Each The ID	emory) BFM i D num	which s a 16 ber of	n are u B-bit sp BFM	ised to bace. registe	o store The d ers is c	the ifference	still nt I in
 When X2 remain. The B The VS setting type o a deci If a Ma 	0 is "C FM N S serie value f spec mal m in Uni	DFF", 1 umbe s Spe s and ial mo ethod t is thr	the inst er (m ²) cial M variou dule h , such rough	odule us openas a o as # the Bl	has theration differe 0, #1, FM to	not b ne cor statu nt nun #9 mana	npone ses al nber c , #10 ge the	ents of bout th of BFN , e mode	f BFMs ne mo 1 regis ule, th	s (Buff dule. ters.	Ms' da fer Me Each The ID dule is	emory) BFM I D num S calle	which s a 16 ber of d the \$	d writ are u 3-bit sy BFM Specia	used to pace. registe	o store The d ers is d	ly will the ifference codec	still nt I in
When X2 remain. The B • The VS setting type o a deci • If a Ma	0 is "C FM N S serie value f spec mal m in Uni	DFF", f umbe s Spe s and ial mo ethod t is thr	the inst er (m ²) cial M variou dule f , such rough	lodule us openas a o as # the Bl	has theration has theration differe 0, #1, FM to	not b ne cor n statu nt nun #9 mana	npone ses al nber c , #10 ge the	ents of bout th of BFN , e mode	f BFMs ne mo 1 regis ule, th	s (Buff dule. ters.	Ms' da fer Me Each The IE dule is	emory) BFM D num S calle	which s a 16 ber of d the \$	n are u B-bit sp BFM Bpecia	ten pre used to pace. registe al Mod	o store The d ers is d	the iffereicodec	still nt 1 in
 When X2 remain. The E The VS setting type o a deci If a Ma 	0 is "C FM N S serie y value f spec mal m in Uni	DFF", t umbe s Spe s and ial mo ethod t is thr	the inst er (m2) cial M variou dule h , such rough	odule us ope nas a the Bl	has theration differe 0, #1, FM to	not b ne cor n statu nt nun #9 mana	npone ses al nber c , #10 ge the	ents of bout th of BFM , e mode	f BFMs ne mo 1 regis	s (Buff dule. ters.	Ms' da Fer Me Each The IE dule is	emory) BFM i D num	which s a 16 ber of	n are u 3-bit sy BFM Specia	ised to bace. registe	o store The d ers is d	the ifferenciaded	still nt I in
 When X2 remain. The B The VS setting type o a deci If a Ma The N 	0 is "C FM N S serie y value f spec mal m in Uni	DFF", 1 umbe s Spe s and ial mo ethod t is thr	the ins er (m ²) cial M variou dule h , such rough	odule us openas a o as # the Bl	has theration differe 0, #1, FM to	not b ne cor n statu nt nur #9 mana to be	npone ses al nber c , #10 ge the	ents of bout th of BFN , e mode	f BFMs ne mo 1 regis ule, th	s (Buff dule. ters.	fer Me Each The ID dule is	emory) BFM D num	which s a 16 ber of d the \$	n are u B-bit sp BFM Specia	ised to bace. registe	o store The d ers is d	the ifference	still nt 1 in
 When X2 remain. The E The VS setting type o a deci If a Ma The N The N The 16 	0 is "C FM N S serie y value f spec mal m in Uni	DFF", 1 umbe s Spe s and ial mo ethod t is thr er of E	the instant	lodule us openas a o a as # the Bl	has theration differe 0, #1, FM to	not b ne cor statu nt nun #9 mana to be	npone ses al nber c , #10 ge the Tran	ents of bout th of BFM , e mode	f BFMs ne mo 1 regis ule, th	s (Buff dule. ters.	fer Me Each The IE dule is	emory) BFM i D num s caller	which s a 16 ber of d the s	n are u S-bit s BFM Specia	ised to pace. registe	o store The d ers is d	the ifferencies the	still ht l in
 When X2 remain. The B The VS setting type o a deci If a Ma The N The N The 16 	0 is "C FM N 6 serie y value f spec mal m in Uni Limbe S-bit in	DFF", 1 umbe s Spe s and ial mo ethod t is thr er of E structi	the instants or (m2) cial M variou dule h variou dule h such rough	odule us openas a e a as # the Bl	has theration differe 0, #1, FM to	not b ne cor n statu nt nun #9 mana	npone ses al nber c , #10 ge the	ents of bout th of BFN , e mode	f BFMs ne mo 1 regis ule, th	e (Buff dule. ters. is mod	Ms' da Fer Me Each The IE dule is	emory) BFM D num s calle	which s a 16 ber of d the \$	n are u B-bit sj BFM Specia	ised to pace. registe	o store The d ers is d lule.	ly will the the ifferei codec	still nt l in
 When X2 remain. The B The VS setting type o a deci If a Ma The N The 16 	0 is "C FM N S serie y value f spec mal m in Uni lumbe S-bit in	DFF", 1 umbe s Spe s and ial mo ethod t is thr er of E structi	the instant	dodule us openas a o a as #1 the Bl	has theration differe 0, #1, FM to	not b ne corn nt nut nt num #9 mana	npone ses al nber c , #10 ge the	ents of bout th of BFN , e mode	f BFMs ne mo 1 regis ule, th	s (Buff dule. ters. is mod	Ms' da fer Me Each The IE dule is	emory) BFM D num s called bit ins	which ha	n are u B-bit sp BFM Specia	used to pace. registe	o store The d ers is d lule.	ly will the ifferei codec	still nt l in
When X2 remain. The B • The VS setting type o a deci • If a Ma • The N • The 16 -	0 is "C FM N S serie y value f spec mal m in Uni Lumbe S-bit in	DFF", 1 umbe s Spe s and ial mo ethod t is thr er of E structi	the instant	odule us openas a o as # the Bl	has theration differe 0, #1, FM to	not b ne cor n statu nt nur #9 mana	e perf npone ses al nber c , #10 ge the	ents of bout th of BFN , e mode	f BFMs ne mo 1 regis ule, th	s (Buff dule. ters. is mod	Ms' da fer Me Each The ID dule is	emory) BFM i D num s caller bit ins	which s a 16 ber of d the s	n are u B-bit sj BFM Specia	used to pace. registe al Mod	o store The d ers is d lule.	ly will the iffere codec	still nt l in
 When X2 remain. The B The VS setting type o a deci If a Ma The N The 16 H + H 	0 is "C FM N S serie y value f spec mal m in Uni lumbe S-bit in	DFF", 1 umbe s Spe s and ial mo ethod t is thr er of E structi	the instant	odule us openas a o as # the Bl	has theration differe 0, #1, FM to 0s n K4 BFM #	not b ne cor n statu nt nun mana to be	npone ses al nber c , #10 ge the	ents of bout th of BFN , e mode	f BFMs ne mo 1 regis ule, th	s (Buff dule. ters. is mod • Tr	fer Me Each The ID dule is	emory) BFM i D num s called bit ins	which ha	n are u B-bit sy BFM Specia	al Mod	o store The d ers is d lule.	ly will the the ifferencodec	still nt l in
 When X2 remain. The E The VS setting type o a deci If a Ma The N The 16 H + 	0 is "C FM N S serie y value f spec mal m in Uni S-bit in	DFF", 1 umbe s Spe s and ial mo ethod t is thr structi TO K	the instant	Sroup	has theration differe 0, #1, FM to os n K4 BFM # BFM #	not be	npone ses al nber c , #10 ge the	ents of bout th of BFN , e mode	f BFMs ne mo 1 regis ule, th	s (Buff dule. ters. is mod • Th	Ms' da Fer Me Each The IE dule is	emory) BFM i D num s called bit ins	which ha which s a 16 Der of d the s tructio	n are u B-bit sy BFM Specia	ten pre used to pace. registe al Mod 4 D1(↓ BFI	o store The d ers is d lule. 00 K2 M #4 M #5	ly will the the ifference codec	still nt i in
When X2 remain. The B • The VS setting type o a deci • If a Ma • The N • The 16 -	0 is "C FM N S serie y value f spec mal m in Uni Lin Uni S-bit in	DFF", 1 umbe s Spe s and ial mo ethod t is thr structi TO K D0 D1 D2	the instant	struction lodule us openas a of a as # the Bl Sroup	has theration differe 0, #1, FM to bs n K4 <u>3FM #</u> <u>3FM #</u>	not b ne cor n statu nt nun #9 mana to be	e perf npone ses al nber c , #10 ge the	ents of bout th of BFN , e mode	f BFMs ne mo 1 regis ule, th	• Th	ier Me Each The ID dule is	emory) BFM i D num s caller bit ins	which s a 16 ber of d the S tructio TO F D100 D101 D102	n are u S-bit sp BFM Specia	Ised to Dace. registe al Mod	o store The d ers is d lule. 00 K2 <u>M #4</u> <u>M #5</u> <u>M #6</u>	ly will the the ifferencodec	still
 When X2 remain. The B The VS setting type o a deci If a Ma The N The 16 H + H 	0 is "C FM N S serie y value f spec mal m in Uni lumbe S-bit in	DFF", 1 umbe s Spe s and ial mo ethod t is thr structi TO K D0 D1 D2 D3	the instant	Godule us openas a o as # the Bl	has theration differe 0, #1, FM to 0s n K4 BFM # BFM # BFM # BFM #	not b ne cor n statu nt nur mana to be	npone ses al nber c , #10 ge the	ents of bout th of BFN , e mode	f BFMs ne mo 1 regis ule, th	• Tr	Ms' da fer Me Each The ID dule is	emory) BFM i D num s called	which ha	n are u B-bit sp BFM Specia	ten pre used to bace. registe al Mod	evious o store The d ers is d lule. 00 K2 M #4 M #5 M #6 M #7	ly will the the ifference codecc	still
 When X2 remain. The B The VS setting type o a deci If a Ma The N The 16 H + The n 	0 is "C FM N S serie y value f spec mal m in Uni S-bit in	DFF", 1 umbe s Spe s and ial mo ethod t is thr structi TO K D0 D1 D2 D3 of the	the instant	Struction locule us open as a final the Bl Sroup $\rightarrow II$ $\rightarrow II$ $\rightarrow II$ $\rightarrow II$ $\rightarrow II$ $\rightarrow II$ $\rightarrow II$ $\rightarrow II$	n has theration differe 0, #1, FM to s n K 4 BFM # BFM #	not be ne corn statu nt nur #9 mana to be	e perf npone ses al nber c , #10 ge the Tran	ents of bout th of BFN , e mode	f BFMs he mo 1 regis ule, th	s (Buff dule. ters. is mod • Th	Ms' da	emory) BFM i D num s called bit ins	which has which s a 16 ber of d the s tructio TO k D100 D101 D102 D103 n =	n are u B-bit sy BFM Specia	ten pre used to pace. registe al Mod 4 D10 • BFI BFI BFI BFI BFI 16-	o store The d ers is d lule. 00 K2 M #4 M #5 M #6 M #7 bit ins	ly will the the ifference of the code of t	still nt l in
 When X2 remain. The B The VS setting type o a deci If a Ma The N The 16 + The nu has th 	0 is "C FM N S serie y value f spec mal m in Uni Jumber S-bit in	DFF", 1 umbe s Spe s and ial mo ethod t is thr structi TO K D0 D1 D2 D3 of the e mea	the instant	struction lodule us openas a of a as # the Bl the Bl b b b b b b c c c c c c c c c c c c c	has there aration differe 0, #1, FM to \mathbf{n} K 4 BFM # BFM # BFM # BFM # BFM # BFM # BFM # BFM # BFM #	not be ne cor n statu nt nun #9 mana to be 0 1 2 3 e trans	e perf npone ses al nber c , #10 ge the Tran	ents of bout th of BFN , e mode	f BFMs ne mo 1 regis ule, th ed	• Th	Ms' da fer Me Each The ID dule is ne 32-l 	emory) BFM i D num s called bit ins D num	which has which s a 16 oper of d the S d the	ad writ a are u b-bit sp BFM Specia n $(1 \ K^4)$ $(1 \ K^4)$	al Mod Len pre Lised to Dace. registe al Mod ↓ Len pre BFI BFI BFI BFI BFI BFI BFI BFI	o store The d The d ers is d lule. 00 K2 M #4 M #5 M #6 M #7 bit ins	ly will the the ifferenciate of the the codec	still nt i in

Relay ID No.	Description
M9028	Preventing to operate the FROM/TO repeatedly. When M9028 is "OFF", disallows interrupt during FROM/TO is in operation. When M9028 is "ON", FROM/TO in an interrupt subroutine is ineffective.

6-10 Serial Communi	cation Instructions
---------------------	---------------------

FNC	Mnomonic in Ladder Diagram	Europian Description	Ap	plica	able	VS
No.		r unction Description	1	2	Μ	3
80	$\vdash \vdash \mathbb{RS} (S) (m) (D) (n) (n1)$	Receive/Send Communication Instruction	0	0	0	0
81		Parallel Run (Octal Mode)	0	0	0	0
82		Convert HEX to ASCII	0	0	0	0
83		Convert ASCII to HEX	0	0	0	0
84		Check Code	0	0	0	0
87	$\vdash \vdash \Box DPUL (S1) (S2) (n)$	CPU Link Communication Instruction	0	0	0	0
88	$\vdash \vdash \vdash PID \ (\underline{S}_1 \ \underline{S}_2 \ \underline{S}_3 \ \underline{D})$	PID Control Loop	0	0	0	0
89	\vdash \vdash LINK (S1 (S2 (n))	Easy Link Communication Instruction	0	0	0	0

30	$\begin{array}{c c c c c c c c c c c c c c c c c c c $										eive/S uctior	end C	ommi	unicat	tion		1	2 N 0 0
									Dav	iooo								
Operand	v	v	М	6	Dh	Dh	KnV	KnV	Dev KnM	Kng	т	C	DR	V 7	UnG	КН	E	"¢"
6	^	T	IVI	3	D.0	R.0	NIIA	KIIT	IN THIN	KII3	1		D,R	v, Z	UIIG	π,11		φ
m																		
n													0			0		
n1																0		
• m, n = 0	~4096	I	• Foi	the V	S1, VS2	L 2 or VS	i SM seri	es, n1	i = 1~3	; for th	e VS3	ı series,	n1 = 1	~5	1		1	1
• The VS se		RS	D0 E	200	D100	D20	<u>1 K1</u>		m : tř D : tř n : tř n1 : tř	ne len he hea he len o appo	gtn of ad reg gth of oint th	the dister line di the di e com	ata to D num ata wa nmunio	be se Iber fo Int to I Cation	nt or the r receive port,	receivi e 1~5 =	ng da = CP1	ta ∼CP5
 that is by As many etc.) are a between therefor the therefor the The CP1-type from the "Non the progra As shown VS series and relate of the per 	-CP5 its va Protoc ammir PLC a iphera	LC us rial co eral e bed wi C anc instru are m rious f col". F ng soft ag soft as the amete al equi	es thi ommu quipn th ser I those iction ulti-fu cunctio Regard tware e belo "Non ers for pmen	s instr nication ial cor e perip is to a notion bns. V ding ti Laddo W, uso Proto each ts, co	uction on inte mmun oheral udapt al con Vhen t he app er Mas e the L col" a peript mpile	marke marke ication s, a P with th nmun this in plication ster S _adde nd at neral. the pr	end ou to con et (e.g ns inte LC us nese c icatior struction typ and a r Masi the sa Next, rogran	it or remmun . inver erfaces er nee ommun n ports on is u e sele t the " ter S to ime par in the n with	eceive licate v eters, b s and l ed to w unicati s. Eac using a ection a Projec o set t age to e VS se releva	the da with ex- parcoc have t vrite th on prot a port a port and re ct" ' the con set of eries P ant cor	ata via xterna de rea heir o he pro btocol t can o , shou lated 'COM mmur ther re 2LC, a mmur	ders, o wn program gram s. choos ld cho paran Port s nicatio levan ccord icatio	e an a boose th beter s betting n port pararing to n.	nicatio equip eaders s. In commu pprop e "Ap etting g". s "App meters the co	on Por ment. s, elec order t inicab oriate c oplicatio , pleas olicatio s. Set	tronic to tran le fund comm on typ se spe the sta nicatio	CP5 displa sfer d ction unicat be:" be ecify it e:" of ation for pro	i, and ays, ata ion ecome from the No. tocol
 As many etc.) are e between the therefor the therefor the "Non the progra As shown VS series and relate of the per VS Application Edit the program e 	periphequipp the PL his RS -CP5 its va Protoc ammir in the PLC a d par- iphera series	LC us rial co eral e bed wi C anc instru are m rious f col". F ag sofi a figure as the amete l equi PLC Non Pr punicati respon	es thi ommu quipn th ser those those totoon totocol on ding	s instr nication ial corresponding is to a notion bns. V ding the Laddo w, use Proto each ts, co	uction on inte mmun oheral idapt al cor Vhen t he app er Mas e the L col" a periph mpile	-232	end ou to con et (e.g ns inte LC us nese c icatior structi on typ and a r Masi the sa Next, rogran	it or remmun . inver erfaces er nee ommun n ports on is u e sele t the " ter S tu in the n with	A var	the da with ex- parcoc have to vrite th on protection protection and rest of portand and rest the cool set of erries P ant cor	ata via xterna de rea heir o he pro- btocol t can o , shou lated 'COM mmur ther rea 2LC, a mmur	its Co I perip ders, o wn pro- gram s. choos paran Port s nicatio levan ccord icatio	al equ	nicatio equip eaders s. In commu- pprophe "Ap setting "." s "App meters the co	on Por ment. s, elec order t inicab oriate c oplication s. Set communi- ont in t	tronic o tran le fund comm ion typ se spe on typ the sta nicatio	CP5 displa sfer d ction unication ecify it e:" of ation Non pro	ays, ata ion ecome from the No. tocol

- Designate (m) to be K0 when there is not need to send out data and designate (n) to be K0 when there is not need to receive data.
- The data transmissions can be divided into the 16-bit mode (M9161 = "OFF") or 8-bit mode (M9161 = "ON") when the RS instruction is performed. Also, the mode flag M9161 should be set before the RS instruction is started.

• The related special devices are summarized below:

(■: Means read only.)

Relay ID No.	Description
M9100	CP1 RS instruction data sending out request flag.
M9101	CP1 RS instruction data receive completed flag.
M9102	CP1 RS instruction data receive time-out flag.
M9103	CP1 RS / LINK / MBUS instruction on communication abnormal flag.
M9110	CP2 RS instruction data sending out request flag.
M9111	CP2 RS instruction data receive completed flag.
M9112	CP2 RS instruction data receive time-out flag.
M9113	CP2 RS / LINK / MBUS instruction on communication abnormal flag.
M9120	CP3 RS instruction data sending out request flag.
M9121	CP3 RS instruction data receive completed flag.
M9122	CP3 RS instruction data receive time-out flag.
M9123	CP3 RS / LINK / MBUS instruction on communication abnormal flag.
M9130	CP4 RS instruction data sending out request flag.
M9131	CP4 RS instruction data receive completed flag.
M9132	CP4 RS instruction data receive time-out flag.
M9133	CP4 RS / LINK / MBUS instruction on communication abnormal flag.
M9140	CP5 RS instruction data sending out request flag.
M9141	CP5 RS instruction data receive completed flag.
M9142	CP5 RS instruction data receive time-out flag.
M9143	CP5 RS / LINK / MBUS instruction on communication abnormal flag.

Register ID No.	Description
■D9101	The CP1's amount of residual data to be sent out by the instruction RS.
■D9102	The CP1's amount of the data already received by the instruction RS.
■D9111	The CP2's amount of residual data to be sent out by the instruction RS.
■D9112	The CP2's amount of the data already received by the instruction RS.
■D9121	The CP3's amount of residual data to be sent out by the instruction RS.
■D9122	The CP3's amount of the data already received by the instruction RS.
■D9131	The CP4's amount of residual data to be sent out by the instruction RS.
■D9132	The CP4's amount of the data already received by the instruction RS.
■D9141	The CP5's amount of residual data to be sent out by the instruction RS.
■D9142	The CP5's amount of the data already received by the instruction RS.

	RS D0 D200 D100 D201 K1
	Fill the data string to be sent Ledit the data string which is beginning from the D0 to be sent and the
A trigger	I length of data string is specified by the D200.
to send	SET M9100 Do not use the RST instruction to reset the M9100.
data	Set the data sending out request flag once
M9101	Move the received data to the data storage area the page to the received data string which is beginning from
The data	the D100 to the data storage area.
receiving is L completed	RST M9101 Heset the data receive completed hag M9101 for preparing to receive the hext data string set. Do not reset the M9101 consecutively in the program. Reset the data receive completed flag
he Related F	Flags and Data Registers
D The Data S	Sending Out Flag M9100:
 When the forces the will be ser will be reserved. 	conditional contact X20 = "ON", the RS instruction is performed. At this time, if a pulse signal status of M9100 to be "ON", the content values of the registers which are beginning from D0 it out via the serial communication port CP1. After the data sending is completed, the M9100 et to "OFF" automatically.
2 The Recei	ve Completed Flag M9101:
• When the	conditional contact X20 = "ON", the RS instruction is performed. The CP1 of PLC is ready to
When the	data receiving is completed, the M9101 = "ON". At this moment, the received data in the buffer
should be be ready f	moved to the data storage area, and then M9101 could be reset to "OFF". Afterwards, PLC will or the status of receiving immediately.
③ The Recei	ve Time-out Flag M9102:
 When the "COM Por Completed The M910 then the M 	data of receiving is paused and the waiting time exceeds the Time-out duration (designated by the t Setting"), the M9102 will turn "ON" to represent the happening of Time-out also the Receive d flag M9101 will be forced "ON" to terminate the data receiving action. 2 will not reset automatically, must use an instruction in the program to reset the status of M9101
By using the equipment	he function of the Time-out flag, the PLC could receive the data of transferring from peripheral ts which without the particular length or "End of Text"
The Time- "COM Por	out duration is specified by using the programming software Ladder Master S – "Project" – t Setting".
	Receiving data
Receiving c	lata — Data
-	The time-out duration /
M9	
M9	
D The Corre	publication Abnormal Flag M0102
	nunication Abrothan Flag Migros.
 winen the will turn "C 	N". The M9103 must use an instruction in the program to reset the status of M9103.

FNC		1	2	Μ	3
82	Convert HEX to ASCII	0	\bigcirc	\bigcirc	0

Operand									Dev	ices								
oporaria	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"
S														0				
D										•	•		•					
n													0			0		
When S	or D is	desigr	nated to	o the K	nX, Kr	ıY, Kn	∕I or Kı	nS, tha	t Kn h	as to b	e K4		• n =	1~25	6			

S : the head ID of data source

D : the head ID of the device where conversion results are stored n : the number of hexadecimal data characters is selected

- When the instruction is performed, it converts a series of HEX characters at the source devices (starting from <u>S</u>) into a series of ASCII codes and transfers the result to the designated devices <u>D</u>. The number of the converted characters is determined by <u>n</u>.
- To convert each 0~F HEX value to a corresponding ASCII code is according to the table below:

HEX Value	ОH	1H	2H	ЗH	4H	5H	6H	7H	8H	9H	AH	BH	СН	DH	EH	FH
ASCII Code	30H	31H	32H	33H	34H	35H	36H	37H	38H	39H	41H	42H	43H	44H	45H	46H

• When X20 = "ON", the instruction converts the 8-digit HEX value in D0 and D1 to 8 ASCII codes, and transfers to the designated registers which are headed by D100.

• The instruction has two operation modes, depending on the status of M9161:

Assume (S)

(D0) = 4567H (D1) = 89ABH

M9161 = "OFF" (16-bit Conversion Mode) -

• This mode will divide each designated device starting from (D) into Upper 8 bits and Lower 8 bits, where two ASCII codes are stored respectively in a register.

_									
(\mathbf{D})	n=8	n=7	n=6	n=5	n = 4	n=3	n = 2	n = 1	
D100 Lower 8 Bits	38H	39H	41H	42H	34H	35H	36H	37H	
D100 Upper 8 Bits	39H	41H	42H	34H	35H	36H	37H		
D101 Lower 8 Bits	41H	42H	34H	35H	36H	37H			
D101 Upper 8 Bits	42H	34H	35H	36H	37H				
D102 Lower 8 Bits	34H	35H	36H	37H					
D102 Upper 8 Bits	35H	36H	37H						
D103 Lower 8 Bits	36H	37H							
D103 Upper 8 Bits	37H								

M9161 = "ON" (8-bit Conversion Mode) -

• This mode will divide each designated device starting from (D) into Upper 8 bits and Lower 8 bits, while the used registers' Upper 8 bits are filled with zero ("0") and Lower 8 bits are to store ASCII codes, each register stores an ASCII code only.

_									
(D)	n=8	n = 7	n=6	n = 5	n=4	n=3	n = 2	n = 1	
D100	38H	39H	41H	42H	34H	35H	36H	37H	
D101	39H	41H	42H	34H	35H	36H	37H		
D102	41H	42H	34H	35H	36H	37H			
D103	42H	34H	35H	36H	37H				
D104	34H	35H	36H	37H					
D105	35H	36H	37H						
D106	36H	37H							
D107	37H								

Operand _ S		HE	EXP	S	D (n				Co	onver	t ASC	ll to I	HEX				0	0 0
Operand S																			
S									De	vice	s								_
S	Х	Y	Μ	S	D.b	R.b	KnX	KnY	KnN	I Kr	IS	Т	C [D,R	V,Z	UnG	K,H	E	"\$"
							٠							•		•			
D													•	•	0				
n										-				0			0	+	
• When S o	r D is di	esian	ated to	l o the k	I (nX Kr	$_{1}$ Y K $_{n}$ N	1 or K	n Sth	at Kn	has t	n he k	(4		n =	1~25	6	-		
X21 When the into a seria converted into a seria ASCII Coo HEX Value When X21 and transf If one of the regard it a	instruct al of HI is dete al of HI de 30 e 0F ers the ne cont s an op	HEX tion i EX va H 3 H 3 H 7 N", th resu tent c perat	S D10 is per- alues ned by 1H H H H H H H H H H H H H H H H H H H	forme and tr 32H 2H tructic (D0) a nated rror ar) n K8 d, it co ansfer ansfer 33H 3H on con nd (D by the nd disa	converts rs the r 34H 4H verts 8 1).	s a se result 35H 5H 3 ASC sourc e inst	ries c to the to the 36F Il coc e (S) ructic	S : D of HE> e desi e desi H 37 H 7 des wh	the the res the chaignat gnat <u>'H</u> H	head heac ults a num aracte ed de 38H 8H are s ASCI	ID nu ID nu re sto ber of ers at t evices <u>39H</u> 9H tarting	mber mbe red ASC he so D 41F AH	r of c r of t II coo burce . Th I 4: E n D10	lata s he po des c e devi e nur <u>2H</u> , <u>H</u> D0 intr D1e at	ource osition onver ices (s nber c 43H CH CH CH	e where ted starting of ASC 44H DH eries of 0H~F	e conv g from XII cod 45H EH f HEX FH), PL	version (S)) es 46H FH values
 M9161 This mc S interview 	de will ode will o HEX	FF" (l con ^v value	(16-b vert th es.	it Co i ne AS	nversi CII cod	on Mo des (st	ode) tored	in Up	per 8	bits	and l	_ower	8 bits	s) at	each	desig	gnated	devic	e
D100			te 38	ян						(- 0	нТ	ОН	Гян		ע 1		
D100		r 8 Bi	ts 39	ЭН							01			8H	9H	n=	= 2		
	Lower	r 8 Bi	ts 41	IH							1 01	4 0		-	-				
D101	Upper	r 8 Bi	ts 42	2H							10 10	+ 0 + 8	H	9H	AH	n =	=3		
D101 D101		8 Bi									0+ 0+ 8+	+ 0 + 8 + 9	H H	9H AH	AH BH	l n= l n=	= 3 = 4		
D101 D101 D102	Lower	- O D:	ts 34	1H		OH	0	H	OH	8H	0+ 0+ 8+ 9+	H 0 H 8 H 9 H A	H H H	9H AH BH	AH BH 4H	l n= l n= n=	=3 =4 =5		
D101 D101 D102 D102	Lower Upper	1 8 BI	ts 32 ts 35	1H 5H		0H 0H	0	H H	0H 8H	8H 9H	01 01 81 91 A1	H 0 H 8 H 9 H A H B		9H AH BH 4H	AH BH 4H 5H	l n= l n= n= n=	= 3 = 4 = 5 = 6		
D101 D101 D102 D102 D103	Lower Upper Lower	r 8 Bi	ts 32 ts 35 ts 36	1H 5H 5H		0H 0H 0H	0	H H H	0H 8H 9H	8H 9H AH		H 0 H 8 H 9 H A H B H 4		9H AH BH 4H 5H	AH BH 4H 5H 6H	I n= I n= n= n=	= 3 = 4 = 5 = 6 = 7		
D101 D102 D102 D102 D103 D103	Lower Upper Lower Upper	r 8 Bi r 8 Bi r 8 Bi	ts 32 ts 35 ts 36 ts 37	1H 5H 5H 7H		0H 0H 0H 8H	0 0 8 9	H H H	0H 8H 9H AH	8H 9H AH BH	01 01 81 91 A1 B1 41	H O H 8 H 9 H A H B H 4 H 4 H 5		9H AH BH 4H 5H 6H	AH BH 4H 5H 6H 7H	I n= I n= n= n= n=	= 3 = 4 = 5 = 6 = 7 = 8		
D101 D102 D102 D103 D103	Lower Upper Lower Upper	r 8 Bi r 8 Bi	ts 32 ts 35 ts 36 ts 37	1H 5H 5H 7H		0H 0H 0H 8H b15	0	H H H	0H 8H 9H AH	8H 9H AH BH	0H 0H 8H 9H AH BH 4H 0 b15	H 0 H 8 H 9 H A H A H B H 4 H 5		9H AH BH 4H 5H 6H	AH BH 4H 5H 6H 7H	I n= I n= n= n= n= 00	= 3 = 4 = 5 = 6 = 7 = 8		
D101 D102 D102 D103 D103	Lower Upper Lower Upper	r 8 Bi r 8 Bi	ts 32 ts 36 ts 36 ts 37	4H 5H 5H 7H		0H 0H 0H 8H b15	0	H H H D D	0H 8H 9H AH	8H 9H AH BH	0F 0F 8F 9F AF 8F 0F 0 b15	H 0 H 8 H 9 H A H B H 4 H 5		9H AH BH 4H 5H 6H	AH BH 4H 5H 6H 7H	I n= I n= n= n= n= 00	= 3 = 4 = 5 = 6 = 7 = 8		
M9161 • This mc values. D100 D102 D103 D103 D103 D103 D103 D103 D101 D102 D101 D102 D103 D104	Lower Upper Upper Upper Upper Upper Lower Lower Lower Lower	r 8 Bi	is 32 ts 3E sts 3E sts 3E sts 37 3-bit (wert the second	H H 5H 5H 7H 5H 7H <td< td=""><td>ersior CII coo</td><td>Mod</td><td>each</td><td>H H D1</td><td>он 8н 9н Ан Ан</td><td>8H 9H AH BH b ts of (</td><td>0H 0H 0H</td><td>H 0 H 8 H 9 H A H B H 4 H 5 H 5 H 0 H 0 H 0 H 8 H 9 H 4</td><td>H H H H H H D C D C</td><td>9H AH BH 4H 5H 6H 6H 0 0 0 0 H 8H 9H AH BH</td><td>AH BH 4H 5H 6H 7H 1 Starti 8H 9H AH BH AH</td><td>I n= I n= n= n= n= n= n= n= n= n= n=</td><td>$m(S) = \frac{1}{2}$</td><td>)into H</td><td>IEX</td></td<>	ersior CII coo	Mod	each	H H D1	он 8н 9н Ан Ан	8H 9H AH BH b ts of (0H	H 0 H 8 H 9 H A H B H 4 H 5 H 5 H 0 H 0 H 0 H 8 H 9 H 4	H H H H H H D C D C	9H AH BH 4H 5H 6H 6H 0 0 0 0 H 8H 9H AH BH	AH BH 4H 5H 6H 7H 1 Starti 8H 9H AH BH AH	I n= I n= n= n= n= n= n= n= n= n= n=	$m(S) = \frac{1}{2}$)into H	IEX
M9161 • This mc values. D100 D102 D103 D103 D103 D103 D103 D103 D104 D102 D103 D104 D105	Lower Upper Upper Upper Upper Upper Upper Upper Lower Lower Lower Lower Lower	r 8 Bi r 8 Bi	is 32 ts 3E sts 3E sts 37 3-bit (wert the second seco	<u>4H</u> <u>5H</u> <u>5H</u> 7H Сопу пе AS	ersior CII cod	Mod OH BH b15 Mod des at	each	H H D1	0H 8H 9H AH AH er 8 bi	8H 9H AH BH b ts of (8H 9H	0F 0F	H 0 H 8 H 9 H A H B H 4 H 5 H 5 H 5 H 0 H 0 H 0 H 0 H 0 H 0 H 9 H A H 8 H 9 H A	н H H H H H H H H H H H H H	9H AH BH 4H 5H 6H 0 ices 0 0 H 8H 9H AH BH 4H	AH BH 5H 6H 7H 1 Starti 8H 9H AH BH 4H 5H	ng fro	m(S))into H	IEX

D1

b0 b15

b0

Ď0

b15

	nd						D	evi	ces								
	X Y	M S	D.b	R.b	KnX	۲ Kn	/ Kn	۱M	KnS	Т	С	D,R	V,Z	UnG	K,H	E	" \$
S						•						•					
D									•								
n							-					0			0		
• Wher	n S or D is designat	ted to the	 КлХ, Кл	nY, Kn	I M or k	(n S, th	nat K <i>i</i>	n ha	s to b	e K4	• n =	1~25	6 •	D occi	upies 2	comp	oner
Sum u desigr	X20 Up the content of nated device D	S D D0 D10 n byte while th) (n) 00 K8 es (by the Parity	ne uni bits a	t of 8- are sto	-bit) d ored i	lata h n the	S D n nead e nei	the : the : the : the wat reg	e head e devi e num vith (S gister.	d ID of ce whe iber of (), the	contin ere the source total c	iuous resul e data of the	data It of Si a to be sum i	source umChe e chec s store	e eck is ked ed in t	stoi he
When ensure When the Pa The in Ma • This	the instruction is e the accuracy of X20 = "ON", sur arity bits are store astruction has two 9161 = "OFF" s mode will make	used fo i the data m up 8 c d D101. o operation (16-bit	r the co a transn onsecu on mod Mode	immul nissio itive 8 les de)	nication. -bit d pend	on, th ata he ling o	e da eade n the	eta's ed w e sta	"Sun th D(tus o	nChe), the f M91	ck" (or total c 161:	"error f the s	dete um is	e (stai	le") ap d in D	oplied	to hile
bec	come a series of	8-bit dat	a sourc	e to d	o the	aggr	egate	e op	erati	on an	id gen	erate tl	ne Pa	rity da	ata.	5m(<u></u>))
		Data Co	ontent va			ontent	value	e in E	Sinary								
_	D0 Lower 8 Bits		255		<u>36</u> 1 1	1	1 1	1	1	1							
<u>(S</u>)	D0 Upper 8 Bits		80		D 1	0	1 0) (0	0							
	D1 Lower 8 Bits		135		1 0	0	0 0) 1	1	1							
	D1 Upper 8 Bits		28		0 0	0	1 1	1	0	0							
	D2 Lower 8 Bits		100		D 1	1	0 0) 1	0	0							
			73) 1	0	0 1	(0	1							
	D2 Upper 8 Bits				1 1	0	1 0										_
	D2 Upper 8 Bits		210			()) (1	:: () :					mber c	C ((4 11	
	D2 Upper 8 Bits D3 Lower 8 Bits D3 Upper 8 Bits		210 5		$\frac{1}{2}$	0	0 0) (1	0	Whe	there	is an c	Juu nu		DT "]″, ₁	
	D2 Upper 8 Bits D3 Lower 8 Bits D3 Upper 8 Bits D100		210 5 886		0 0	0	0 0) (0	0	When the b	n there it corre	is an c sponc	ling to	D101 =	of "1", = 1.	
D	D2 Upper 8 Bits D3 Lower 8 Bits D3 Upper 8 Bits D D100 D101		210 5 886		0 0 1 1	0	0 0) (1 .0. 1	0	Whei the b Whei the b	n there it corre n there it corre	is an c sponc is an e sponc	ling to even nu ling to	D101 = umber D101 =	of "1", = 1. of "1", = 0.	
D M • This S	D2 Upper 8 Bits D3 Lower 8 Bits D3 Upper 8 Bits D Upper 8 Bits D D100 D101 9161 = "ON" (8 s mode will only r) become a seri	B-bit Mo make us es of 8-b	210 5 886 ode) — e of the iit data	Lowe	r 8 bi e to c	0 0 0	nore agg	the	Uppe ate o	0 1 0 er 8 b	When the b When the b	n there it corre it corre it corre every r	is an o spond is an e spond relate erate t	d devi the Pa	ce (starrity da	arted ta.	from
D — M • This S	D2 Upper 8 Bits D3 Lower 8 Bits D3 Upper 8 Bits D 100 D101 9161 = "ON" (8 s mode will only r) become a seri	B-bit Mo make us es of 8-b	210 5 886 • • • • • • • • • • • • • • • • • • •	Lowe	r 8 bi e to c	0 0 its (ig do the	nore agg	the greg.	Uppe ate o	0 1 0 er 8 b perati	When the b When the b	n there it corre it corre it corre every r d gene	is an o spond is an e spond relate	d devi he Pa	D101 = umber D101 = ce (sta rity da	arted ta.	fron
D M • This S	D2 Upper 8 Bits D3 Lower 8 Bits D3 Upper 8 Bits D 100 D101 9161 = "ON" (8 s mode will only r) become a seri	B-bit Mo make us es of 8-b	210 5 886 e of the bit data ontent va 255		er 8 bi e to c	0 0 0 0 do the pontent	nore agg value) (()) 1 1 the greg. 2 in E	Uppe ate o	0 1 0 er 8 b perati	When the b When the b	every r	is an o spond is an e spond relate	d devi	D101 = umber D101 = ce (sta rity da	arted ta.	fron
D M • This S	D2 Upper 8 Bits D3 Lower 8 Bits D3 Upper 8 Bits D 100 D101 9161 = "ON" (8 s mode will only r) become a seri D0 Lower 8 Bits D1 Lower 8 Bits	B-bit Mo make us es of 8-b	210 5 886 e of the bit data 255 80		er 8 bi e to c <u>SB</u> Cc 1 1	0 0 0 ts (ig do the ontent 1 0	nore agg value <u>1 1</u>) (()) 1 1 1 1 2 1 2 2 1 1 0 ()	1 0 1 Uppedate o tinary	0 1 0 er 8 b perati	When the b When the b	every r	relate	d devi	ce (sta	arted	from
D M • This S	D2 Upper 8 Bits D3 Lower 8 Bits D3 Upper 8 Bits D 100 D101 9161 = "ON" (8 s mode will only r) become a seri D1 Lower 8 Bits D1 Lower 8 Bits D2 Lower 8 Bits	B-bit Mo make us es of 8-b	210 5 886 e of the bit data 255 80 135		er 8 bi e to c <u>SB</u> Cc 1 1	0 0 0 ts (ig do the pontent 1 0 0	nore agg value 1 1 1 0 0 0) (()) 1 1 1 1 2 1 2 2 1 1 0 () ()	1 0 1 1 Uppe te o iinary	0 1 0 0 er 8 b perati	When the b When the b	every r	relater	d devi	ce (starity da	arted ta.	from
D • This S	D2 Upper 8 Bits D3 Lower 8 Bits D3 Upper 8 Bits D 100 D101 9161 = "ON" (8 s mode will only r) become a seri D Lower 8 Bits D Lower 8 Bits D Lower 8 Bits D Lower 8 Bits	B-bit Mo make us es of 8-b	210 5 886 e of the bit data 0 0 135 28		r 8 bi e to c <u>SB</u> Cc <u>1 1</u> <u>1 0</u>	0 0 0 0 0 0 0 0 0 0	nore agg value 1 1 1 0 0 0 1 1) (()) 1 1 1 1 2 1 2 3 1 1 2 1 1 1	1 0 1 1 Uppo ate o	0 1 0 0 0 0 0	when the b When the b	every r	relate	d devi	ce (starity da	arted ta.	from
D • This S	D2 Upper 8 Bits D3 Lower 8 Bits D3 Upper 8 Bits D Upper 8 Bits D Upper 8 Bits D Upper 8 Bits D Upper 8 Bits S mode will only r) become a seri D Lower 8 Bits D Lower 8 Bits D Lower 8 Bits D Lower 8 Bits D Lower 8 Bits	B-bit Mo make us es of 8-b	210 5 886 e of the it data ontent va 255 80 135 28 100		r 8 bi e to c <u>SB</u> Cc 1 1 1 0 1 0	0 0 0 0 0 0 0 1	nore agg value 1 1 1 0 0 0 1 1 0 0 0 1) (()) 1 1 1 1 1 2 2 3 1 1 1 1 1 1 1 1 1	1 0 1 1 0 0 1 1 0 0 0 0 0	0 1 0 0 0 0 0	When the b When the b	every r	is an o sponc is an e sponc relate	d devi	ce (starrity da	arted ta.	fron
D • This S	D2 Upper 8 Bits D3 Lower 8 Bits D3 Upper 8 Bits D Upper 8 Bits D Upper 8 Bits D Upper 8 Bits D Upper 8 Bits S mode will only r) become a seri D Lower 8 Bits D Lower 8 Bits	B-bit Mc make us es of 8-b	210 5 886 e of the it data ontent va 255 80 135 28 100 73		r 8 bi e to c <u>SB</u> Cc 1 1 1 0 1 0 0 0 0 1	0 0 0 0 0 0 0 0 0 1 0	nore agg value 1 1 1 0 0 0 1 1 0 0 0 1) (()) 1 1 1 1 1 2 2 3 1 2 3 1 1 1 1 1 1 1 1 1	1 0 1 1 0 0 1 1 0 0 0 0 0	0 1 0 0 0 0 0 1 0 1 0 1 0 0	When the b When the b	every r	is an o sponc is an e sponc relate	d devi	ce (starrity da	arted ¹	fron
D • This S	D2 Upper 8 Bits D3 Lower 8 Bits D3 Upper 8 Bits D3 Upper 8 Bits D100 D101 9161 = "ON" (8 s mode will only r) become a seri D1 Lower 8 Bits D2 Lower 8 Bits D3 Lower 8 Bits D4 Lower 8 Bits D5 Lower 8 Bits	B-bit Mc make us es of 8-b	210 5 886 e of the it data ontent va 255 80 135 28 100 73 210		r 8 bi e to c <u>SB</u> Cc 1 1 1 0 1 0 0 0 0 1 1 1	0 0 0 0 0 0 0 0 1 0 0 0	nore agg value 1 1 1 0 0 0 1 1 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1) (()) 1 1 1 1 1 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 1 0 0 0 1 0 0 0 0 0	0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0	When the b When the b	every r	is an o sponc is an e sponc relate	d devi	ce (starrity da	arted ta.	from
D • This S	D2 Upper 8 Bits D3 Lower 8 Bits D3 Upper 8 Bits D3 Upper 8 Bits D100 D101 9161 = "ON" (8 s mode will only r) become a seri D1 Lower 8 Bits D2 Lower 8 Bits D3 Lower 8 Bits D4 Lower 8 Bits D5 Lower 8 Bits D5 Lower 8 Bits	B-bit Mo make use es of 8-b	210 5 886 9 de)		r 8 bi e to c <u>SB</u> Cc 1 1 1 0 0 1 1 0 0 1 1 1 1 0	0 0 0 0 0 0 0 0 1 0 0 0 0 0 0	nore agg value 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0) (()) 1 1 1 1 1 2 2 3 1 1 1 1 1 1 1 1 1 0 (() 1 1 1 0 () 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 1 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 1 0 1 0 0 1 0 0	When the b When the b	every r d gene	is an o sponc is an e sponc relate rrate t	d devi he Pa	ce (sta rity da	arted ⁻ ta.	from
	D2 Upper 8 Bits D3 Lower 8 Bits D3 Upper 8 Bits D3 Upper 8 Bits D D100 D101 9161 = "ON" (8 s mode will only r) become a seri D1 Lower 8 Bits D2 Lower 8 Bits D3 Lower 8 Bits D4 Lower 8 Bits D5 Lower 8 Bits D5 Lower 8 Bits D5 Lower 8 Bits	B-bit Mc make use es of 8-b	210 5 886 9 de)		r 8 bi e to c <u>SB</u> Cc <u>SB</u> Cc 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1	0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	nore agg value 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0) () 1 1 1 1 1 2 3 3 3 1 1 1 1 1 1 1 1 1 1 1	1 0 1 1 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	When the b When the b	every r d gene	is an o sponc is an e sponc elate rrate t	d devi he Pa	mber c D101 =	of "1", e 1. of "1", e 0. arted ta.	fron
D • This S	D2 Upper 8 Bits D3 Lower 8 Bits D3 Upper 8 Bits D3 Upper 8 Bits D D100 D101 9161 = "ON" (8 s mode will only r) become a seri D1 Lower 8 Bits D2 Lower 8 Bits D3 Lower 8 Bits D4 Lower 8 Bits D5 Lower 8 Bits D5 Lower 8 Bits D7 Lower 8 Bits D7 Lower 8 Bits	B-bit Mc make use es of 8-b	210 5 886 9 de)		r 8 bi e to c <u>SB</u> Cc <u>1 1</u> 1 1 1 0 0 0 1 1 1 1 0 1 1 1 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nore agg value 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0) () () 1 1 1 1 1 1 9 in E 2 in E 1 1 0 () 1 1 0 () 1 0 () 1	1 0 1 1 0 0 0 0 1 0 0 0 0 0	0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	When the b When the b	every r d gene	is an o sponc is an e sponc elate elate t is an o sponc is an o	d devi he Pa	mber c D101 =	of "1", of "1", = 0. arted ta.	from

- When the contents of the communication table specified by the (S1) are execution completed from beginning to end, it will start over again from the first item set of the table.
- When the X20 turns from "ON" to "OFF", this instruction stops and the data sharing immediately stop but data which has transferred previously will still remain.

- The communication table is assigned by the (S_1) of the instruction.
- An example of the "CPU Link" provided by programming tool the Ladder Master S is shown below.

Item No.	Station No.	Device Range	Word/Bit	Disable Contact
1	0	D0 – D9		M1
2	1	D10 – D19		M1
3	2	D20 – D29	_	M2
4	3	D30 – D39	_	

When the device is selected to be the bit device (Y, M, S or the contact of T, C), the initially ID number at the device range must be a multiplier of 8, such as Y0, Y10, Y20, M0, M24 or T8. Also, the length must be a multiplier of 8 as well, such as M0~M23 (24 devices), T8~T15 (8 devices), Y10~Y27 (16 devices), M24~M63 (40 devices).

The first item set in the table means that Station #0 transmits its $D0 \sim D9$ to the $D0 \sim D9$ of other stations in the communication network.

The second item set in the table means that Station #1 transmits its D10~D19 to the D10~D19 of other stations in the communication network.

The third item set in the table means that Station #2 transmits its D20 \sim D29 to the D20 \sim D29 of other stations in the communication network.

The fourth item set in the table means that Station #3 transmits its $D30 \sim D39$ to the $D30 \sim D39$ of other stations in the communication network.

The last column of the table is for the Disable Contact. If that specified contact is "ON", the communication item set will be ignored. For example, if M1 = "ON", the first and second item sets in the table will skip. This is the new function of the VS series, which can help designers effectively manage the operation of the communication table. A communication item set does not need to specify a Disabled Contact (such as the fourth item set), so that the command of the set does not have the disable control function.

• The working area of the executive instruction is starting from the (S_2) (using D100~D103 as the example).

S 2		Description			
	Lower 8 bits	The record of the station number when the first communication error is occurred			
D100	Upper 8 bits	Instruction working status 0: Normal data transmitting / receiving A: The communication setting is normal but no response from the Slave station (Time-out occurs) B: Abnormal communication			
D101 \$ D103	The working area is required for the system when this instruction is performed				

If any communication error occurs during the execution of the instruction, a code will be recorded in D100. Only when the content value of D100 is 0, the recording action can be executed.

Therefor, when there are possibilities of several errors, users can use the program to move out the content value of D100 then reset it to 0. This way allows the D100 to record the next error.

• To edit a communication table (S1)

Use the Ladder Master S to set up a CPUL communication table and through its interactive window can set up and edit a communication table easily.

In the structure of VS series PLC, the communication tables are a part of the project. When the programmer to copy or access the project, those tables will be duplicated automatically with the program.

FNC 88	$\vdash \vdash \vdash PID \ (S_1) \ (S_2) \ (S_3) \ (D)$	PID Control Loop	1	2	М О	3
		Devices				

Operand									Dev	ices								
operana	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"
S1													0		0			
S2													0		0			
S3													0					
D													0		0			
 S3 occur 	ies 25	comp	onents															

S1 : the set point value (SV)

S2 : the measured present value (PV)

S3 : the initial register ID of the parameters

D : the control output value (MV)

- This instruction takes a measured present value from (\underline{S}_2) and compares it to a predefined Set Value (\underline{S}_1) , then uses the parameters (initiated with (\underline{S}_3)) to process the PID operation. The calculate result will be stored to destination register (\underline{D}) .
- When X0 = "ON", this instruction will start to perform; When X0 = "OFF", this process will stop but the content value of D200 will remain as same as the value before it is disabled.
- The PID instruction's parameters are headed from (S_3) , which require occupy 25 consecutive registers.
- When the control parametesr (S_1) or $(S_3) + 3 \sim (S_3) + 6$ of setting values are changed, can rerun the PID instruction for the instant response of output value (D).
- There's no limitation on the times used of the PID instruction.
- This instruction provide the "Auto-tuning" function, it can help users to decide three of parameters in the PID instruction. (Please refer to follow pages.)
- Since the Sampling time of the PID instruction is by way of to accumulate the number of scanned times of this instruction. Therefore, to plan the PID instruction in the program must pay attention on two following points:
 - ① This PID instruction allows to be used in a subroutine, interrupted subroutine, step ladder diagram or related to the conditional jump instruction. However, at the time that the PID instruction is active, must make sure this instruction can be processed once and only once at every Scan Time. If this instruction has been processed more than once or had not been executed, that will cause the sampling error or imprecise operation.
 - ② When the sampling time is shorter than a Scan Time, it would make a PID process error. Then the PLC will automatically treat the (Sampling time) = (Scan Time) to execute the PID process.
 - All the parameters must finished the settings before the PID instruction executes.

The Equations of the PID Instruction –

This instruction is according to the differential of speed, to operation the PID instruction, the equations are shown in the table below:

Direction of Operation	The Equations of the PID Instruction
Forward PVnf > SV	$ \triangle MV = KP \{ (EVn - EVn-1) + \frac{Ts}{T_I} EVn + Dn \} $ $ EVn = PVnf - SV $ $ PVnf = \alpha PVnf-1 + (1 - \alpha) PVn $ $ Dn = \frac{TD}{Ts + KD \cdot TD} (-2PVnf-1 + PVnf + PVnf-2) + \frac{KD \cdot TD}{Ts + KD \cdot TD} \cdot Dn-1 $ $ MVn = \Sigma \triangle MV $
Reverse SV > PVnf	$ \triangle MV = KP \{ (EVn - EVn-1) + \frac{Ts}{TI} EVn + Dn \} $ $ EVn = SV - PVnf $ $ PVnf = \alpha PVnf-1 + (1 - \alpha) PVn $ $ Dn = \frac{TD}{Ts + KD \cdot TD} (2PVnf-1 - PVnf - PVnf-2) + \frac{KD \cdot TD}{Ts + KD \cdot TD} \cdot Dn-1 $ $ MVn = \Sigma \triangle MV $

- EVn : The current error value
- EVn-1 : The previous error value
- SV : The set point value (S1)
- PVn : The measured present value (S_2)
- PVnf : The calculated process value
- PVnf-1 : The previous process value
- PVnf-2: The second previous process value
- \triangle MV : The change in the output manipulation values
- MVn : The current output manipulation value (D)

- Dn : The derivation value
- Dn-1: The previous derivation value
- KP : The proportion constant
- α : The constant of input filter
- TS : The sampling time
- TI : The integral time constant
- TD : The time derivative constant
- KD : The derivative filter constant

Para- meter	Parameter Name/Function		Description	Available Range	
S3	Sampling time (Ts)	The time i and the up	nterval should longer than the PLC's Scan Time oddete period of the measuring system	1 ~ 32767ms	
		b0	0 : Forward operation		
		00	1 : Reverse operation		
		b1	 0 : Disable the Process Value (PVnf) input deviation alarm 1 : Enable the Process Value (PVnf) input deviation alarm 		
		h Q	0 : Disable the Output Value (MV) deviation alarm		
S3+1	Direction of the PID	02	1 : Enable the Output Value (MV) deviation alarm	_	
0011	operation and alarm control	b3	Reserved		
			0 : The Auto-Tuning function is not active		
		b4	1 : To start the Auto-Tuning function, the flag will return to 0 after the Auto-Tuning is finished		
		b5	0 : Disable the range limit of the Output Value		
			1 : Enable the range limit of the Output Value		
		b6 ~ b15 Reserved			
S3+2	Input filter (α)	Modify the changes f	Modify the parameter of input filter to smooth the huge changes from the measured present value		
S3+3	Proportional gain (KP)	This is the	This is the P (Proportional) part of the PID loop		
S3+4	Integral time constant (Tı)	This is the (this para	This is the I (Integral) part of the PID loop, (this parameter disables the I effect if it is set to "0")		
S3+5	Derivative gain (KD)	To adjust t change of	To adjust the proportion between the derivative output and the change of the Process Value (PVnf)		
S3+6	Derivative time constant (TD)	This is the (this para	This is the D (Derivative) part of the PID loop, (this parameter disables the D effect if it is set to "0")		
S_{3+7}^{2} S_{3}+19	Working space	Reserved	Reserved for the internal processing of the PID instruction		
S3+20	Set point of positive deviation alarm for Process Value (PVnf)	To set the Active wh	trigger point of positive deviation alarm (upper limit); en S_3+1 's b1 = "ON"(1)	0 - 22767	
S3+21	Set point of negative deviation alarm for Process Value (PVnf)	To set the Active wh	trigger point of negative deviation alarm (lower limit); en S_3+1 's b1 = "ON"(1)	0~ 32707	
S3+22	Set point of positive deviation alarm for the Output Value (MV)	To set the Active wh	trigger point of positive deviation alarm (upper limit); en S_3+1 's b2 = "ON"(1)	0~32767	
	The maximum limit of Output Value (MV)	The maxin S3+1's b5	num limit of Output Value (MV) is effective when = "ON"(1)	-32768 ~ 32767	
	Set point of negative deviation alarm for the Output Value (MV)	To set the Active whe	To set the trigger point of negative deviation alarm (lower limit); Active when S_3+1 's $b_2 = "ON"(1)$		
33+23	The minimum limit of Output Value (MV)	The minim S3+1's b5	um limit of Output Value (MV) is effective when	-32768 ~ 32767	
		b0 The positive deviation alarm for Process Value (PVnf) is arrived			
	Alarm flags (for read ash)	b1	The negative deviation alarm for Process Value (PVnf) is arrived		
53+24	Alarminays (for read only)	b2	The positive deviation alarm for Output Value (MV) is arrived	—	
		b3	The negative deviation alarm for Output Value (MV) is arrived		

• (\underline{S}_3) + 1's b2 and b5 should not be active at the same time.

• When any one of the $(\overline{S_3})$ +1's b1, b2 or b5 is "ON", the parameters' block for the PID at $(\overline{S_3})$ will occupy $(\overline{S_3}) \sim (\overline{S_3})$ +24 total 25 consecutive registers.

• When all of the (S_3) +1's b1, b2 and b5 are "OFF", the parameters' block for the PID at (S_3) will occupy $(S_3) \sim (S_3)$ +19 total 20 consecutive registers.

The Description of the Forward or Reverse Operation

- If the parameter of (S_3) +1's b0 = "OFF" then the PID instruction will process the forward operation; If the parameter of (S_3) +1's b0 = "ON" then the PID instruction will process the reverse operation.
- When the measured input Process Value (PVnf) > the Set Point Value (SV), it will generate a positive deviation then the change to increase the effect is called forward operation.
 For example, An air conditioning system: before the system turns on, usually the indoor temperature is higher than the set point value. (PVnf) > (SV), this is a typical forward operation control sample.
- When the measured input Process Value (PVnf) < the Set Point Value (SV), it will generate a negative deviation then the change to increase the effect is called reverse operation.
 For example, An oven: before the heater of the oven turns on, usually the temperature of the oven is lower than the set point value. (PVnf) < (SV), this is a typical reverse operation control sample.

The Description of the Process Value (PVnf) and Output Value (MV) Deviation Alarm Functions

- If the of (S_3) +1's b1 = "ON", PID instruction provides the Process Value (PVnf) deviation alarm. The parameters setting of the Process Value's deviation alarm are stored in (S_3) +20 and (S_3) +21 then the results will put in (S_3) +24's b0 and b1. The content of (S_3) +21 is used as a negative value.
- If the (\underline{S}_3) +1's b2 = "ON", PID instruction provides the Output Value (MV) changing alarm. The parameters setting of the Output Value's changing alarm are stored in (\underline{S}_3) +22 and (\underline{S}_3) +23 then the results will put in (\underline{S}_3) +24's b2 and b3. The content of (\underline{S}_3) +23 is used as a negative value.
- The definition of the deviation in Manipulation Values: Deviation = (Present value) (Previous Present value)

• The Output Value (MV) deviation alarm function:

The Description of the Output Value (MV) Limit Function

- If the parameter of (S_3) +1's b5 = "ON", the PID instruction provides the range limit function at the Output Value (MV). The parameters about the settings of the Output Value limits are stored in the (S_3) +22 and (S_3) +23.
- Since both of the limit and alarm functions are occupying to the same parameter registers (S₃)+22 and (S₃)+23, therefore only one of the function can be selected and the control bits in the (S₃)+1's b2 and b5 should not be "ON" at the same time.
- This function is very useful for to limit the accumulative raise of the PID derivative value.
- The diagram of the Output Value (MV) Limit Function:

The Error Information of the PID Instruction

• If a setting value of parameter is not correct or the operation of a PID instruction occurs error, the Special Relay M9067 will be turned "ON". And the Special Register D9067 will store the error code.

Error Code	Error Cause	Effect to the Instruction	
6730	The setting value of Sampling Time (Ts) is beyond the range (Ts $<$ 1)		
6732	The setting value of Input Filter (α) is beyond the range (α <0 or α >=100)		
6733	The setting value of Proportion Gain constant (KP) is beyond the range (KP $<$ 1)	The PID instruction	
6734	The setting value of Integral Time constant (Tı) is beyond the range (Tı<0)	will stop to operate	
6735	The setting value of Derivative Filter Constant (KD) is beyond the range (KD $<$ 0 or KD $>$ 100)		
6736	The setting value of Derivative Time Constant (TD) is beyond the range (TD $<$ 0)		
6740	The Sampling Time <= The Scan Time of PLC		
6742	The change of the measured Present Value is too large (\triangle PV < –32768 or \triangle PV>32767)		
6743	The change of current Error Value is too large (\triangle EV < -32768 or \triangle EV > 32767)		
6744	The calculating value of Integral process exceeds $-32768 \sim 32767$	The PID instruction will continue to operate	
6745	The value of Proportion Gain (KP) is too large, it cause the calculating value of proportion which exceeds the range		
6746	The calculating value of Derivative process exceeds –32768 \sim 32767		
6747	The calculating result value of the PID instruction which exceeds –32768 \sim 32767		

The Method to Get The Parameters of a PID Instruction

- For a better control result of a PID instruction, we should get the correct parameters of the PID operation. It means we need to find the apropos values of Proportion Gain (KP), Integral Time Constant (TI) and Derivative Time Constant (TD).
- To get those three parameters, we have many different ways, usually the method of Process / Feedback Loop will be used. The following is the reference.
- The method of Process / Feedback Loop to get the parameters is through to control the output rate became either 0 or 100% a few times. And then, observes the variation between processes and feedbacks, by those dynamic characteristics to get those parameters of PID.

Use the curve to get the PID's parameters

Control Method	Proportion Gain KP(%)	Integral Time Constant Tı (× 100ms)	Derivative Time Constant TD (× 10 ms)
Р	$\frac{1}{R \times L} \times Output value (MV)$	_	_
PI	$\frac{0.9}{R \times L} \times Output value (MV)$	33×L	_
PID	$\frac{1.2}{R \times L} \times Output value (MV)$	20×L	50×L

Auto-Tuning Function

- The VS series provided the Auto-Tuning function which can uses some PID correlative parameters from user (such as: the operational direction at S₃+1, Sampling Time Ts, Input Filter (α), Derivative Filter Gain KD and Set Point Value (S1) then via the PID instruction executes the Auto-Tuning function, the system will get three important parameters of PID.
- The Auto-Tuning function can help user to get those three important parameters of the PID then to simplify the operation of PID instruction.
- This instruction is using relay "ON"/"OFF" to execute the Auto-Tuning function, then evaluates three important parameters of the PID: Proportional gain (KP), Integral time constant (TI), Derivative time constant (TD).
- The steps to execute the Auto-Tuning function:
 - ① Input those 5 basic parameters: the operational direction at the b0 of $(S_3)+1$, Sampling Time Ts (S_3) , Input Filter (α) $(S_3)+2$, Derivative Gain KD $(S_3)+5$ and Set Point Value (S_1) .

(2) Fill in the parameters (S_3) +14 and (S_3) +15.

Parameters	Parameter Name/Function	Description
(S 3) + 14	The Max. Output Value	The output when the AT is at 100% output rate
(S 3) +15	The Mini. Output Value	The output when the AT is at 0% output rate

③ Let the parameter of (S_3) +1's b4 = "ON", then it will start to execute the Auto-Tuning operation.

④ When the Auto-Tuning operation is finished, the parameters at (S_3) +1's b4 will turn "OFF" also the contents of (S_3) +14 and (S_3) +15 will reset to zero automatically.

The General Idea of Thermal Control

Usually use the PID instruction contain in a PLC control system is for the thermal control. The following pages are the brief expositions about the thermal control.

• The construct of a thermal control system

Thermal controller		_	Thermal probe	The controlled object
Use the electricity signa	Use the electricity signal	Iemperature Signal	Platinum Resistance Thermometer (PT)	
	compare with the setting,		Executor	
	controlling signal to the executor.	Control Signal	According to the signal, use equipments (ex:	
At the VS series PLC, can use the Main Unit + Temperature Expansion Card or Temperature Module to get the temperature signal from the sensor, and then to execute the temperature control		potential output	by control the switch of heater or the valve of cooling water) to warm up or cool down the container of object.	

• The brief explanation of the thermal control

To set up the value of set point in the temperature controller and let it operates. The object may not steady changing the temperature immediately to the target temperature because the characteristic of the object.

In general, to expedite the responsive speed, it may cause overheat or waved temperature control. If want to reduce the strong reaction, should make the response slow.

Some of the perform is like the Chart (1), which wants to control the temperature to the set point value as soon as possible. Under this condition, the temperature of object may overshooting the set point value, so it can be used only at the object is not concerned about overheat.

Some of the perform is like the Chart (2), which spends more time to get the smoothly thermal control. It is required the suppression of overshooting, so the longer time is required for stabilize temperature.

The Chart (3) is showing a compromise curve. That has an ideal responsive value, so it is the most popular type.

• The brief explanation of the thermal control

For the purpose of an ideal thermal control, when choose a thermal sensor and pick the controlling parameters, it is necessary to fully understand the characteristics of controlled object.

(1) Heat Capacity : How difficult to change the temperature, it may relate to the size of object.

(2) Heating Static Characteristics : It is indicate the capability of heating, which depends on the output capacity of heater.

(3) Initially Dynamic Characteristic : At the beginning of heating, the characteristic of temperature changing which is complicated relationship with container and heater.

(4) External Disturbances : Some of the interference changes the temperature. For example, a door of the constant temperature furnace is opened.

• The PID Parametric Explanations

(1) P (Proportional Control) Action

The control action is used for obtaining the output in proportion to the input.

This control operation is to generate an output rate that is related to the difference between the set point and the measured temperature, by way of the multiplication product of the difference and the proportional gain. Therefore, the control operation rate related to the difference and the gain is called the proportional control.

(2) I (Integral Control) Action

The I (integral) action is the output rate adjustment by the content value of Integral time constant (TI). The P action will cause an offset definitely. Therefore, if proportional control action and integral control action are used in combination, the offset will be reduced as the time goes by until finally the control temperature will coincide with the set point and the offset will be reduced.

(3) D (Derivative Control) Action

The D (derivative) action is the output rate adjustment by the content value of Derivative time constant (TD). It provides a rapid output rate response when the measured temperature is changed. The action of the proportional control and the integral control are by way of to correct the control result. Therefore, the response of proportional and integral control actions are slow when the temperature change is guick, which is why derivative control action is required. Derivative control action corrects the result of control

by adding the control output in proportion to the slope of temperature change. A large quantity of control output is added for a radical external disturbance so that the temperature can be auickly in control.

Temperature Output Rate Temperature PD (proportional and A long derivative time is set. derivative control) action A long derivative time is set. Set Set t point t point 100% A short derivative time is set External 50% disturbance A short derivative P (proportional control) action only time is set 0% Time Time Time

(4) PID Control PID control is a combination of P(proportional), I (integral) and D (derivative) control actions, in which the temperature is controlled smoothly by proportional control action without hunting, automatic offset adjustment is made by integral control action, and quick response to an external disturbance is made possible by derivative control action. PID Control • Control Cycle and Time-Proportioning Control Action When the temperature control is used with a relay or SSR to control the output, it will follow the designated cycle time to intermittently turn "ON" or "OFF" in a specified period. This preset cycle is called control cycle and this control method is called time-proportioning control action. A PLC system in the main unit is always using this method to procure temperature control. • The Definition of Integral Time • The Definition of Derivative Time Integral time is the period required for a step-type Derivative time is the period required for a ramp-type deviation in integral control (e.g., the deviation shown in the following graph) to coincide with deviation in derivative control (e.g., the deviation shown in the following graph) to coincide with the control output the control output in proportional control action. in proportional control action. The longer the derivative The shorter the integral time will cause the stronger time will cause the stronger derivative control action. integral control action. If the integral time is too short, it will cause a quick and huge correction then may have the temperature waving. Deviation Deviation 0 0 PD action (With a short derivative time) PI action (With a short integral time) PD action (With a long derivative time) Control output rate Control output rate PI action (With a long integral time) action D2 action P action D1 action TD : derivative time TI: integral time T11 T_{D1} (With a short integral time) (With a short derivative time) TI2 Td2 (With a long integral time) (With a long derivative time)

• Auto-Tuning

All PID process/temperature controllers require the adjustment of the P, I, D and other parameters in order to allow accurate control of the load. There have been a variety of conventional methods but the Auto-Tuning methods make it possible to obtain PID constants suitable to a variety of objects automatically.

• Adjust the PID Parameters

It is convenient while the PID constants calculated via the Auto-Tuning operation and normally they are more correct than tuning by manual. Usually, the Auto-Tuning do not cause problems and we will suggest using it to set up the parameters. Except for some particular applications if the more accurate constants is necessary. In which case, refer to the following to readjust the PID constants.

Response to Change in Proportional Gain

Narrower	Set point	It is possible to suppress overshooting although a comparatively long startup time and reaction time will be required.
Wider	Set point	The process value reaches the set point within a comparatively short time and keeps the temperature stable although overshooting and waving will result until the temperature becomes stable.

Response to Change in Integral Time

Response to Change in Derivative Time

• The Definition of the Forward Operation To increase the control output rate when the temperature of the object is higher than the set point (positive deviation). Usually using in a cooling control.

• The Definition of the Reverse operation To increase the control output rate when the temperature of the object is lower than the set point (negative deviation). Usually using in a heating control.

The Example of PID Temperature Control

• When design a PID temperature control program, the method below is the recommendable procedure to perform the PID instruction.

• The System Structure of Temperature Control

• Program Example

When X0 = "ON", it will executes Auto-Tuning function, and then starts the PID control; Otherwise, when X0 = "OFF", it will executes the PID function directly.

This program is to control the "ON"/"OFF" length percentage in a specific time-span (5 seconds).

When this program starts at the first time, must let X0 = "ON", then by the Auto-Tuning to get parameters of PID. Otherwise, the PID control will occur error because the related parameters aren't ready yet.

_ M9002 	MOV K2450 D100 Let the set point = 245° C, unit = 0.1° C.
	$\frac{1}{10000000000000000000000000000000000$
XO	MOV H0001 D201 Set the PID instruction to do the Reverse operation.
	PLS M0 When X0 = "OFF" \rightarrow "ON", it will start to execute the Auto-Tuning (AT). To set the value of (D) when the AT is ecceuting and the output is = 100% (parameter (S ₃) +14). Since the T200 dominates the control output cycle and its set value is K1000, thus D214 is set to be K1000.
	MOV K0 D215 To set the value of (D) when the AT is ecceuting and the output is = 0% (parameter $(\underline{S_3})$ +15).
	MOV H0011 D201 Set the PID instruction to do the Reverse operation and start to execute the Auto-Tuning.
= 1	EC1D18 K105 M10 Ensure the expansion card in EC1 is the VS-2TC-EC.
M10	MOV H0 EC1D0 Set the external thermocouple to be the K Type.
	MOV K10 EC1D6 Set the average of the TC1 to be 10 times.
	MOV EC1D2 D101 Read the temperature value of the TC1 and copy it to the D101, unit = 0.1 $^{\circ}$ C.
	PID D100 D101 D200 D102 To operate the PID instruction.
	T200 To assign the period of repeating cycle to be 10 seconds.
-<	T200 D102 Y1 According to the result of the PID calculation to drive the heater.
M9067	Y0 The output of PID control loop error alarm.

Relay ID No.	Description
M9103	CP1 RS / LINK / MBUS instruction on communication abnormal flag.
■M9104	CP1 LINK / MBUS instruction on execution table complete once flag.
M9113	CP2 RS / LINK / MBUS instruction on communication abnormal flag.
■M9114	CP2 LINK / MBUS instruction on execution table complete once flag.
M9123	CP3 RS / LINK / MBUS instruction on communication abnormal flag.
■M9124	CP3 LINK / MBUS instruction on execution table complete once flag.
M9133	CP4 RS / LINK / MBUS instruction on communication abnormal flag.
■M9134	CP4 LINK / MBUS instruction on execution table complete once flag.
M9143	CP5 RS / LINK / MBUS instruction on communication abnormal flag.
■M9144	CP5 LINK / MBUS instruction on execution table complete once flag.

• The communication table is assigned by the (S_1) of the instruction.

An average of the "LINUZ"	na na viala al las concera anna n	a national teacht a chalada	" Maatar Cia abaura balarri
An example of the TTINK	DIOVIDED DV DIODIAL	nmina iooi ine i aaae	LIVIASIELS IS SHOWD DEIOW
	provided by program	inining tool the Eddad	

Item No.	Command	Device at Master	Direction	Slave St. No.	Device at Slave	Length	Word / Bit	Disable Contact
1	Read	D0	<	1	D0	10		M1
2	Write	D10	>	1	D10	5	_	M1
3	Read	D20	<	2	D0	10	_	M2
4	Write	D30	>	2	D10	5		
5	Write	D40	>	255	D40	20		M0

The first item set in the table means that the Master reads the data D0~D9 from the Slave #1 and stores them at the D0~D9 of the Master.

The second item set in the table means that the Master writes its data at D10~D14 to the D10~D14 of the Slave #1. The third item set in the table means that the Master reads the data D0~D9 from the Slave #2 and stores them at the D20~D29 of the Master.

The fourth item set in the table means that the Master writes its data at D30~D34 to the D10~D14 of the Slave #2. The fifth item set in the table means that the Master writes its data at D40~D59 to all the D40~D59 of the Slaves. To set the Slave station #255 means that the Master writes the data to all of the Slaves. Note that Read Command cannot be used in this application.

The last column of the table is for the Disable Contact. If that specified contact is "ON", the communication item set will be ignored. For example, if M1 = "ON", the first and second item sets in the table will skip. This is the new function of the VS series, which can help designers effectively manage the operation of the communication table. A communication item set does not need to specify a Disabled Contact (such as the fourth item set), so that the command of the set does not have the disable control function.

• The working area of the executive instruction is starting from the (S_2) (using D100~D103 as the example).

S 2	Description				
	Lower 8 bits	The record of the Slave's station number when the first communication error is occurred			
D100	Upper 8 bits	Instruction working status 0: Normal data transmitting / receiving 4: The error is caused by the assigned device is inappropriate 7: The error is caused by the communication command is incorrect A: The communication setting is normal but no response from the Slave station (Time-out occurs) B: Abnormal communication			
D101 \$ D103	The working area is required for the system when this instruction is performed				

The LINK instruction will reset the D100 to be 0 before the first item set at the table is executed.

If any communication error occurs during the execution of the instruction, a code will be recorded in D100. Only when the content value of D100 is 0, the recording action can be executed. Therefor, when there are possibilities of several errors, users can use the program to move out the content value of D100 then reset it to 0. This way allows the D100 to record the next error.

• To edit a communication table

Use the Ladder Master S to set up a LINK communication table and through its interactive window can set up and

edit a communication table easily. In the structure of VS series PLC, the communication tables are a part of the project. When the programmer to copy or access the project, those tables will be duplicated automatically with the program.

6-11 Handy Instructions

FNC	Mnemonic in Ladder Diagram	Eurotion Description	Ар	plica	able	VS
No.		Function Description	1	2	Μ	3
90		Read Data From Data Bank	0	0	0	0
91		Write Data Into Data Bank	0	0	0	0
92	$\vdash \vdash \top PID \ (\underline{S}_1) \ (\underline{S}_2) \ (\underline{S}_3) \ (\underline{S}_4) \ (\underline{n})$	Temperature PID Control	0	0	0	0
93	$\vdash \vdash DTRD \square (S1) (S2) (D) (n)$	Read Data From Data Table	0	0	0	0
102		Batch Store of All Index Register				0
103		Batch Recover of All Index Register				0

Operand									Dev	ices								
operanu	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"
S													0			•		
D													٠					
n													0			0		
 S is a 32-bit component, S = 0~655,359 When S designates to D or R as the object, that occupies 2 registers. When S uses K or H and modifies by V, Z index, that occupies a pair of V, Z index registers. D is a 16-bit component, but when uses V, Z index to modify, that occupies a pair of V, Z index registers. 																		

Then X20 = "OFF" → "ON" and (D1, D0) = 100, it will execute to read a group of data at the addresses 100~199 in the Data Bank and put the data in D1000~D1099. Due to the n = 100, it will read a group data that contents with 100 words.

n : the length of the data to be read (Unit: Word)

- When a Main Unit is equipped with a VS-MC or VS-MCR memory card, it will be provided with the Data Bank. After that, for the application which need to store or get a large number of data is convenient.
- The Data Bank in the VS-MC or VS-MCR card is stored in the component of Flash ROM. It can store 655,360 words of data and there has no limit on the number of reading times.
- When X20 = "OFF", the instruction will not be performed but the data (which has read previously) will still remain.

		D	BWF	RP (S) (D)				Write	e Data	Into [Data E	Bank				
									I									
Operand									Dev	ices								
Operand	X	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"
S													•					
D													0			•		
n													0			0		
• S is a 16-	bit con	npone	ent, but	when	uses V	, Z inde	ex to m	nodify, ⁻	that oc	cupies	a pair	of V, Z	index I	registe	ers.			
 D is a 32- When D o When D o n = 1~32 	bit cor lesigna ises K 2,767	npone ates to or H a	ent, D = o D or F and mo	= 0~6 R as th odifies	55,359 e objec by V, Z	ct, that index,	occup that or	ies 2 r ccupie	egister s a pai	s. r of V, Z	Z index	registe	ers.					
				(S)	(D)	(n)				S : the	e initia	l regis	ster ID	numt	per for	a gro	up of	data
X20	[DBW	RP D	1000	D0	K100				tha	at write	es to t	he Da	ta Ba	nk			
	L				-					D : the wr	e initia 'ite	il addr	ess ni	umbe	r at the	e Data	Bank	to be
										n : the	e leng	th of tl	he dat	a to b	e write	e (Unit	t: Wor	d)
When X20) = "C)FF"-	→ "∩N	l" and	(D1 I	- (UC	100 i	t will c	VPCI It	e to re	ad a d	aroun	of dat	a at ti	ne Mei	n l Init	יפ D1ו)00~
D1099 an	d stor	e the	data i	nto th	e add	resses	s 100, 1	~199 i	n the l	Data E	Bank.	Due to	o the (n =	100, it	will w	rite a	group
data that	conter	nts wi	th 100) worc	IS.													
When a N	ain U	nit is	equip	ped w	ith a V	S-MC	or VS	S-MCF		ory ca	ard, it v	vill be	provio	ded w	rith the	Data	Bank	After
	e app	ncali	on wn	ich ne		store	Ji get	alarg	je nun	o isai	i uala	IS COI	ivenie	nii. • • –				
The Data	Bank	in the	:VS-N	IC or rowrit	/S-MC	CR car	d is st avail	tored i	n the		onent	of Fla: an 10	sh RO	M. E	ven the	ough, still h	in eve	ery Limit
So, when	the pr	ograr	n usir	ng this	DBW	R insti	ruction	n to re	write o	lata in	ito the	card,	bette	r char	nge it t	o the	DBWF	? III 1 III. ?P
instructior	i. The	e DBV	VRP c	an avo	oid use	eless	operat	te of re	ewrite,	and t	hen e	xtend	the life	espan	of the	Flash	n RON	1.
When the function.	instru The C	PU w	rewrit /ill wai	es da t for th	ta to th	ne me cution	to co	card, o mplet	every : e and er will	section then o	n (128 contini tomat	word uously	s) nee v perfo	eds 15 rm th	ims to e rest	execu of the	ute the progr	e am.
instruction	1 to st	ore a	large	amou	nt of c	lata, s	hould	pay a	attentic	on to t	ho off	icany (ioh w	ite ac	tion m	ay cal	use.	
												ect wh		no ao				
												ect wh		no ao				
												ect wh		no do		2		
												ect wh		no do		-		
												ect wh	ICTT WI			-		
												ect wh				-		
												ect wh				-		
												ect wh	ICTT WI			-		
												ect wh				-		
												ect wh				-		
												ect wh				-		
												ect wh				-		
												ect wh				-		
												ect wh				-		
												ect wh				-		
												ect wh				-		
												ect wh				-		
												ect wh						
												ect wh						
												ect wh						
												ect wh						

2		┥┝──	— T	PID	<u>(S1)</u> (<u>S</u> 2) (S	3 S 4) (n)		Temp	oeratu	ire PI) Con	trol			0	
										_									
Oper	and	V	X		0		D.			Dev	ices	-	0		N 7			-	" ^ "
6	4	X	Y	M	S	D.D	R.D	KNX	KNY	КЛМ	KNS		C	D,R	V,Z	UnG	к,п	E	\$
<u>ح</u>	1 2													0					
S:	3													0					
S4	4													0					
n														-			0		
• S1 a	and S	2 indivi	idually	occup	ie n cc	nsecut	ive reg	jisters		• S3 c	i occupie	es (10)	r)+10) cons	ecutive	regist	ers		
• S4 (occup	oies 6×	(n con	secutiv	e regis	sters	•	n = 1	~16										
				(5	i) (\overline{S}_2 (S 3)	(S4)	(\mathbf{n})		S1 : th	ne initi	al regi	ster ID) of th	e Set '	Value	(SV) b	lock
Ļ	X0		TPI			ם מכ	100 [7100	K16		S2 : th	ne initi	al regi	ster ID) of th	e Pres	ent Va	alues	(PV)
ļ	1 1			5 01		50 0	100 1	51100	itto		b	lock							. ,
											S3 : th in	ne initi Istruct	al regi ion &	ster IL outpu) of th ts	e para	imeter	's of	
											S4 : th	ne initi	al regi	ster ID) of th	e para	ameter	s of P	ID &
											0	ther S	et Valu	les					
											n : N th	lumbe nis ins	r of ok tructio	oject c n	hanne	els nee	ed to d	contro	l by
This	TPIC) instru	uction	is esr	peciall	v for te	emper	ature	applic	ation	at the	multi-	obiect	(1~1	6) PIE) conti	rol.		
The	instru	uction	provid	des te	mpera	ature F	PID co	ntrol, <i>i</i>	Auto-T	uning	(AT),	Auto/N	Manua	l cont	rol fur	nctions	and	alarms	6.
50, 1	ne in	ISUTUCT	ION CS	an eas	ily pro	ocure a	a sino(un tei	npera	llure C	Untrol	•		_					
The	instru a Iala	uction	uses	the di	fferen	ce bet	ween	<u>S1</u> (0	one in	the se	et valu	e bloc	k) and	(S_2)	(corre	lated o	one in	the p	resen
Value The	e DIO contr	CK), IN OL res	ien via ult sia	a the c Inal of	coil C	t value NI/OF	es ot p F will e	aram effect	eters i relativ	n (S 3) re hit a	and (נס(<u>∢4</u> +5 If	the ar	ss the valog	PID C	perate	e. Lutis r	equire	d the
resu	lt valı	ue of I	PID wi	ill appe	ear at	correl	ated r	egiste	r of S	3).		10. 11	the di	lalog	ooniite	n outp		oquire	ia, in
Whe	n X0	= "0	N", th	is insti	ruction	n start	s to pe	erform	i; Whe	en X0	= "Of	=F", th	nis pro	cess :	stops	and al	I the c	output	
cont	acts	at (S3))+5 W	/III be t	urneo	I "OFF	also	all the	e analı	og ou	iput va	alues i	n the(<u>S</u> 3) W	III be r	esete	d to "C)".	
her	e's n	o limit	ation .	on the	times	s used	of the	PID	Instru	iction.									
Inis I (Ti)	and	UCTION D (TD) at th	ded w e TPIE	vith the D instr	e "Auto uction)- Iunir . (Plea	ng (Al ase ref)" func er to f	ollowi	t can ng pa	help u ges.)	isers t	o deci	de the	e para	meter	s of P	(KP),
This	instr	uction	accu	mulate	es the	value	s of di	fferen	ce bet	tween	(S1) 8	k (S2)	block	at eve	ry PL(C Scar	n Time	, thos	e with
para	mete	ers be	come	parts	of ope	erand	then e	effect t	he co	ntrol o	utput	cycles	s. So,	to use	e this	instruc	ction n	hust p	ay
This	TPIC	instru	uction	allows	s to be	v. e usec	l in a s	subrou	utine, i	nterru	pted s	subrou	utine, s	step la	ldder	diagra	m or i	elated	d to
the o	condi	tional	jump	instru	ction.	Howe	ever, a	t the t	ime th	at the	PID ir	nstruc	tion is	active	e, mus	t mak	e sure	this	more
than	once	n can e or ha	ad not	ocess t been	ea on execi	uted, t	hat wi	ll caus	at eve se the	samp	ling ei	rror or	impre	cise c	perat	ion.	i proc	essea	more
The	spec	ificatio	on of S	Set Va	lue (S	V) (S1)	block	C		·	-								
By th	ne co	ntent	value	of par	ramete	er	to esta	 ablish	the nu	umber	of ob	ject cl	nanne	s ther	n the (S1) blo	ock wi	ll occi	upy n
regis	sters.	antuc	luo of		the			∧ for t	ha fira	tobic	ot cho	nnali	the e	ontort	volue	of)	the	
Set \	Value	sni va (SV) (for the	seco ورون seco	nd ob	iject cl	ue (3) nanne	i) ior t I; and	l so or	ι οbje 1.	u una	u ii iei;	uie CO	JILENT	vaiue	01 (31) + I IS	suie	
The	snec	ificatio	on of t	he me	asure	, d Pre	sent \	, /alues	(PV) (S2) bl	ock.								
By th	ne co	ntent	value	of par	ramete	er n	to est	ablish	the n	umbe	r of ot	oject c	hanne	els the	n the	S 2) bl	ock w	ill occ	upy n
regis The	sters. Prese	ent Va	lue (P	'V) in (S2) is	from t	he ser	nsor o	f the fi	irst ob	ject cl	hanne	l; the	Prese	nt Val	ue (P\	/) in (S	2)+1	is
from	the :	senso	r of th	ie seco	ond ol	bject c	channe	el; and	so oi	n.									

•	The description	of the	parameter	block	S 3) :	
---	-----------------	--------	-----------	-------	---------------	--

Para- meter	Parameter Name/Function	Description	Available Range
S3	Control Cycle Setting	To assign the outputs period interval (the length of one ON/OFF cycle)	10~32767 × 10ms
S3+1	Responsive Sensitivity	To assign the responsive level of the instruction which is for all channels ("0": Fast / / "3": Slow	0~3
S3+2	Operational Directions	By relative bits at this register to assign the reacted direction of channels ("0": "Reverse" / "1": "Forward")	H0000~HFFFF
S3+3	Auto/Manual Select bits	By relative bits at this register to assign the control method of channels ("0": Automatic / "1": Manual)	H0000~HFFFF
S3+4	AT Command bits	By relative bits at this register to start the Auto-Tuning (AT) function of channels ("1": AT; automatically reset to "0" when AT is finished)	H0000~HFFFF
S3+5	Outputs	Output the control signals for object channels by relative bits	—
S3+6	Limitation Alarm Status	Display the limitation alarms for object channels by relative bits	—
S3+7	Deviation Alarm Status	Display the deviation alarms for object channels by relative bits	_
S3+8 S3+9	System Operating Area	Reserved for the internal processing of the TPID instruction	_
S3+10	The First Object Analog Output	Display the analog output value of the first object channel	0∼1000×0.1%
S3+11	The First Object Operating Area	Reserved for the internal processing of the TPID instruction	_
S3+20	The Second Object Analog Output	Display the analog output value of the second object channel	0∼1000×0.1%
S3+21 ↓ S3+29	The Second Object Operating Area	Reserved for the internal processing of the TPID instruction	_

• The values in $(\underline{S}_3) \sim (\underline{S}_3) + 9$ are the common parameters for all objects of this instruction. And, to add each object channel will occupy extra 10 registers, those object channels will occupy form $(\underline{S}_3) + 10$ to $(\underline{S}_3) + (10 \times n + 9)$.

- The parameter at (S_3) is the control output period setting for this instruction. Usually, the length of control period depends on the type of loading. If the the equipment is driven by a Magnetic Contactor (MC), to set the value bigger than 1000 (1000×10ms. = 10 Sec.) is recommend that is for extend its lifespan. If the the equipment is driven by a Solid State Relay (SSR), can set the value to 200 (200×10ms. = 2 Sec.)
- The parameter at (\$3)+1 is to set up control sensitivity for the response of this instruction. The value in (\$3)+1 will affect all object channels in the instruction. To control the temperature of a system, always expect its response as soon as possible but in some condition the quick response will cause temperature waving then occur a unsuccessful control. Therefore, could adjust its level of response to get a better control. The value 0~3 in this parameter represents the level of responsive sensitivity from the fast "0" to the slowest "3".

The value $0 \sim 3$ in this parameter represents the level of responsive sensitivity from the fast "0" to the slowest "3". Which "3" has the least possibility to cause temperature waving.

• Each bit at (S_3) +2 is for set up control direction of every single object channel.

When the measured Present Value (PV) < the Set Value (SV), it will generate a negative deviation and increase the control effect, that is called the "Reverse" operation. E.g. An oven: before the heater of the oven turns on. Usually the temperature of the oven is lower than the Set value. (PV) < (SV), this is a typical "Reverse" operation control sample.

When the measured Present Value (PV) > the Set Value (SV), it will generate a positive deviation and increase the control effect, that is called the "Forward" operation. E.g. An air conditioning system: before the system turns on. Usually the indoor temperature is higher than the Set value. (PV) > (SV), this is a typical "Forward" operation control sample.

• Each bit at (\underline{S}_3) +3 is for set up Auto/Manual control of every single object channel.
$(S_3) + 3$ (1) (0) stands for PID automatic control; "1" stands for manual control. When using the manual control mode, should input the expected output value $(0 \sim 1000)$ directly to relative register.
To assign the A / M method of the first object channel
To assign the A / M method of the second object channel
To assign the A / M method of the sixteenth object channel
• Each bit at (S_3) +4 is for trigger the Auto-Tuning (AT) function of every single object channel.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
To trigger the AT function of the first object channel
To trigger the AT function of the second object channel
To trigger the AT function of the sixteenth object channel
• Each bit at (S_3) +5 is for output the "ON" / "OFF" control signal of every single object channel.
$(\underline{S}_3) + 5$ $(\underline{S}_3) + 5$ (\underline{S}_3) $(\underline{S}_3) + 5$ (\underline{S}_3)
To output the control signal of the first object channel
To output the control signal of the second object channel
To output the control signal of the sixteenth object channel
Each object channel will also generate an analog PID output value. The results are output to $(\underline{S}_3)+(10\times m)$ (m = 1~n). E.g. The $(\underline{S}_3)+10$ is the output value of the first object channel; the $(\underline{S}_3)+20$ is the output value of the second object channel; and so on. Those output values can be used for the digital-analog (D/A) convert circuits to perform the analog control outputs. This $(\underline{S}_3)+5$ outputs are using those values in $(\underline{S}_3)+(10\times m)$ (m = 1~n) to produce proportional "ON" / "OFF" output signals. But at the manual control method, should put the expected output values (0~1000) into relative registers.
This instruction provides two alarm signals for each object channel. See the indistrations below. (1) Limitation Alarm (2) Deviation Alarm
When a object channel uses the "Reverse" operation, the Limitation Alarm will "ON" if the PV is higher then the alarm set value. When a object channel uses the "Forward" operation, the Limitation Alarm will "ON" if the PV is lower then the alarm set value. Allowably (+/-) deviant value. When a object channel uses the "Forward" operation, the Limitation Alarm will "ON" if the PV is lower then the alarm set value. Men a object channel uses the "Forward" operation, the Limitation Alarm will "ON" if the PV is lower then the alarm set value. Allowably (+/-) deviant value.
PV OFF ON OFF (SV) of (S1) Alarm Alarm Set Value Set Value

Para- meter	Parameter Name/Function	Description	Available Range	
S4	Proportional Gain (KP) of the First Object Channel	The P (Proportional) part of the PID loop	1~32767×0.01	
S4+1	Integral Time Constant (Tı) of the First Object Channel	The I (Integral) part of the PID loop (this parameter could disable the effect of the I if it is "0")	0~32767×100m	
S4+2	Derivative Time Constant (TD) of the First Object Channel	The D (Derivative) part of the PID loop (this parameter could disable the effect of the D if it is "0")	0~32767×10ms	
S4+3	Overshoot Repression Value of the First Object Channel	To set this repression deviation appropriately could repress the overshoot at the beginning	0~32767	
S4+4	Limitation Alarm Set Value of the First Object Channel	For the "Reverse" operation: Limitation Alarm "ON" if PV > this set value. For the "Forward" operation: Limitation Alarm "ON" if PV < this set value.	-32768~32767	
S4+5	Deviation Alarm Set Value of the First Object Channel	Deviation Alarm "ON" if $PV > (SV + this set value)$ or PV < (SV - this set value)	-32768~32767	
S4+6	Proportional Gain (KP) of the Second Object Channel	The P (Proportional) part of the PID loop	1~32767×0.01	
S4+7	Integral Time Constant (TI) of the Second Object Channel	The I (Integral) part of the PID loop (this parameter could disable the effect of the I if it is "0")	0~32767×100ms	
S4+8	Derivative Time Constant (TD) of the Second Object Channel	The D (Derivative) part of the PID loop (this parameter could disable the effect of the D if it is "0")	0~32767×10ms	
S4+9	Overshoot Repression Value of the Second Object Channel	To set this repression deviation appropriately could repress the overshoot at the beginning	0~32767	
S4+10	Limitation Alarm Set Value of the Second Object Channel	For the "Reverse" operation: Limitation Alarm "ON" if PV > this set value. For the "Forward" operation: Limitation Alarm "ON" if PV < this set value.	-32768~32767	
S4+11	Deviation Alarm Set Value of the Second Object Channel	Deviation Alarm "ON" if $PV > (SV + this set value)$ or PV < (SV - this set value)	-32768~32767	

• The register block starting from (S_4) is for storage every channel's KP, TI, TD parameters, starting Overshoot Repression and two alarm set values. Every channel will occupy 6 sequential registers. The $(S_4) \sim (S_4) + 5$ keep parameters for the first channel;

Every channel will occupy 6 sequential registers. The $(\underline{S4}) \sim (\underline{S4}) + 5$ keep parameters for the first channel; the $(\underline{S4}) + 6 \sim (\underline{S4}) + 11$ keep parameters for the second channel; and so on.

- Registers for the block of $(\underline{S_4})$ are usually assigned to latched registers.
- Every channel's KP, TI and TD parameters could use the Auto-Tuning (AT) function to get the values, also available given by user.
- The unit of the Overshoot Repression follows the SV value. If the unit of SV is 0.1° C (usually), then to use the function of starting Overshoot Repression, its unit is equal to 0.1° C also. If the application of temperature control which is sensitive to the starting overshoot, the channel could use this function and appropriately set the deviation value then it can effectively repress starting overshoot. To get this repressive value, could observe the maximum overshoot at AT processing. Or, approximately preset a value ($10.0 \sim 20.0^{\circ}$ C) to do an experiment then use the result to adjust the repressive value.
- To read the statuses of alarms which are appointed by the parameter block (S_4) , please refer to the instruction of $(S_3)+6$ and $(S_3)+7$.

• TPID Instruction Temperature Control Example I

• When design a PID temperature control program, the method below is the recommendable procedure to perform the TPID instruction.

• The System Structure of Temperature Control

Program Example

When X0 = "ON", it will execute the Auto-Tuning (AT) function first and then start the PID control; Otherwise, when X0 = "OFF", it will execute the PID operation directly. Must be trigger the X0 = "ON" once if this program is started at the first time, then by the Auto-Tuning (AT) function started at the first time, then by the Auto-Tuning (AT) function

Thus be ingger the X0 – ON Once if this program is statted at the first time, then by the Auto-furning (AT) function	1
to get the P, I and D parameters of the channel. Otherwise, the PID control will occur error because the related	
parameters are not ready yet.	

M9002 MOV K2450 D0 Let the set point = 2450, unit = 0.1 °C . (2450 × 0.1 °C = 245.0 °C)
MOV K1000 D100 Assign the period of output cycle to be 10 sec. (1000×10ms. = 10sec.)
MOV K0 D101 Assign the Responsive Sensitivity level as "Fast".
MOV K0 D102 Set the TPID instruction to do the Reverse operation. (Heating control)
MOV K0 D103 Assign the control of the channel is automatic.
MOV K2800 D7004 Let 280 °C as the value of Limitation Alarm for overheating warning.
C VO Output the Limitation Alarm signal to the Y1.
X0 MOVP H01 D104 When X0 = "OFF" \rightarrow "ON", the instruction will start to execute the Auto-Tuning.
Ensure the expansion card in EC1 is the VS-2TC-EC.
M0 MOV H0 EC1D0 Set the external thermocouple to be the K Type.
MOV K20 EC1D6 Set the average of the TC1 to be 20 times.
MOV EC1D2 D10 Read the temperature value of the TC1 and copy it to the D10, unit = 0.1 $^{\circ}$ C.
MU TPID D0 D10 D100 D7000 K1 Operate the TPID instruction.
C > D105 K0 Y1 By the result of the TPID calculation to drive the heater via Y1.

• TPID Instruction Temperature Control Example II

Below provides an example of an 8 channel PID temperature control. This needs a 32 point VS2 series Main Unit and 2 of the VS-4TC-EC expansion cards. Also, a human-machine interface (HMI) is required to proceed for data setting and status display.

Controlled CH #	8	7	6	5	4	3	2	1
Auto/Manual Select	M2007	M2006	M2005	M2004	M2003	M2002	M2001	M2000
AT Command	M27	M26	M25	M24	M23	M22	M21	M20
AT Status	M47	M46	M45	M44	M43	M42	M41	M40
Output Point	Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0
Limitation Alarm Status	M67	M66	M65	M64	M63	M62	M61	M60
Deviation Alarm Status	M87	M86	M85	M84	M83	M82	M81	M80
Temp. Set Value (SV)	D7007	D7006	D7005	D7004	D7003	D7002	D7001	D7000
Temp. Present Value (PV)	D7	D6	D5	D4	D3	D2	D1	D0
Parameter of P Phase (K _P)	D7142	D7136	D7130	D7124	D7118	D7112	D7106	D7100
Parameter of I Phase (TI)	D7143	D7137	D7131	D7125	D7119	D7113	D7107	D7101
Parameter of D Phase (T _D)	D7144	D7138	D7132	D7126	D7120	D7114	D7108	D7102
Overshoot Repression Value	D7145	D7139	D7133	D7127	D7121	D7115	D7109	D7103
Limitation Alarm Value	D7146	D7140	D7134	D7128	D7122	D7116	D7110	D7104
Deviation Alarm Value	D7147	D7141	D7135	D7129	D7123	D7117	D7111	D7105

• The list of devices used in this example:

Besides the devices on the table above, this instruction will occupy the registers D100~D189. When actually use this instruction, some unnecessary control items (e.g. Auto/Manual control selection) could be removed from the program then those items would not occupy components.

 Program Ex 	kample
M9002	MOV K1000 D100 Assign the output control cycle = 10 sec. (1000×10 ms. = 10 sec.)
	MOV K0 D101 Assign the Responsive Sensitivity level as "Fast" for all the channels.
	MOV H0 D102 Assign the control direction of CH1~CH8 as "Reverse" operation (Heating).
M9000	MOV K2M2000 D103 by Latched M2000~M2007.
	WOR K2M20 D104 D104 At this application must use the WOR instruction, the MOV instruction can't be used here.
	MOV D104 K2M40 Use the M40~M47 to display the AT operational status of the CH1~CH8. If a coil "ON", the corresponded channel is processing the AT.
	MOV D105 K2Y0 Assign the Y0~Y7 become the control outputs of CH1~CH8, by the output signals to drive the loaders.
	MOV D106 K2M60 Assign the M60 \sim M67 become the Limitation Alarm indicators for the overheating warning of CH1 \sim CH8.
M9013	C0 K3600 Turn the C0 "ON" after one hour to activate the Deviation Alarm monitors, that would ensure the system is processing under normal temperature.
	MOV D107 K2M80 Assign the M80 \sim M87 become the Deviation Alarm indicators of CH1 \sim CH8.
= EC1	ID18 K106 = EC2D18 K106 M100 Ensure the expansion card in EC1 is a VS-4TC-EC, and also in the EC2 is a VS-4TC-EC.
	MOV H0 EC1D0 Set the external thermocouples at the EC1's VS-4TC-EC to be the K Type.
	- FMOV K20 EC1D6 K4 Set the average temperature values of TC1~TC4 at the EC1's VS-4TC-EC to be 20 times.
M100	BMOV EC1D2 D0 K4 Read the temperature values of the EC1's TC1 \sim TC4 and copy those to the D0 \sim D3, unit = 0.1 °C.
	MOV H0 EC2D0 Set the external thermocouples at the EC2's VS-4TC-EC to be the K Type.
	FMOV K20 EC2D6 K4 Set the average temperature values of TC1~TC4 at the EC2's VS-4TC-EC to be 20 times.
M100	BMOV EC2D2 D4 K4 Read the temperature values of the EC2's TC1 \sim TC4 and copy those to the D4 \sim D7, unit = 0.1 °C.
	TPID D7000 D0 D100 D7100 K8 Operate the TPID instruction.

NC 93	\vdash	+ ⊢	— D	TRD	PS	1) (\$2) (D	(\mathbf{n})			Read	d Data	From	Data	Table)		1	2	M O
																				<u> </u>
Oper	and									Dev	ices									
open	ana	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$'	'
S1	1	Usir	ng a Ta	able Co	de Q0	~Q31	(V, Z in	ndex m	odifiab	le) or a	Table	Nickna	ame (b	y user-	define	d 16 Er	nglish c	charac	ters)	
S2	2													•			•			
D																				
n														٠						
	×20 ⊣	[DTRD	P FO	RMUL	A_TA	BLE	K0 E	01000	K100)	S2 : D : n :	data the in be re the in read the le (Unit:	table iitial ad iitial re data ength d Word	ddres: egister of the l)	s num [.] ID nu data t	ber at mber o be re	the ta to sto ead	able t re th	e
 This giver 	instrı n Dat	uction a Reg	in the jisters	e VS se to pro	eries F ovide a	PLC re as the	ads th refere	ne spe ence s	ecific d ource	lata fro for pro	om the ogram	e data 1 oper	table. ation.	And	then,	stores	the d	ata in	to	
• When "FOF conte	n X20 RMUI ents) = "(LA_TA with 1	DFF"- BLE" 00 wo	→ "ON and p ords.	", it w ut the	ill exe data	cute to in D1(o read)00~E	a gro 01099.	up of Due	data a to the	at the a	addres = 100	sses 0), it wil	~99 i I read	n the a gro	up dat	ta tha	t	

• At the previous VB series PLC, it has the File Register. Usually, the user can preset a huge number of data in the File Register and while the status of the PLC turns from STOP to RUN the system will duplicate the contents from a block of the File Register to the specific general registers automatically. That is very useful for the machine's parameters or reference data.

Compared with that, the VS series substitute the File Register to the Data Table to store a huge of preset data for the parameters and the reference data. The new structure of Data Table can have many tables and be named for each purpose. It has the advantage about easy to manage and access.

• The Data Table is established by the programming tool Ladder Master S, it is a part of the project. Therefore, when the project is installed to the PLC, all the Data Tables will be copied together.

subroutine.

• Please note that occupied space of the instruction depends on the content value of (D) and the value is driven by the using times of call and nest levels.

6-12 Floating Point Arithmetic Instructions

FNC	Marcana di sta da da a Disana a		Ap	plica	able	VS
No.	Minemonic in Ladder Diagram	Function Description	1	2	Μ	3
110		Compare Two BIN Floating Point Numbers	0	0	0	0
111	$\vdash \vdash \Box EZCP \blacksquare (S1) (S2) (S) (D)$	Compare a BIN Float Number to BIN Float Zone	0	0	0	0
112		Move Floating Point Data	0	0	0	0
116	$\vdash \vdash \bigcirc \mathbb{D}ESTR \ (S) \ (S_2) \ (\mathbb{D})$	Convert BIN Floating Point to Character String				0
117	DEVAL SD	Convert Character String to BIN Floating Point				0
118		Convert BIN to DEC Floating Point Format	0	0	0	0
119	DEBIND SD	Convert DEC to BIN Floating Point Format	0	0	0	0
120		BIN Floating Point Addition	0	0	0	0
121		BIN Floating Point Subtraction	0	0	0	0
122		BIN Floating Point Multiplication	0	0	0	0
123	$\vdash \vdash \Box E D I V \blacksquare (S_1 (S_2) \square)$	BIN Floating Point Division	0	0	0	0
124		BIN Floating Point Number Exponent	0	0	0	0
125		BIN Floating Point Nature Logarithm	0	0	0	0
126		BIN Floating Point Common Logarithm	0	0	0	0
127		BIN Floating Point Square Root	0	0	0	0
128	DENEG D	BIN Floating Point Negation	0	0	0	0
129	H H DINTR SD	BIN Floating Point → BIN Integer Format	0	0	0	0
130		Calculate Sine	0	0	0	0
131		Calculate Cosine	0	0	0	0
132	H H DTANP SD	Calculate Tangent	0	0	0	0
133	H H DASINP (SD)	Calculate Arc Sine	0	0	0	0
134		Calculate Arc Cosine	0	0	0	0
135		Calculate Arc Tangent	0	0	0	0
136		Convert Angle From Degrees to Radian	0	0	0	0
137		Convert Angle From Radian to Degrees	0	0	0	0

FNC	Compare Two BIN Floating Point	1	2	Μ	3
110	Numbers	\bigcirc	\circ	\bigcirc	С

Operand									Dev	ices								
oporaria	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"
S1													•		•	•	0	
S2													•		•	•	0	
D		•	•	٠	0	0												
• D occupi	es 3 co	onsecu	itive de	evices														

 S_1 : the compare value #1

S2 : the compare value #2

D : the compare result; occupying 3 consecutive points

- Compare the content value of (S_1) (compare value #1) with the value of (S_2) (compare value #2), and save the result in (D) (compare result).
- The DECMP instruction will be enabled when X0 = "ON", and all the content values are used by the BIN floating point format.

If $(S_1) > (S_2)$ (D1, D0 > D11, D10), then M0 = "ON"; If $(S_1) = (S_2)$ (D1, D0 = D11, D10), then M1 = "ON"; If $(S_1) < (S_2)$ (D1, D0 < D11, D10), then M2 = "ON".

- When X 0 = "OFF", the instruction is disabled, the "ON"/"OFF" status of M0, M1 and M2 remains the same as the status before X0 = "OFF".
- This instruction is a 32-bit instruction. Therefore, be sure to input DECMP or DECMPP in the program.
- Please use serial or parallel links of M0~M2 to generate the result as "≥", "≤" or "≠".
- If a source operand is assigned to a constant integer K or H, this instruction will automatically convert the number to BIN floating point number for the calculation. Therefore, could execute the comparison function.
- The format for storing a floating point number will occupy two Registers in the PLC system. Please refer to the section 2-13 "Numerical System" for the reference of the floating point number.

FNC	Compare a BIN Float Number to	1	2	Μ	3
111	BIN Float Zone	\bigcirc	\bigcirc	\bigcirc	0

Operand									Dev	ices								
oporaria	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"
S1																	0	
S2																•	0	
S													٠		•	•	0	
D		•	•	•	0	0												
• D occupi	es 3 c	onseci	utive de	evices	•	● S1 ≦	≦S2											

S1 : the lower limit of zone compare

S2 : the upper limit of zone compare

S : the compare value

D : the compare result; occupying 3 consecutive points

- Compare the content value of (\underline{S}) (compare value) with the values of (\underline{S}_1) (lower limit of zone compare) and (\underline{S}_2) (upper limit of zone compare), then save the result in (\underline{D}) (compare result).
- The DEZCP instruction will be enabled when X0 = "ON", and all the content values are used by the BIN floating point format.

If $(S) < (S_1)$ (D11, D10 < D1, D0, the compare value is less than the lower limit), then M0 = "ON"; If $(S_1) \le (S_2) \le (D_1, D_0) \le D_{11}, D_{10} \le D_3, D_2$, the compare value is between the upper and lower limit), then M1 = "ON";

- If $(S) > (S_2)$ (D11, D10 > D3, D2, the compare value is bigger than the upper limit), then M2 = "ON".
- When X0 = "OFF", the instruction is disabled, the "ON"/"OFF" status of M0, M1 and M2 remains the same as the status before X0 = "OFF".
- This instruction is a 32-bit instruction. Therefore, be sure to input DEZCP or DEZCPP in the program.
- When $(\underline{S}_1) > (\underline{S}_2)$, the content value of (\underline{S}_1) will become both upper/lower limits to be compared with the (\underline{S}) .
- If a source operand is assigned to a constant integer K or H, this instruction will automatically convert the number to BIN floating point number for the calculation. Therefore, could execute the comparison function.
- The format for storing a floating point number will occupy two Registers in the PLC system. Please refer to the section 2-13 "Numerical System" for the reference of the floating point number.

FI 1	NC 12 -	┥┝─	D	EMC	DVP	S	D				Move	e Floa	ting P	oint D	ata			1	2	М О	(
	Operand									Dev	ices										
	operana	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$	"	
	S																	0			
	D													٠		٠					
	X0)	- DEM	0V [<u>S</u>) (D0 D	D) 10						S : the D : the	e sour e dest	ce dev inatior	vice to 1 devi	be tra	ansfer	red			

- To copy the designated value from (S) to (D) .
- The content value of the BIN floating point format in D1, D0 will be copied to D11, D10 when the X0 = "ON".
- The instruction is disabled and D11, D10 remain invariable when the X0 = "OFF".
- This instruction is a 32-bit instruction. Therefore, be sure to input DEMOV or DEMOVP in the program.
- The format for storing a floating point number will occupy two Registers in the PLC system. Please refer to the section 2-13 "Numerical System" for the reference of the floating point number.

C ⊣		DE	EST	RP	S1 (S2) (D	D			Con Cha	vert l racte	BIN F er Str	Float ring	ing P	oint	to		1	2 N
									Davi										
Operand _	V	V		0		D 1			Dev	ices	-				N/ 7			-	" ^ "
0.	X	Y	Μ	S	D.b	R.b	KnX	KNY	KnM	KnS		(J,R	V,Z	UnG	K,H	E	~\$~
<u>S1</u>	_								-			-		•					
52	_						•	•	-	•				•					
D									•					•					
X0 		DEST	(TR D	<u>S1</u> ()20 [<u>S2</u> (D10 [D) 00				S [:] Sź D	1 : th 2 : th : th	e sou e dev e hea	urce (vices ad ID	of BIN to ap of th	N floa opoir e co	ating p nt the o nverte	ooint r conve ed sto	numbe ersion f rage d	r ^f ormat levices
This instruct at the <u>S</u> 2) to stores into	tion u to cor the de	uses a ivert e evice	a BIN each s whi	floati digit o ch are	ng poi of that e heac	nt nur numb led by	mber a ber bec ' (D).	at the (come a	S1) to an AS	perfo CII cc	orm th ide a	ne co nd c	onver ombi	sion. ne th	By toose	the for codes	rmat p s to a	barame string,	eters then
S 2		Forma to disp	t of floa lay	ating po	int numt	er (0 : By ⁻	the de	cimal	notat	ion;	1 : B	y the	expc	nent	tial no	tation		
S 2	+1	Length	of the	conver	ted string		2~24,	the co	onvers	sion c	ould	not e	excee	ed 24	cha	racter	S.		
(\overline{S}_2)	+2	Numbe	er of dig	gits afte	r the dea	cimal (0~7. ji	nput 0	if the	conv	ersio	n is ı	used	to ae	et an	intea	ər.		
	·	point a	it the st	ring			.,	1						9-					
This instruc	ction v	vill us	se the	follo	wing A	SCII c	onver	sion ta	ıble:										
Sign & Numb	er SPA	CE	+	_		0	1	2	3			5	6	7	,	8	q	F	
	20		' DU	201	• 251	201	21	22	221			БП	266	1 27	· u /	о 201	201		
(S2) D10 0 D11 8	To a	assigi	n the	proce	ess is l	by the	decim	nal not	ation										
D12 4]—																		
$(S_1) = (D2^2)^2$	1, D20)			^														
-1.23	3456	, 	\rightarrow	_	1.	23	46	The e>	pand	led nu	imbe	r dui	ring tl	ne co	nver	sion			
			V	JT	ΤŢ	ΤŢ			·				0						
D D0 Lowe 8 bits	er L S E	D0 Ipper bits	Lo 8	D1 wer bits	D1 Uppe 8 bit	er Lus s 8	D2 ower bits	D2 Uppe 8 bit	er L s {	D3 Lower B bits	U 8	D3 oper bits		D4					
Positive	$\frac{-1}{20}$		<u>, 311</u> 01	ne's		- <u>7 </u> 32 nal `	(2)	(<u>-</u>	411(4)	130	11(0)	/ 00 -⁄ Fr						
negativ sign	ve	1	pl	ace	poin	t		4 dig deci	gits aft mal po	er the pint			st	ring					
The po	ositive	or ne	egativ	ve sig	n is us	ing th	e 20H	to rep	resen	it posi	tive;	the	2DH	repre	esent	ts neg	ative.		
The by	te ne	xt to t	the po	ositive	e or ne	gative	sign i	s a bla	ank sp	bace,	that	will fi	ll in tl	ne co	de 2	20H.			
If ((<u>\$2</u>) 0, that	+2) = indica	= 0, tł ates t	hat ind the nu	dicate umbei	es an ii r has a	nteger i fracti	r will be onal p	e shov art, sc	vn, sc the c	there decim	e is n al po	o de int w	cima /ill be	poin adde	it in t ed to	he str	ing; i tring.	f ((S2)-	+2) >
The ex last us	pand ed di	ed nu git fro	umbe om 5 t	r 1.23 :o 6.	46 is c	auseo	d by to	round	d off tl	he co	ntent	of n	ext d	igit 6	, her	ice tha	at incr	eases	the
When autom with ev	the ex aticall /en nu	xpanc y. If t umbe	ded n the se r set	umbe et leng length	r conv gth of t n will a	rerts to he str dd the	o the A ing is e end o	SCII c an odd of strin	odes d num ig 000	, the ii nber, t)0H.	nstru he ei Thus	ctior nd of , the	n add f strin D4 a	s the g is (t the	end)0H; con\	of stri in ado /erted	ng at dition, string	the ta the st g with t	il ring :he

The positive or negative sign is using the 20H to represent positive; the 2DH represents negative.

It has one digit at the one's place only.

Also, the byte next to the positive or negative sign is a blank space, that will fill in the code 20H.

If $(\underline{S_2}+2) = 0$, that indicates an integer will be shown at the mantissa, so there is no decimal point in the string; if $(\underline{S_2}+2) > 0$, that indicates the number has a fractional part, so the decimal point will be added to the string. At the example above, $(\underline{S_2}+2) = 3$, thus the decimal point will be added automatically.

The expanded number 1.235 is caused by to round off the content of next digit 5, hence that increases the last used digit from 4 to 5.

For the part of the exponent:

The instruction adds a character "E" in the front of the exponent part automatically.

In this part, its positive or negative sign is using the 2BH to represent positive; the 2DH represents negative.

The length of the exponent number is fixed to 2 digits.

When the expanded number converts to the ASCII codes, the instruction adds the end of string at the tail automatically. If the set length of the string is an odd number, the end of string is 00H; in addition, the string with even number set length will add the end of string 0000H. Thus, the D4 at the converted string with the value 0000H that is the end of string.

• This instruction is a 32-bit instruction. Therefore, be sure to input DESTR or DESTRP in the program.

7	\vdash		D	EVA	LΡ	<u>S</u> (D				BIN F	oating	racter S Point	tring	[0				ŀ
										1								-	L
Juora	nd									Dev	ces								
opera		Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	C D,F	R V,Z	UnG	K,H	E	"\$	"
S								•	•	•	•	•	• •		•				
D													•		•				
	X0 ⊣		DEV	AL D	5) (1 0 D1) 00				5 [i : the h) : the s	nead ID storage	of the o device	charac for the	eter stri e BIN fi	ing to loating	be cor g point	ivert resi	e Il
the renotation	sult in sult in on.	nto th	uses ne dev will us	vice (p). The follow	ne forr	nat of	the sc onver	sion ta	string	can eit	ner use	the dec	simal r	notatio	n or th	ne expo	oner	iti
ASCII	Cord	2	он 2	2BH	2DH	2EH	30H	31H	32H	I 33H	I 34H	35H	36H	37H	38H	39H	45H		
Sign &	Numb	er SP.	ACE	+	-		0	1	2	3	4	5	6	7	8	9	E		
By the	doc	imal	notati	<u></u>							•				•				
S 2	D0 Lowe 8 bits 2DH (er s -) 2	D0 Upper 8 bits 20H () 30	D1 ower bits H(0)	D1 Uppe 8 bit 31H (er Lo s 8 1) 32	D2 ower bits H(2)	D2 Upp 8 bit	er L ts 8 (3) 2E	D3 ower bits H(•)	D3 Upper 8 bits 34H (4	D4 Low 8 bit	er L s 8 5) 30	D4 Ipper bits 6H(6)	D5 Low 8 bi 37H (er U ts 8 (7) (D5 ppe bits)0H	í
The p the 20 the 21	oositiv 0H or DH re	e or r 2BH prese	negativ repres ents ne	ve sign sents p egative	i: positive	;}		0 1 The (sp 30ł	e ineffe pace 20 H) will I	ective b DH and De igno	56 zero red	7	On the) = ([123.4 ly 6 dig rest (t	0101, C 56)100) be taki useles	en, disc s)	ards	
By the	D0 D0 ower 3 bits 2BH (+)	onen D(Upp 8 bi 20	tial no per Lo ts 8 H 3) (Dtation D1 wer bits 0H 0)	D1 Jpper 3 bits 31H (1)	D2 Lower 8 bits 2EH (•)	D2 Uppe 8 bits 32H (2)	D3 r Lowe 8 bit 33F (3)	D er Upp s 8 b H 34	3 [per Lo its 8 .H 3 .) (04 E wer Up bits 8 I 5H 30 5) (0	04 D per Lov bits 8 t 6H 37 6) (7	v5 Ds wer Upp bits 8 b 7 H 45 7) (E	5 C er Lov ts 8 t H 2E) (-	6 [wer Up bits 8 3H 3 +) (D6 oper L bits 8 0H (0)	D7 ower bits 32H (2)	D7 Ippe 3 bits 00H	r
									2]3]4	56) 7) E		2		D) = ([.23450	D101, 6E+2	D100)	ind o string	
The p the 2 positi nega	oositiv OH or ve; th tive.	re or r 2BH ne 2D	negativ repres H repr	ve sigr sents resents	:: s } —		 	ne ineff pace 2)H) will	ective OH and be ign	bytes d zero ored			Ignore	Oi di: us	nly 6 dig scards eless)	gits wil the res	- l be take t (the 7	en, is	
The c	onve	rsion	could	d not j	oroces	ss the	string	that e	xceec	ls 24 c	haract	ers.							

Relay ID No	Indication	Description	1
Relay ID No.	maleation	Cause	Effect
M9020	Zero Flag	The number is equal to 0	M9020=ON
M9021	Borrow Flag	The absolute value is smaller then 2 ⁻¹²⁶	Make $(D) = 2^{-126}$ and M9021 = ON
M9022	Carry Flag	The absolute value is more then or equal to 2 ¹²⁸	Make $D = 2^{128}$ and M9022 = ON

• This instruction is a 32-bit instruction. Therefore, be sure to input DEVAL or DEVALP in the program.

FNC	Convert BIN to DEC Floating Point Format	1	2	M	3
118		0	0	0	\circ
FNC	Convert DEC to BIN Floating Point Format	1	2	Μ	3
119	Convert DEC to birt hoating Foint Format	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Operand									Dev	ices								
oporaria	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"
S													•		•			
D													٠		•			

S : the source device to be converted

D : the destination device which the results to be stored

- When X0 = "ON", this instruction is activated. It will uses the BIN format floating number in (D1, D0) to convert the number to a DEC format floating number then moves the value into (D11, D10).
- This instruction is a 32-bit instruction. Therefore, be sure to input DEBCD or DEBCDP in the program.
- For example, if the content value in (D1, D0) is 1.234×10^2 , then after the converted, (D10) = 1234 and (D11) = -1.

S : the source device to be converted

- D : the destination device which the results to be stored
- When X1 = "ON", this instruction is activated. It will uses the DEC format floating number in (D3, D2) to convert the number to a BIN format floating number then moves the value into (D13, D12).
- This instruction is a 32-bit instruction. Therefore, be sure to input DEBIN or DEBINP in the program.
- For example, if the content value in (D2) = 2345 and (D3) = 5, then after the converted, (D13, D12) is 2.345×10^8 .
- The format for storing a floating point number will occupy two Registers in the PLC system.
- Please refer to the section 2-13 "Numerical System" for the formats of BIN and DEC floating point numbers are stored in the Registers.

Operand S1 S2 D X(H Stored a in the BI		Y	M	S	Dh													
Operand S1 S2 D X1 H Vhen X0 stored a in the BI		Y	M	Operand X Y M S D.b R.b KnX KnY KnS T C D,R V,Z Un S1														
S1 S2 D XI H When X0 stored a in the BI			S1 •															"\$"
S2 D XI H • When X(stored a in the BI)												•	,	•	•	0	•
D Xi When X(stored a in the Bl)												•		•	•	0	
XI H When XC stored a in the BI) 																	
	f = 0 t the sp N float	FF" → pecifie ing nu	DDP → "ON' ed des imber × 10 ²	S1 (D0 [, the s stinatic forma (D1, [S2 (E D2 D' summa on devi it. D0) Blf) 10 and (E ice (D N float)1, D0 11, D ⁻ ing nu) will k 10). T umber	be add	ded to	S1 : th S2 : th D : th the av	ne sun ne ado ne tota ddeno ised in	nmand lend I I (D3, I the ir	d D2), a nstruct	ind the ion wh	e total nich ar	will be e all s	e tored
	ored at the specified destination device (D11, D10). The components used in the BIN floating number format. 1.235×10^2 (D1, D0) BIN floating number $+ 2.2 \times 10^2$ (D3, D2) BIN floating number																	
 When XU = "OFF" → "ON", the summand (D1, D0) will be added to the addend (D3, D2), and the total will be stored at the specified destination device (D11, D10). The components used in the instruction which are all store in the BIN floating number format. 1.235×10² (D1, D0) BIN floating number + 3.2×10⁰ (D3, D2) BIN floating number - 2 (D4, D4) BIN floating number - 2																		
	•	1.267>	×10 ²	(D11,	D10)	BIN flo	bating	numb	ber									
 This inst 	ruction	is a 3	32-bit i	instruc	ction.	There	fore, b	e sure	e to in	put DI	EADD	or DE	ADDF	in the	e prog	ram.		
If a sour	ce one	rand i	is assi	gned	to a co	onstar	nt inter	ger K	or H. t	his ins	structio	on will	autor	natica	lly con	ivert th	ne nur	nber
to BIN flo	pating	point	numb	er for t	the ca	lculati	on. Ti	herefo	re, co	uld ex	ecute	the a	dditior	n func	tion.			
Includec The avaireferenc The form section 2), the I lable ra e of the nat for 2-13 "N	storing	g a flo	M902 BIN flo pint nu ating j	point r	ne refe	r will (of the	y two	Regis	ters ir int nu	the P mber.	2-13 "I	stem.	rical S	e a ne	" for the	÷ ne

ĭ		- D	ESU	BP (<u>S1</u> (§	52) (D	\sum			BINF	-loatir	ng Poi	nt Su	otract	ion			
Operand									Dev	ices								
operatio	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"
S1													•		•	•	0	
S 2												•		•	•	0		
D													•		•			
X0 -		DES	UBP	S1 (D0 [S2 ([D2 D1	0					S1 : th S2 : th D : th	ne min ne sub ne diffe	uend traher erence	nd 9				
When X0 difference all stored	= "O e will k in the	FF" → be stor e BIN f	"ON" red at loating	, the s the de g num	subtral estinat Iber fo	nend (ion de rmat.	D3, D evice (2) will D11, I	be su D10).	btract The c	ed fro	om the onents	minu used	end (E in the	D1, D0 instru), and ction	l the which	are
	1	.235>	< 10 ²	(D1, I	D0) BI	N float	ting nu	umber										
	_	3.2×	10 ⁰	(D3, I	D2) Bl	N float	ting nu	umber										
	1	.203>	< 10 ²	 (D11,	D10)	BIN flo	oating	numt	oer									
This instru	uction	is a 3	2-bit i	nstruc	tion.	There	fore. b	e sure	e to ini	out DE	ESUB	or DE	SUBP	in the	e proa	ram.		
		10 4 0	_ 0.01	liotrac											, prog.			
to BIN floa	e ope ating	rand i: point r	s assi 1umbe	gnea er for t	to a co the ca	Iculatio	it integ on. Th	jer K (nerefo	or H, t re, co	nis ins uld ex	ecute	the su	autor Ibtrac	natica tion fu	inctior	וvert נו ו.	ne nur	nper
The regult	of th	io inoti	ruotio	ميرال	offoot t	ho oto	tuo of	the fr		a floa	0.							
When the	or th opera	is insti ated re	esult i	n will a s equa	anect t al to "(ne sta)", the	Addit	ion / S	Subtra	ction 2	s: Zero F	lag M	9020	turns '	"ON".			
When the	opera	ated re	esult i	s exce	eded	the up	oper lii	mit of	the Bl	N floa	ting p	oint fo	rmat	(positi	ve & r	negativ	ve incl	uded)
When the	opera	ated re	esult i	s less	than t	he ins	ignific	ant lin	nit of t	he BIN	l float	ing po	oint for	mat (positiv	e & n	egativ	е
included)	, the E	Borrow	/ Flag	M902	21 turn	s "ON	". formo	t plac	noo rof	or to t	ho co	otion) 10 "I	Vumo	rical S	votor	" for t	ho
reference	of the	e floati	ing po	pint nu	mber.	ροιπ	IUIIIIa	i, piea	ase rei	erioi	ne se		2-13 1	vume	ncal 3	ysten		ne
The form	at for a	storing	n a flo	atina i	ooint r	umbe	r will c		v two	Roais	tore in	tha P		etam	Plaas	o rofo	r to th	2
section 2-	·13 "N	lumeri	ical Sy	/stem	" for th	ie refe	rence	of the	e floati	ng po	int nu	mber.	LO Sy	310111.	11003			0

									Dev	ices								
	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"
S1													٠		•		0	
S2													•		•	•	0	
D													•		•			
X0 High H When X0 stored at floating no	= "Ol the de umbe	DEM N", the estinat r form $3.14 \times$ $2.3 \times$	$\frac{10^{\circ}}{10^{\circ}}$	iplicar evice ((D1, [2 D1(2 D1((D11, I (D11, I (D12) BI	, D0) [,] D10). N floa [.] N floa	will be The c ting n	e multi compo umbei umbei	iplied I onents r	by the used	S2 : tř D : th multi in the	e mul e proc plier ([e instru	tiplier luct (c 03, D2 lotion	f a mi ?), anc which	ultiplic I the p are al	ation) roduc I store	t will k ed in th	be he Bli
	7	.222×	< 10 ¹	(D11,	U10)	BIN fl	oating	ı numl	ber									
section 2-	at for s -13 "N	storing Iumeri	g a flo cal Sy	ating ₍ /stem	ooint r ' for th	iumbe ie refe	er will (erence	occup of the	oy two e floati	Regis ng po	ters ir int nu	n the P mber.	LC sy	stem.	Pleas	e refe	r to the	Э
section 2-	at for s -13 "N	storing	g a floa cal Sy	ating µ	point r ' for th	numbe ne refe	er will (occup of the	ay two ∋ floati	Regis [,] ng po	ters ir int nu	n the P mber.	LC sy	stem.	Pleas	e refe	r to the	9

Operand									Dev	ices					1	1		1
	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"
S1												•		•	•	0		
52 D															•			
X0 		DED	(IVP	<u>S1) (S</u> D0 D	52) (D 02 D1	0					S1 : th S2 : th D : th	ne divi ne divi ne quo	dend sor otient					
When X0 stored at BIN floati	= "O the de ng nu	FF" → estina mber	"ON" tion de forma	, the c evice t.	divider (D11,	nd (D1 D10).	, D0) The c	will be compo	e divid onents	ed by used	the di in the	visor (instru	(D3, D iction	2), an which	d the o are al	quotie I store	nt will ed in th	be ne
		1.23×	10 ⁴	(D1, I	D0) Bl	N floa	ting n	umbe	r									
	÷	3.0×	10 ⁻¹	(D3, I	D2) Bl	N floa	ting n	umbe	r									
		4.1×	10 ⁴	(D11,	, D10)	BIN fl	oating	ı num	ber									
section 2	-13 "N	lumer	ical Sy	ystem	" for th	numbe ne refe	er will (erence	occup of the	y two e floati	Regis ng po	ters in int nu	the F mber.	'LC sy	stem.	Pleas	e refei	r to the	Э
section 2	-13 "N e of d	lumer	S2 is	s equa	al to "O	numbe ne refe	er will erence	occup of the	ey two e floati gard th	Regis ng po at as	ters in int nui an op	the P mber. eratio	'LC sy	stem. or.	Pleas	e refei	r to the	9
section 2	-13 "N e of d	lumer	(S2) is	s equa	al to "O	numbe ne refe ", the	PLC v	occup of the	ey two e floati gard th	Regis ng po at as	ters in int nu	the P mber. eratio	'LC sy	stem. or.	Please	e refei	r to the	Ð

FNC			Б				7					Inatir	na Poi	nt Nu	mhor	Evnor	nont	1	2	Μ	3
124			ν				/				DINT	IUatii	ig i u	III INU	mbei	слроі	ICIII	0	\bigcirc	\bigcirc	0
Oper	bne									Dev	ices										
Oper	anu	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$	"	
S	5																	0			
D)													•							
	X0 —		DEX	(C	S) (D 0 D1	0				5	S : the) : the	sourc destir	ce dev	rice of devic	the ex e to s	kpone tore th	nt at th	ne fun onent	ctior resi	n ult	

- This instruction performs the exponential function on a BIN floating point number that is designated by (S) and stores the BIN floating point format result in the (D) designated device.
- When X0 = "OFF" → "ON", by way of the BIN floating point number in (D1, D0) as the exponent to perform the
 exponential function, and the result will be stored in (D11, D10).

(D1, D0) BIN floating number $\mathbf{e} = 8.166167$ (D10, D11) BIN floating number

- This instruction based on the constant base e = 2.71828 to perform the exponential function.
- This instruction is a 32-bit instruction. Therefore, be sure to input DEXP or DEXPP in the program.
- The source operand (S) must assign to a BIN floating point number for the calculation.
- The format for storing a floating point number will occupy two Registers in the PLC system. Please refer to the section 2-13 "Numerical System" for the reference of the floating point number.
- If the absolute value of the result D is larger than 2^{128} or less than 2^{-126} , the PLC will regard that as an operational error.

FNC 125	BIN Floating Point Nature Logarithm														1	2	M 3 0 0	
								Dev	ices									
Operand	X Y M S D.b R.b KnX KnY KnM KnS T C D,R V,Z Ung K,H														E	"\$"		
S	X Y M S D.b R.b KnX KnY KnS T C D,R V,Z UnG K,H E Image: Comparison of the state of the stateo														0			
D																		
• S>0																		
X0 - This instruct and stores t • When X0 = number in (i (D11, D10). Ioge 1	$\overline{}$ DLO ion perfo he BIN flo "OFF" \rightarrow D1, D0) a $\overline{}$ = In	GEP rms th bating "ON" is the 10 =	D0 [point , this i logarit	D10 D10 forma nstruc hm to	garithi ti resu tion p the b	D : the mic op It in th perform ase of 1, D10	destin peratic ne D ns the f the m	nation on on a desig natura nathen	devic a BIN nated al loga natica a num	e to st floatin devic arithmi I cons	tore the og poir e. ic ope stant e	nt num ration , and	nber th on the the re	garithr nat is c e BIN sult wi	nic res lesign floatin Il be s	ated I g poir tored	oy (S nt in	

- This instruction is based on the constant base e = 2.71828 to perform the natural logarithm function.
- This instruction is a 32-bit instruction. Therefore, be sure to input DLOGEP or DLOGEP in the program.
- The source operand (S) must assign to a BIN floating point number for the calculation.
- The format for storing a floating point number will occupy two Registers in the PLC system. Please refer to the section 2-13 "Numerical System" for the reference of the floating point number.
- If the value of (S) is less than or equal to zero, the PLC will regard that as an operational error. Therefore, the (S) must designate to a positive number.

26	Image: Heating Point Common Logarithm 1 Image: Heating Point Common Logarithm 0															arithm	1	2 N ○ (
Operand		Devices X Y M S D.b R.b KnX KnY KnS T C D.R V,Z Ung K,H E "\$"]		
Operand	X Y M S D.b R.b KnX KnY KnM KnS T C D,R V,Z UnG K,H E "\$"																		
S	X Y M S D.b R.b KnX KnM KnS T C D,R V,Z UnG K,H E "\$" Image: Sign of the state of the stat																		
D													•		•				1
• S>0						•		•											1
	S D DLOG10P D0 D10 D10 S : the source device to be performed the common logarithmic operation D : the destination device to store the common																		
 	S D DLOG10P D0 D10 S : the source device to be performed the common logarithmic operation D : the destination device to store the common logarithmic result																		
• This instru S and	uction stores	DLO perfo	G10P rms th 3IN flo	D0 ne cor ating	D10 nmon point f	logari	thmic result	opera t in the	tion or	S : the log D : the log n a Blf design	e sour garithr e desti garithn N float nated o	ce de nic op inatior nic res ting po device	vice to peratio n devid sult oint nu e.	b be p n ce to s umber	erform store tl	ied the ne cor s desig	e com nmon gnate	lmon d by	
• This instru • This instru (S) and • When X0 number in	uction stores = "OI n (D1,	perfos the E FF" \rightarrow D0) a	G10P rms th 3IN flo · "ON" is the	D0 D0 ating , this i	D10 D10 point f	logari format	thmic result perforn ase 10	opera t in the ns the D, and	tion or e D c comm the re	S : the log D : the log n a Blf design non log esult w	e sour garithr e desti garithn N floa nated o garithi vill be s	ce de nic op inatior nic res ting po device mic op storec	vice to peratio n devid sult oint nu oint nu e. peratio l in (D'	b be p n ce to s umber on on 11, D1	erform store th that is the BII 10).	ied the ne cor s desię N float	e com nmon gnate	d by oint	
• This instru • This instru S and • When X0 number in Iog ₁₀	uction stores = "Ol n (D1, 20	perfo s the E FF" \rightarrow D0) a = 1	G10P rms th 3IN flo • "ON" is the .3010	D0 D0 , this i logarit 3 (D1	D10 D10 point f	logari format tion p the b 0) BIN	thmic result perforn ase 10 floatir	opera t in the ns the D, and	tion or e D c comm the re nber	S : the log D : the log n a BII design non log sult w	e sour garithr e desti garithn N floa nated o garith ill be s	ce de nic op inatior nic res ting po device mic op storec	vice to peratio n devic sult oint nu e. peratio l in (D	b be p n ce to s umber on on 11, D1	erform store th that is the Bll 10).	ed the ne cor s desiç N float	e com nmon gnate	d by oint	

- This instruction is based on the constant number 10 to perform the common logarithm function.
- This instruction is a 32-bit instruction. Therefore, be sure to input DLOG10 or DLOG10P in the program.
- The source operand (S) must assign to a BIN floating point number for the calculation.
- The format for storing a floating point number will occupy two Registers in the PLC system. Please refer to the section 2-13 "Numerical System" for the reference of the floating point number.
- If the value of (S) is less than or equal to zero, the PLC will regard that as an operational error. Therefore, the (S) must designate to a positive number.

۲I	NC		D	<u> </u>		$\overline{\bigcirc}$						Inatio		int Sau	iaro F	Root			2	IVI
1	27	1 1	P	LOQ		<u> </u>					DINT	Ioatii	ig i o	ni oqi		1001		0	\bigcirc	\bigcirc
	Operand									Dev	ices									
	operana	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$	"
	S													•		•		0		
	D																			
)	DES	QR [<u>S) ([</u> 00 D [.])) 10			S : th D : th	ie sou ie des	rce de tinatio	vice t n dev	o be p ice to	berforn store	ned th the sc	ne squ Iuare r	are roo oot re:	ot ope sult	eratio	on

2

Μ З

1

- This instruction performs the square root operation on a BIN floating point number that is designated by (S) and stores the BIN floating point format result in the (D) designated device.
- When X0 = "ON", this instruction performs the square root operation on the BIN floating point number in (D1, D0), and the result will be stored in (D11, D10).
- This instruction is a 32-bit instruction. Therefore, be sure to input DESQR or DESQRP in the program.

FNC

- If a source operand is assigned to a constant integer K or H, this instruction will automatically convert the number to BIN floating point number for the calculation. Therefore, could execute the square root function.
- The format for storing a floating point number will occupy two Registers in the PLC system. Please refer to the section 2-13 "Numerical System" for the reference of the floating point number.
- When the operated result is equal to "0", the Addition / Subtraction Zero Flag M9020 turns "ON".
- If the value of (\underline{S}) is less than zero, the PLC will regard that as an operational error and turn the M9067 = "ON".

FNC				ENE	GD						BIN F	loatir	na Poi	nt Ne	natior	ı		1	2	Μ	3
128											DIN	Ioatii	ig i oi		guiloi			0	\bigcirc	0	\bigcirc
			Deviere																		
Ope	Devices																				
ope.	and	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"		
C)													٠		•					
	X0 —		DEN	EGP	D D0							D : the	e devi	ce to b	be bos	sitive/r	iegativ	e inve	erted		
 This store 	s instru es the	uction e resu	invert It bacł	is a Bl k into (N floa	ting p	oint fo	rmat i	numbe	er whic	ch is d	esigne	ed by	D ir	nto its	negat	ive valı	ue an	d		

 When X0 = "OFF" → "ON", this instruction performs the positive/negative inversion operation on the BIN floating point number in (D1, D0), and then the result will be stored back into (D1, D0).

Before operation -123.45 (D1, D0) BIN floating number

 $\sqrt{X0 = "OFF" \rightarrow "ON"}$ After operation 123.45 (D1, D0) BIN floating number

- This instruction is a 32-bit instruction. Therefore, be sure to input DENEG or DENEGP in the program.
- The operand (D) must assign to a BIN floating point number for the calculation.
- The format for storing a floating point number will occupy two Registers in the PLC system. Please refer to the section 2-13 "Numerical System" for the reference of the floating point number.

				SINI 2							Calc	ulato	Sino						2	IVI	3
1	30	1 1									Calc	ulate	JIIIC					0	\bigcirc	\bigcirc	\circ
																				_	
	Operand Devices																				
	operand	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$'	'	
	S																	0			
	D													•		•					
	X0		DSIN	(S) N D0) D D10						S : the D : the	e sour e calci	ce dev ulated	vice fo result	r inpu	t the a	angle i	n radi	ans		

1 2 1 2

- This instruction performs the mathematical sine operation on the (\underline{S}) designated BIN floating point radians of angle, and the result is stored in the (\underline{D}) designated device.
- When X0 = "ON", the instruction is activated, it uses the BIN floating point radians at (D1, D0) to calculate the sine value, and the result will be stored at the specified destination devices (D11, D10).
- Radian = Degree $\times \pi$ / 180

- This instruction is a 32-bit instruction. Therefore, be sure to input DSIN or DSINP in the program.
- The source operand (\underline{S}) must assign to a BIN floating point number for the calculation, and the calculated result (\underline{D}) is by the BIN floating point format, too.
- The format for storing a floating point number will occupy two Registers in the PLC system. Please refer to the section 2-13 "Numerical System" for the reference of the floating point number.
- The example below is to calculate the 45 degree angle become a radian value of floating point, then use the radians to get the result value of SIN.

M9000	-DEDIV K314159 K18000000 D0 (π /180) \rightarrow (D1,D0)
	-DEMUL K45 D0 D2 The angel of 45 degree \times (π / 180) \rightarrow (D3, D2) [Unit: radian]
	-DSIN D2 D10 The result value of SIN is stored in (D11, D10).

			<u> </u>	000		$\overline{\mathbf{n}}$					Calci	ulato (Coein	0					2	IVI	5
1	31 1	1 1		000							Calci		00311	C				\bigcirc	\bigcirc	\bigcirc	0
																				_	
	Operand									Dev	ices										
	oporaria	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$'	'	
	S													•		•		0			
	D															•					
	X0 		DCO	S DC) (D) D1())					S : the D : the	e sour e calci	ce dev ulated	vice fo result	r inpu	t the a	angle ir	n radi	ans		

1 2 1 2

- This instruction performs the mathematical cosine operation on the (\underline{S}) designated BIN floating point radians of angle, and the result is stored in the (\underline{D}) designated device.
- When X0 = "ON", the instruction is activated, it uses the BIN floating point radians at (D1, D0) to calculate the cosine value, and the result will be stored at the specified destination devices (D11, D10).
- Radian = Degree $\times \pi$ / 180

- For to convert the angle unit between the radians and degrees, please refer to the DEG and RAD instructions.
- This instruction is a 32-bit instruction. Therefore, be sure to input DCOS or DCOSP in the program.
- The source operand (S) must assign to a BIN floating point number for the calculation, and the calculated result (D) is by the BIN floating point format, too.
- The format for storing a floating point number will occupy two Registers in the PLC system. Please refer to the section 2-13 "Numerical System" for the reference of the floating point number.

										Calculate Tangent									2	IVI	5
1	32	1 1									Oulo	ulate	lange	,110				0	\bigcirc	\bigcirc	C
			Devices																		
	Operand	V	V			DL	DL	KaX	K-V	LCV	1003	-	0		1/7	11-0	КП		" @		
		X	Y	IVI	S	D.D	R.D	KNX	KNY	KNM	KNS		C	D,R	V,Z	UnG	К,Π	E	\$		
	S																	0			
	D																				
$\begin{array}{c c} X0 & \textcircled{S} & \textcircled{D} \\ \hline $							S : the source device for input the angle in radians D : the calculated result														

1 2 1 2

- This instruction performs the mathematical tangent operation on the (S) designated BIN floating point radians of angle, and the result is stored in the (D) designated device.
- When X0 = "ON", the instruction is activated, it uses the BIN floating point radians at (D1, D0) to calculate the tangent value, and the result will be stored at the specified destination devices (D11, D10).
- Radian = Degree $\times \pi$ / 180

- For to convert the angle unit between the radians and degrees, please refer to the DEG and RAD instructions.
- This instruction is a 32-bit instruction. Therefore, be sure to input DTAN or DTANP in the program.
- The source operand (S) must assign to a BIN floating point number for the calculation, and the calculated result (D) is by the BIN floating point format, too.
- The format for storing a floating point number will occupy two Registers in the PLC system. Please refer to the section 2-13 "Numerical System" for the reference of the floating point number.

FNC 134 H H DACOSE S D												Calculate Arc Cosine								
Oner	rand		Devices																	
Oper	perand	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"	
S														•		•		0		
D)																			
• -1	.0≦S	≦1.0																		
 X0 S D ACOS D0 D10 This instruction performs the mathematical Arccosine (inverse cosine or cos⁻¹) operation by the S designated BIN floating point cosine value, and the result of radians is stored in the D designated device. 																				
 When X0 = "ON", the instruction is activated, it uses the BIN floating point cosine value at (D1, D0) to calculate the Arccosine value, and the result of radians will be stored at the specified destination devices (D11, D10). COS⁻¹ 0.5 = 1.047198 (D11, D10) BIN floating number (D1, D0) BIN floating number The calculated result at the (D11, D10) is by the value of radians and the range is between 0 and π. 																				
• Degree = Radian ×180 / π																				
• For t	to cor	nvert t	he an	gle un	it betv	veen t	he rac	lians a	and de	egrees	s, plea	se ref	er to t	ne DE	G and	RAD	instru	ctions		
• This	instru	uction	is a 3	2-bit i	nstruc	tion.	There	fore, b	e sure	e to in	put DA	ACOS	or DA	COSF	o in the	e prog	jram.			
• The	sourc is by	the E	erand SIN flo	(S) m ating	nust as point f	ssign t ormat	o a Bl , too.	IN floa	ating p	oint n	umbei	for th	ie calo	culatio	n, and	d the c	alcula	ited re	sult	
 The sect 	formation 2-	at for s -13 "N	storing lumer	g a flo ical Sy	ating /stem	ooint r ' for th	iumbe ie refe	er will o erence	occup	y two e floati	Regis ng po	ters in int nur	the P nber.	LC sy	stem.	Pleas	e refei	r to the	Э	

• The PLC will identify it as an operating error if the value of (\underline{S}) is exceeded the available range $-1.0 \sim 1.0$.

												Calculate Arc Tangent								M	3
																			0	0	\bigcirc
	Operand		Devices																		
	oporaria	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"	"	
	S													•		•		0			
	D													•		•					
	X0 S D S : the source device for input the value of DATAN D0 D10 D : the device to store the calculated result													ue of ta result (anger junit: r	it adiar)				
 This instruction performs the mathematical Arctan (inverse tangent or tan⁻¹) operation by the S designated BIN floating point tangent value, and the result of radians is stored in the D designated device. 																					

• When X0 = "ON", the instruction is activated, it uses the BIN floating point tangent value at (D1, D0) to calculate the Arctangent value, and the result of radians will be stored at the specified destination devices (D11, D10).

TAN⁻¹ 1.732051 = 1.047198 (D11, D10) BIN floating number

(D1, D0) BIN floating number

The calculated result at the (D11, D10) is by the value of radians and the range is between – π /2 and π /2.

- Degree = Radian imes180 / π
- For to convert the angle unit between the radians and degrees, please refer to the DEG and RAD instructions.
- This instruction is a 32-bit instruction. Therefore, be sure to input DATAN or DATANP in the program.
- The source operand (\underline{S}) must assign to a BIN floating point number for the calculation, and the calculated result (\underline{D}) is by the BIN floating point format, too.
- The format for storing a floating point number will occupy two Registers in the PLC system. Please refer to the section 2-13 "Numerical System" for the reference of the floating point number.
| | | D | RAD | P (3 | \mathbb{S} |) | | | | Conv | /ert Ai | ngle F | rom E | Degree | es to f | Radiar | | \bigcirc |
|---------------------------------------|--------------------|-----------------------------|-------------------------------|-----------------------------|------------------------------|----------------------------|-------------------|-----------------|-------------------|----------------------------|------------------------------------|---------------------------|----------------------------|--------------------------------|-------------------------------|------------------------|------------------|-----------------|
| | | | | | | | | | Πον | icas | | | | | | | | |
| Operand | | V | м | \$ | Dh | Rh | KnX | KnV | KnM | KnS | т | C | DR | V Z | UnG | КН | F | "¢" |
| S | ~ | 1 | IVI | 5 | 0.0 | 11.0 | KIIX | | | KIIO | 1 | | D,IX | •,2 | | 13,11 | 0 | Ψ |
| | | | | | | | | | | | | | | | | | | |
| • This inst | 0

ruction | | S
D D0 | D10 |)
)
thema | tical c | onver | ting o | peratio | S : ti
D : ti | he sou
he cal
the (<u>S</u> | urce d
culate | evice
ed resu
ignate | for inp
ult in ra
ed BIN | out the
adians
I floati | e angle
S
ng poi | e in de
nt de | egrees
grees |
| When Xi result of |) = "O
radian | N", the
s will I
Ang | e instr
ce sto
gle by | uction
red at
degre | is act
the spees | tivatec
pecifie | l, it us
d des | es the | e BIN f
on dev | loating
ices (I
Angl | g poin
D11, E
e by r | t degr
010).
adian: | ees al | : (D1, | D0) to | CONV | ert, ar | nd the |
| | | | 60 |) | | | X0 = | ON > | - | 1 | 1.0471 | 98 | | | | | | |
| | (D ⁻ | l, D0) | BIN flo | bating | numb | ber | | | (D11, | D10) | BIN flo | oating | numb | ber | | | | |
| • The forn section : | nat for
2-13 "N | 3IN flo
storing
Jumer | ating p
g a floa | ating point f | ormat
point r
" for th | , too.
numbe
ne refe | er will (| occup
of the | e floati | umbei
Regis
ng po | ters in
int nui | the P
the P | culatio
LC sy | n, and
stem. | d the c
Pleas | alcula
e refer | ted re | esult |
| • The forn
section | nat for
2-13 "N | 3IN flo
storing
Jumer | a floa
g a floa
ical Sy | ating r | ormat
point r
" for th | , too.
numbe | er will (| occup
of the | y two
∍ floati | umbei
Regis
ng po | ters in
int nui | the P
mber. | LC sy | n, anc | d the c | alcula | ted re | esult |
| • The forn
section | nat for
2-13 "N | 3IN flo
storing
lumer | a floa
ical Sy | ooint f
ating µ
/stem | ormat | iumbe
ne refe | er will (| occup
of the | y two
e floati | umbei
Regis
ng po | ters in
int nui | the P | LC sy | n, anc | d the c | alcula | ted re | e |
| • The form section : | nat for 2-13 "N | 3IN flo
storing
lumer | a floa
ical Sy | ooint f
ating p
stem | ormat | iumbe
ne refe | er will (| occup | y two
e floati | umbei
Regis
ng po | ters in
int nui | the P | LC sy | n, and | d the c | alcula | ted re | e |

			D	DEG	P)				Con	/ert Ai	ngle F	rom F	Radiar	n to De	egree	s 1 0	2
										Dev	ices								
Oper	and	Х	Y	м	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"
S	;													•		•		0	
D)													•		•			
				(\ \					S · t	ha sai	irca d	ovico	for inr	out the	anala	in de	aroo
Ļ	X0			<u>ري</u> ار ا		,]					D:t	he cal	culate	d resu	ult in r	adians	s angic	, in uc	gice.
	1 1			0 00	DIC	<u></u>													
 This of a 	instru nale	uction and th	i perfo	orms th	ne ma deore	thema es is st	tical c tored	onver	ting o	peration:	on on ated d	the (S) des	ignate	ed BIN	l floatii	ng poi	nt rad	ians
 Whe result 	en X0 Ilt of d	O" = bearee	N", th es will	e instr be sto	uction pred a	i is act t the s	ivatec pecifi	l, it us ed de:	es the stinati	e BIN f on de	loating vices i	g poin (D11.	t radia D10).	ins at	(D1, E	00) to	conve	rt, and	d the
			An	gle by	radia	ns	1				Angl	, e by d	legree	S					
				0.523	5988			X0 =	ON	>		30	0						
		(D1	1, D0)	BIN flo	oating	numb	ber			(D11,	D10)	BIN flo	oating	numb	ber				
• The	sour	ce ope	erand	(S) m	nust as	ssign t	o a Bl	IN floa	ating p	oint n	umbei	r for th	ne calo	culatio	n, and	d the c	alcula	ted re	sult
 The D The sect 	sourc is by forma	ce ope the E at for : -13 "N	erand BIN flo storing Jumer	(S) m ating p g a floa ical Sy	nust as point f ating p vstem	ssign t ormat ooint n ' for th	o a Bl , too. iumbe ie refe	IN floa er will d erence	ating p occup	point n by two e floati	umbe Regis ng po	r for th ters in int nu	ne calo 1 the P mber.	culatio LC sy	n, and stem.	the c Please	alcula e refei	ted re	esult
 The D The sect 	sourc is by forma ion 2	the E at for : -13 "N	erand 3IN flo storing lumer	(S) m ating p g a floa ical Sy	nust as point f ating p stem	ssign t ormat ooint n ' for th	to a Bl , too. numbe ne refe	IN floa er will o erence	ating p occup of the	ooint n oy two e floati	umbe Regis ng po	r for th ters in int nui	ne calo I the P mber.	culatio	n, and stem.	the c	alcula e refer	ted re	esult
 The D The sect 	sourc is by forma ion 2	the E at for s	erand 3IN flo storing lumer	(S) m ating p g a floa ical Sy	nust as point f ating p /stem ¹	ssign t ormat ooint n ' for th	o a Bl , too. iumbe ie refe	IN floa er will (erence	ating p occup of the	ooint n oy two e floati	umbe Regis ng po	r for th ters in int nu	ne calo I the P mber.	culatio	n, and	the c	alcula e refer	ted re	esult
 The The sect 	sourc is by forma ion 2-	the E at for : -13 "N	erand BIN flo storing Jumer	(S) m ating p g a floa ical Sy	nust as point f ating p vstem ⁵	ssign t format ooint n ' for th	to a Bl , too. numbe ne refe	IN floa er will (erence	ating p occup of the	ooint n oy two e floati	umbe Regis ng po	r for th ters in int nui	ne calo I the P mber.	culatio	n, and	d the c	alcula e refer	ted re	esult
The D The sect	sourc is by forma ion 2	the e the e at for : -13 "N	erand BIN flo storing Jumer	(S) m ating p g a floa ical Sy	nust as point f ating p vstem'	ssign t ormat, ooint n ' for th	to a Bl , too. numbe ne refe	IN floa er will (erence	ating p occup of the	ooint n oy two e floati	umbe Regis ng po	r for th ters in int nui	ne calc I the P mber.	LC sy	n, and	d the c	e refei	ted re	esult
 The D The sect 	sourc is by forma ion 2	the E at for : -13 "N	erand BIN flo storing Jumer	(S) m ating p g a floa ical Sy	aust as point f ating p vstem	ssign t ormat coint n ' for th	o a Bl , too. numbe le refe	IN floa er will d erence	ating p occup of the	ooint n oy two e floati	umbe Regis ng po	r for th ters in int nu	ne calo 1 the P mber.	LC sy	n, and	the c	alcula e refer	ted re	esult
 The D The sect 	sourc is by forma ion 2	the E at for : -13 "N	erand BIN flo storing Jumer	(S) m ating p g a floa ical Sy	nust as point f ating p vstem	ssign t format coint n for th	o a Bl , too. numbe le refe	IN floa er will (erence	ating p occup of the	ooint n oy two e floati	umbe Regis ng po	r for th ters in int nu	ne calo n the P mber.	LC sy	n, and	d the c	alcula e refer	ted re	esult
• The • The sect	sourc is by forma ion 2	the E at for : -13 "N	erand 3IN flo storing Numer	(S) m ating p g a floa ical Sy	nust as point f ating p vstem	ssign t ormat, coint n ' for th	o a Bl , too. numbe le refe	IN floa er will (erence	ating p occup of the	ooint n oy two e floati	umbel Regis ng po	r for th ters in int nui	ne calo I the P mber.	LC sy	n, and	d the c	alcula e refer	ted re	e
 The The sect 	sourd is by forma ion 2	ce ope the E at for : -13 "N	erand BIN flo storing Jumer	(S) m ating p g a floa ical Sy	nust as point f ating p /stem	ssign t format ooint n ' for th	to a Bl , too. numbe le refe	IN floa er will (erence	ating p occup of the	ooint n oy two e floati	umbel Regis ng po	r for th ters in int nu	ne calo n the P mber.	LC sy	n, and	d the c	e refer	ted re	e
• The • The sect	sourd is by forma ion 2	the E at for s-13 "N	erand 3IN flo storing lumer	(S) m ating p g a floa ical Sy	nust as point f ating p vstem	ssign t ormat, point n ' for th	to a Bl , too. numbe le refe	IN floa	ating p occup of the	ooint n	umbel Regis ng po	r for th ters in int nu	ne calo I the P mber.	LC sy	n, and	d the c	alcula e refer	ted re	esult
 The The sect 	sourd is by forma ion 2	ce ope the E at for : -13 "N	erand BIN flo storing Jumer	(S) m ating p g a floa ical Sy	nust as point f ating p /stem	ssign t format ooint n ' for th	to a Bl , too. humbe le refe	IN floa	ating p occup of the	ooint n oy two e floati	umbel Regis ng po	r for th ters in int nu	ne calo n the P mber.	LC sy	n, and	d the c	e refer	ted re	e
• The • The sect	sourc is by forma ion 2	ce ope the E at for : -13 "N	erand BIN flo storing Numer	(S) m ating p g a floa ical Sy	nust as point f ating p vstem	ssign t ormat, coint n ' for th	to a Bl , too. humbe le refe	IN floa	ating p occup of the	ooint n	umbel Regis ng po	r for th ters in int nu	ne calo n the P mber.	LC sy	n, and	d the c	alcula e refer	ted re	e
 The The sect 	sourc is by forma ion 2	ce ope the E at for : -13 "N	erand BIN flo storing Jumer	(S) m ating p g a floa ical Sy	nust as point f ating p vstem	ssign t format ooint n ' for th	to a Bl , too. humbe le refe	IN floa	ating p occup of the	ooint n	umbel Regis ng po	r for th ters in int nu	ne calo n the P mber.	LC sy	n, and	d the c	e refer	ted re	esult
• The • The sect	sourd is by forma ion 2	ce ope / the E at for : -13 "N	erand 3IN flo storing Jumer	(S) m ating p g a floa ical Sy	nust as point f ating p vstem	ssign t ormat, point n ' for th	to a Bl , too. humbe le refe	IN floa	ating p occup of the	ooint n	umbel Regis ng po	r for th ters in int nu	ne calo n the P mber.	LC sy	n, and	d the c	alcula e refer	ted re	esult
• The • The sect	sourc is by forma ion 2	ce ope the E at for : -13 "N	erand BIN flo storing Jumer	(S) m ating p g a floa ical Sy	nust as point f ating p vstem	ssign t ormat, point n ' for th	to a Bl , too. humbe le refe	IN floa	ating p occup of the	ooint n	umbel Regis ng po	r for th ters in int nu	ne calo n the P mber.	LC sy	n, and	d the c	e refer	ted re	esult
• The • The sect	sourc is by forma ion 2	ce ope / the E at for : -13 "N	erand BIN flo storing Jumer	(S) m ating p g a floa ical Sy	nust as point f ating p /stem	ormat ormat ooint n for th	to a Bl , too. humbe le refe	IN floa	ating p occup of the	ooint n oy two e floati	umbel Regis ng po	r for th ters in int nu	ne calo	LC sy	n, and	d the c	e refer	ted re	e
• The • The sect	sourc is by forma ion 2	ce ope the E at for : -13 "N	erand BIN flo storing Jumer	(S) m ating p g a floa ical Sy	nust as point f ating p vstem	ssign t ormat, point n ' for th	to a Bl , too. humbe le refe	IN floa	ating p occup of the	ooint n	umbel Regis ng po	r for th ters in int nu	ne calo	LC sy	n, and stem.	d the c Pleas	e refe	ted re	esult

6-13 Advanced Data Processing and MBUS Instructions

FNC	Mpemonic in Ladder Diagram	Function Description	Ap	plica	able	VS
No.			1	2	Μ	3
140	$\vdash \vdash \bigcirc \bigcirc WSUMP (S) (D) (n)$	Sum of Word Data				0
141	WTOBR SD n	Split Word to Byte				0
142	H H BTOWR S D n	Combine Byte to Word				0
143	$\vdash \vdash \bigcup UNIP(S) \bigcirc n$	Combine 4-bit Nibble to Word				0
144		Separate Word to 4-bit Nibble				0
147		Swap High / Low Byte	0	0	0	0
148	$\vdash \vdash \square SORT2 (S) (m1) (m2) (D) (n)$	Sort Tabulated Data 2	0	0	0	0
149	$\vdash \vdash MBUS (S_1) (S_2) (n)$	MODBUS Communication Instruction	0	0	0	0

	B.	том			n	5		Cor	nhine	B vte	to Wo	ord				1	2
	D	100				/				Dyto	10 110	nu -					
								Dev	ices								
Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$
										٠	•	٠					
										٠	•	٠					
												0			0		
	x	X Y	X Y M	X Y M S	X Y M S D.b	X Y M S D n	H BTOWP S D n X Y M S D.b R.b KnX I I I I I I I I I I I I I I	BTOWESD X Y M S D.b R.b KnX KnY I I I I I I I	BTOWP S D n Cor Z Y M S D.b R.b KnX KnY KnM I	BTOWP (S) (D) (n) Combine Devices Devices X Y M S D.b R.b KnX KnY KnM KnS I I I I I I I I	BTOWP S D n Combine Byte Devices Devices X Y M S D.b R.b KnX KnY KnM KnS T I I I I I I I I I I	BTOWP S D n Combine Byte to Wc BTOWP S D n Combine Byte to Wc Combine Byte to Wc Combine Byte to Wc X Y M S D.b R.b KnX KnM KnS T C X Y M S D.b R.b KnX KnY KnM KnS T C A I	BTOWP S D n Combine Byte to Word Combine Byte to Word Devices X Y M S D.b R.b KnX KnY KnS T C D,R X Y M S D.b R.b KnX KnY KnM KnS T C D,R A A A A A A A A A A A A	BTOWP (S) (D) (n) Combine Byte to Word Combine Byte to Word Combine Byte to Word V M S D.b R.b KnX KnY KnS T C D,R V,Z X Y M S D.b R.b KnX KnY KnM KnS T C D,R V,Z I I I I I I I I O I	BTOWP (S) (D) (n) Combine Byte to Word Combine Byte to Word Combine Byte to Word Devices Combine Byte to Word X Y M S D.b R.b KnX KnY KnS T C D.R V,Z UnG X Y M S D.b R.b KnX KnY KnS T C D.R V,Z UnG A <td>BTOWP (S) (D) (n) Combine Byte to Word Combine Byte to Word Combine Byte to Word Devices Combine Byte to Word X Y M S D.b R.b KnX KnM KnS T C D,R V,Z Ung K,H X Y M S D.b R.b KnX KnM KnS T C D,R V,Z Ung K,H I</td> <td>BTOWP (S) (D) (n) Combine Byte to Word I Devices X Y M S D.b R.b KnX KnM KnS T C D,R V,Z Ung K,H E X Y M S D.b R.b KnX KnM KnS T C D,R V,Z Ung K,H E I <</td>	BTOWP (S) (D) (n) Combine Byte to Word Combine Byte to Word Combine Byte to Word Devices Combine Byte to Word X Y M S D.b R.b KnX KnM KnS T C D,R V,Z Ung K,H X Y M S D.b R.b KnX KnM KnS T C D,R V,Z Ung K,H I	BTOWP (S) (D) (n) Combine Byte to Word I Devices X Y M S D.b R.b KnX KnM KnS T C D,R V,Z Ung K,H E X Y M S D.b R.b KnX KnM KnS T C D,R V,Z Ung K,H E I <

X0 (S) (D) (n) H BTOWP D10 D20 K5

S : the head ID of source devices to be combined

D : the head ID of storage devices for the combined result

n : the number of bytes to be combined

- This instruction takes all the lower bytes of the devices that started from the (S) to get (n) bytes of data, then restructures and stores the data to continuous 16-bit words that started from (D).
- When X0 = "OFF" → "ON", the instruction takes 5 bytes of data from those lower bytes within D10~D14, to merge
 and store the data into 16-bit word components D20~D22. Since it is no data for the upper byte of D22, this byte
 will be filled in 00H.

• If n = 6, the execute result is shown below.

• If (n) = 0, the instruction will not execute.

IC 7	\vdash			D	SW	A	ΡP	\bigcirc					Swa	p Hię	gh / Lo	w Byt	Ð				(1 2 C C	
• 																							
Oper	and	Y		/	М		9	Dh	Rh	KnX	KnV	Dev	ices KnS	Т		DR	V 7	Un(2	КН	F	"	\$"
S		^			IVI		5	0.0	17.0			•		•	•	•	0	•	5	1,11			Ψ
F	X20 ⊣)	SV	NA	(PP	D D0)					D :	the U	pper	/ Lowe	er 8 bit	s of tł	ie dei	vic	e to	be s	wapı	pec
Whe	ר X20) = "	OFF		÷"0	N"	, the	Uppe	er 8 bi	ts and	Lowe	er 8 bit	s in th	e (D) will I	be swa	apped	•					
		Upp	oer 8	3 bi	ts			~		Low	er 8 bi	its		<									
0	0	0	0	0	0	0) () 1	1	1 1	1	1	1	_D0									
								V X2	20 = '	'OFF"	\rightarrow "	ON"											
1	1	1	1	1	1	1	1	0	0	0 0	0	0 () ()	D0									
						(ת																
	X	21 	[DS	WAP	, C	D10																
Whe	n X21	I = "	OFF	-"_	→"O	N"	, the	Uppe	er / Lo	wer 8	bits in	the (E	010) v	vill be	e swap	ped al	so the	e Upp	ber	/ Lo	wer 8	3 bits	s in
the (J11)	will k	be si	wap	opec	d, t	00.																
		Upp	oer 8	3 bi	ts			<u> </u>		Low	er 8 bi	its		<u>`</u>									
0	0	0	0	0	0	0) () 1) 0	1 0	1 1 0 0	1	1	1 1	D1 D1	0 1								
								X2	21 = 1	"ON"													
1	1	1	1	1	1	1	1	V 0	0	0 0	0	0 () 0	D1	0								
0	0	0	0	1	1	1	1	1	1	1 1	0	0 () 0	D1	1								

F١	1C								1	2 N	1 3										
14	18				306	ΠZ	ى ر					3011	labul		Jala 2				0	\circ	
	Operar	hd		Devices																	
	operan		Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"	
	S														0						
	m1														0			0			
	m2																	0			
	D														0						
	n														0			0			
	 For a For a (a 16-bit instruction, each of the S and D respectively occupy (m1×m2) components a 32-bit instruction, each of the S and D respectively occupy (2×m1×m2) components																			
	• m1 =	$= 1 \sim 32$ • m ₂ $= 1 \sim 6$ • n $= 1 \sim m_2$																			

X0		(S)	(m 1)	(m 2)	\bigcirc	(\mathbf{n})
	SORT2	D0	K5	K4	D100	D200

Original Data Array
(Starting from the appointed register (S))

		Data Arra	ingement									
	1	2	3	4								
	Student ID	Philology	Mathematics	History								
	(D0)	(D1)	(D2)	(D3)								
	1	80	70	75								
	(D4)	(D5)	(D6)	(D7)								
	2	65	70	90								
(<u>m</u> 1)	(D8)	(D9)	(D10)	(D11)								
	3	90	65	80								
	(D12)	(D13)	(D14)	(D15)								
	4	75	90	65								
	(D16)	(D17)	(D18)	(D19)								
	5	80	85	95								
	k (m2) (m2)											

- S : the head register ID of the original data array
- m1 : the number of data record sets to be sorted
- m2 : the number of data at an arrangement for each set
- ${\sf D}~$: the head register ID number of the data array where to store the sorted results
- $\ensuremath{\mathbf{n}}\xspace$: to assign the nth. data in an arrangement as the sort basis $\ensuremath{\mathbf{n}}\xspace^{th}$
- The SORT2 instruction is used to sort an data array that has a serial of data record sets (the number of sets is assigned by (m1)). Each set has a grouped arrangement (the number of grouped data at each arrangement set is assigned by (m2)). While that (n) is used to assign the nth arrangement as the routing basis to sort the data array. The (S) is to designate the head register ID of the original data array to be sorted, and the (D) is to designate the head register ID of the result data array.
- Both of the arrays (S) and (D) will separately occupy (m1) × (m2) consecutive registers.
- The M9165 is to assign the instruction's operation mode. If the M9165 = "OFF", the data sorting is in ascending order; conversely, "ON" is in descending order.
- When X0 = "ON", the SORT2 instruction is starting to perform. This instruction needs take 4 (the content of (m)) scan cycles to complete the sort action. When it is completed, the Execution Completed Flag M9029 = "ON" for a Scan Time and the sort action will be stopped.

Sorted Data Result Array if the D200 = 4

	(Starting	from the ap	pointed regis	ter (D))		(Starting	from the ap	pointed regis	ter (D)
		Data Arra	angement				Data Arra	angement	
	1	2	3	4		1	2	3	4
	Student ID	Philology	Mathematics	History		Student ID	Philology	Mathematics	History
	(D100) 2	(D101) 65	(D102) 70	(D103) 90		(D100) 4	(D101) 75	(D102) 90	(D103) 65
	(D104) 4	(D105) 75	(D106) 90	(D107) 65		(D104) 1	(D105) 80	(D106) 70	(D107) 75
(m 1)	(D108) 1	(D109) 80	(D110) 70	(D111) 75	(<u>m</u> 1)	(D108) 3	(D109) 90	(D110) 65	(D111) 80
	(D112) 5	(D113) 80	(D114) 85	(D115) 95		(D112) 2	(D113) 65	(D114) 70	(D115) 90
	(D116) 3	(D117) 90	(D118) 65	(D119) 80		(D116) 5	(D117) 80	(D118) 85	(D119) 95
	<	(n2)	>		<	(n2)	>

When M9165 $=$ "OFF", the data so	orting is in a	scending order.
-----------------------------------	----------------	-----------------

Sorted Data Result Array if the D200 = 2 (Starting from the appointed register (\mathbf{D}))

• When M9165 = "ON", the data sorting is in descending order.

	· · · · · ·	1	0	<u> </u>								
		Data	Arrangem	ent								
	1	2	З	4								
	Student ID	Philology	Mathematics	History								
	(D100)	(D101)	(D102)	(D103)								
	4	75	90	65								
	(D104)	(D105)	(D106)	(D107)								
	5	80	85	95								
(<u>m</u> 1)	(D108)	(D109)	(D110)	(D111)								
	1	80	70	75								
	(D112)	(D113)	(D114)	(D115)								
	2	65	70	90								
	(D116)	(D117)	(D118)	(D119)								
	3	90	65	80								
	<u>↓</u>											

Sorted Data Result Array if the D200 = 3(Starting from the appointed register (D))

Sorted Data Result Array if the $D200 = 1$
(Starting from the appointed register D)

		Data	Arrangem	ent
	1	2	3	4
	Student ID	Philology	Mathematics	History
	(D100)	(D101)	(D102)	(D103)
	5	80	85	95
	(D104)	(D105)	(D106)	(D107)
	4	75	90	65
<u>m</u> 1	(D108)	(D109)	(D110)	(D111)
	3	90	65	80
	(D112)	(D113)	(D114)	(D115)
	2	65	70	90
	(D116)	(D117)	(D118)	(D119)
	1	80	70	75
	<	(n	12)	>

- In case of the 32-bit instruction is used, all of the components at (S), (m_1) , (m_2) , (D) and (n) must by the format of 32-bit.
- The related special devices are summarized below:

Relay ID No.	Description
M9029	Instruction execution completed flag. M9029="ON" when the executions of some applied instructions are completed (please refer to the relevant instructions).
M9165	Assigned the SORT2 instruction sort process mode. When M9165="OFF" by ascending order; and M9165="ON" by descending order.

Notes

(1) During the instruction is in operation, all parameters and the contents of data are not allowed to change.

- (2) There is no limit on the used times of the SORT2 instruction in the program. However, only two instructions can be executed at the same time.
- (3) After the operation of this instruction is completed and if that is required to sort again, should switch the condition contact "OFF" and then "ON".
- (4) In this instruction, the components of the data arrays for the (S) and (D) are not allowed overlap, except for (S) = (D).

C 9			M	BUS	S (S1)	S 2	n				MOD	BUS	Comm	nunica	ation	nstru	ction	1	2 M
Oper	and							1	1	Dev	ices					1		1	
		X	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	T	С	D,R	V,Z	UnG	К,Н	E	"\$"
S	1	Usir	ng a Ta	ble Co	de Q0	~Q31	(V, Z in	dex m	odifiab I	le) or a	Table	Nickna	ame (by	user-o	define	d 16 Er	nglish a	charact	ters)
S2	2													0					
n																	0		
• S2 C	occup	ies 4 c	ompor	nents	• Fo	r the V	S1, VS	2 or V	SM ser	ies, n =	= 1~3;	for the	e VS3 s	eries, i	n = 1	~5			
ŀ	X20 —		MBU	S AC	CESS	S1 S_MBS	S_EQU	(IIP D	<u>S2</u> ()100	n K1	S1 : th re S2 : th 4 n : to Cl	e con ceivin e wor regist assic P1~C	nmunio Ig and king al ers In the 2P5	cation transi rea foi comm	table mitting r the i nunica	that d g nstruc ation p	lescrik tion th ort, 1-	bes the nat occ $\sim 5 =$	e data cupies
The CP1	VS s∈ ∼CPť	eries F 5 with	LC us other	ses thi peripl	s instr herals	uctior which	n to tra n use t	ansmit he M	or ge ODBU	t the c S ASC	lesign XII or F	ated o TU pi	data vi rotoco	a its C I.	Comm	unicat	ion Po	ort	
type the " from As sl to se Lado prog in tha to loa and	from MOD the p hown et a un der M gram, at wir ad thi perip	its va BUS progra in the aster then then is pro- herals	Are m rious f Maste mmin statio S to o set the After ject to s can b	e belo n num pen the port's that, e the N poe rea	ware l ware l ware l ber (1 he pro s "App edit the laster iched.	All con Vhen 1 ng the Ladde nnect ~247 ject of licatic e MOI PLC.	this inst appli r Mas the PL f the PL f the V on type DBUS Follov	catior structi catior ter S a .C wit every c S seri e:" as comr wing t	n type and at h othe device es PL the "N nunica hese p	s. Ead using a select the "F and r C and AODB ation ta proced	ri port, ion an Project ce(s) k nake t write t JS Ma able to lures,	by the be oth this M aster" o design the pr	Id cho Id cho Ited pa COM I RS-23 BUS in BUS in also to gnate	e an a ose th arame Port Se 2 or F amete samete oset ti data ti e of da	pprop ter se etting RS-48 ers ide tion ir he co ransfe ata de	5 wirin 5 wiring, p 5 wirin 5 mirical 1 the N mmur erring a livery l	ion typ olease ng. Fu I. Bes Master nicatio action betwe	unication be: "be spec urthern sides, i "PLC's n para is. Mo sen the	nore, ify it nore, use th ameter preove PLC
	/S sei PLC	ries C		A d N	levice IODBL protoco	with JS ol		ſ	VS F	series PLC		-	A devic MOD proto	e with BUS ocol			Ac	device /IODBI protoc	with JS ol
	/IODB Maste	US er		Dig Disp Barc	ital sca blay bo code re	ale / ard / ader			MO	DBUS aster			Inve	rter			Te	mpera	ture er
		F	- 3S-23	32	7					$\overline{}$	RS-	485		$\overline{}$				7	
Whe "ACC while Whe	n X20 CESS e the n the V9104) = "(MBS D100 [,] conte 4 will	DN", th EQU ~D103	ne MB JIP" co 3 will b [:] the c	US in: ommu oe occ	structi nicatio cupiec unicati	on sta on tab I to sto on tab	urts ex le, it p ore the	ecutio procee e state ecifiec	n. Ac ds da of ins by th	cordin ta write structic	g to ti e or re on exe	he cor ead ac ecutior	itents tions t	desci to the	ribed i appo	n the inted p	periph	erals,
Whe	n the	X20 t	oe "Oi urns fi	N" for	a Sca	n Tim	e then ="this	the p	proced	lure wi	Il start	are ex over he da	kecutio again ta sha	from t	he firs	st item	i set o ston h	of the table	to en able. a
Whe whic The	n the h has relate	X20 t s trans ed spe	urns fi sferrec scial d	N" for rom "(I previ evices	a Sca ON" to iously	n Tim o "OFF will st	e then ⁼ ", this ill rem arized	i the p s instri ain. belov	vroced uction v:	lure wi stops	and ti	are e: over he da (kecutic again ta sha (∎: Me	from t ring in ans re	nmed	iately :	stop b	f the ta	to en able. a
Whe whic The I	n the h has relate Relay	X20 t s trans ed spe ID No	urns fi sferrec cial d	N" for rom "(I previ evices	a Sca DN" to iously	n Tim o "OFF will st	e then ⁼ ", this ill rem arized	i the p instri ain. belov	oroced uction v:	luré wi stops	and the second	are ex over he da (otion	ta sha	from t ring in ans re	he firs	iately :	stop b	out dat	to en able. a
Whe whic The	n the h has relate Relay M9	X20 t s trans ed spe ID No 9103	urns fi sferrec ecial d	N" for rom "(l previ evices CP1 RS	a Sca ON" to jously s are s	n Tim) "OFF will st umma	e then -", this ill rem arized US inst	the painstriation the pain.	v:	luré wi stops [mmun	and the start	are e; over he da (otion abnor	kecutic again ta sha (∎: Me mal flag	from t ring in ans re	he firs	iately :	stop b	out dat	to en able. a
Whe whic The I	n the h has relate Relay MS	X20 t s trans ed spe ID No 9103	urns fi sferrec cial d	N" for rom "(l previ evices CP1 RS	a Sca DN" to iously s are s	n Tim o "OFF will st umma < / MBI	e then -", this ill rem arized US inst	the painstruation of the painstruction of the painstruction of the painstruction of the painstructure painstructur	v:	luré wi stops <u>mmun</u> on tabl	and the start	are e) over he da (otion abnor	ta sha (=: Me mal flag	from t ring in ans re g.	he firs	iately :	stop b	f the ta	to enable.
The I	n the h has relate Relay MS MS	X20 t s trans ed spe ID No 9103 9104 9113	urns fi sferrec cial d	N" for rom "(l previ evices CP1 RS CP1 LIN CP2 RS	a Sca DN" to jously s are s S / LINF NK / MI	n Tim o "OFF will st umma < / MBI BUS in < / MBI	e then ", this ill rem arized US inst struction US inst	the p instruation belov ruction on on e	v: n on cc executi	stops stops mmun on tabl	and the complete comp	are ex over he da (otion abnor olete o abnor	ta sha (=: Me mal flag nce fla	from t ring in ans re g. g.	he firs	hly.)	stop b	f the table	to en able. a
Whe whic The I	en the sh has relate Relay Mg Mg Mg	X20 t s trans ed spe ID No 9103 9104 9113	urns fi sferrec cial d c c c c c c c c c c c c c c c c c c c	N" for rom "(l previ evices CP1 RS CP1 LIN CP2 RS CP2 LIN	a Sca DN" to iously s are s S / LINF NK / MI S / LINF	n Tim o "OFF will st umma < / MBI BUS in < / MBI BUS in	e then -", this ill rem arized US inst structio US inst structio	the p instruation belov ruction ruction on on e	v: n on cc executi n on cc executi	lure wi stops tommun on tabl	e complexity cation e comp	are ex over he da (otion abnor olete o abnor	ta sha (=: Me mal flag nce fla nce fla	ring in ans re g. g. g.	he firs	nly.)	stop b	f the ta	to en able. a
The I	en the ch has relate Relay MS MS MS	X20 t s trans ed spe ID No 9103 9104 9113 9114 9123	ecial d	N" for rom "(l previ evices CP1 RS CP1 LIN CP2 RS CP2 LIN CP3 RS	a Sca DN" tc iously s are s 6 / LINF NK / MI 3 / LINF	n Tim o "OFF will st umma (/ MBI BUS in (/ MBI BUS in (/ MBI	e then ", this ill rem arized US inst struction US inst uS inst	the p instruction below ruction on on e ruction on on e ruction	v: n on cc executi n on cc executi n on cc	lure wi stops pmmun on tabl pmmun on tabl	Descrip cation cation cation cation	are ex over he da (otion abnor olete o abnor olete o abnor	mal flag mal flag mal flag mal flag mal flag mal flag	g. g. g. g.	ead or	iately :	stop b	f the ta	to en able. a

CP4 RS / LINK / MBUS instruction on communication abnormal flag. CP4 LINK / MBUS instruction on execution table complete once flag.

CP5 RS / LINK / MBUS instruction on communication abnormal flag.

CP5 LINK / MBUS instruction on execution table complete once flag.

M9133

M9143

■M9134

■M9144

• The communication table is assigned by the (S1) of the instruction.

Item No.	Command	Device at Master	Direction	Slave St. No.	Device at Slave	Length	Word/Bit	Disable Contact
1	H03 Read (4x)	D0	<	1	1000	10		M1
2	H10 Write (4x)	D10	>	1	1100	5	_	M1
3	H03 Read (4x)	D20	<	2	1000	10	_	M2
4	H10 Write (4x)	D30	>	2	1100	5	_	
5	H10 Write (4x)	D40	>	0	100	20		M0

An example of the "MBUS" provided by programming tool the Ladder Master S is shown below.

The first item set in the table means that the Master reads the data $41000 \sim 41009$ from the Slave #1 and stores them at the D0 \sim D9 of the Master.

The second item set in the table means that the Master writes its data at D10 \sim D14 to the 41100 \sim 41104 of the Slave #1.

The third item set in the table means that the Master reads the data $41000 \sim 41009$ from the Slave #2 and stores them at the D20 \sim D29 of the Master.

The fourth item set in the table means that the Master writes its data at D30 \sim D34 to the 41100 \sim 41104 of the Slave #2.

The fifth item set in the table means that the Master writes its data at $D40 \sim D59$ to the $40100 \sim 40119$ of all the Slaves. To set the Slave station #0 means that the Master writes the data to all of the Slaves. Note that Read Command cannot be used in this application.

The last column of the table is for the Disable Contact. If that specified contact is "ON", the communication item set will be ignored. For example, if M1 = "ON", the first and second item sets in the table will skip. This is the new function of the VS series, which can help designers effectively manage the operation of the communication table. A communication item set does not need to specify a Disabled Contact (such as the fourth item set), so that the command of the set does not have the disable control function.

• The working area of the executive instruction is starting from the (S_2) (using D100~D103 as the example).

S 2		Description
	Lower 8 bits	The record of the Slave's station number when the first communication error is occurred
D100	Upper 8 bits	 Instruction working status 0: Normal data transmitting / receiving 2: The length of the received data is incorrect 4: The error is caused by the assigned device is inappropriate 7: The error is caused by the communication command is incorrect A: The communication setting is normal but no response from the Slave station (Time-out occurs) B: Abnormal communication
D101 \$ D103	The working	area is required for the system when this instruction is performed

The MBUS instruction will reset the D100 to be "0" before the first item set at the table is executed.

If any communication error occurs during the execution of the instruction, a code will be recorded in D100. Only when the content value of D100 is "0", the recording action can be executed. Therefor, when there are possibilities of several errors, users can use the program to move out the content value of D100 then reset it to "0". This way allows the D100 to record the next error.

• To edit a communication table

Use the Ladder Master S to set up a MBUS communication table and through its interactive window can set up and edit a communication table easily.

In the structure of VS series PLC, the communication tables are a part of the project. When the programmer to copy or access the project, those tables will be duplicated automatically with the program.

6-14 Real Ti	ime Clock Rela	ted Instructions
--------------	----------------	------------------

FNC	Mnomonic in Ladder Diagram	Euroption Description	Ap	plica	able	VS
No.			1	2	Μ	3
160	$\vdash \vdash \top CMPP (S1) (S2) (S3) (D)$	Time Compare	0	0	0	0
161	$\vdash \vdash \top ZCP \blacksquare (S1 (S2 (S) D)$	Time Zone Compare	0	0	0	0
162		Time Addition	0	0	0	0
163		Time Subtraction	0	0	0	0
164	H H DHTOSR (S) D	Convert Hour to Second	0	0	0	0
165	DSTOH SD	Convert Second to Hour	0	0	0	0
166		Read RTC Data	0	0	0	0
167		Set RTC Data	0	0	0	0

Operand									Dev	ices								
	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"
S1							•	•	٠	•	•	٠	•	0	•	•		
S2							٠	•	•	•	٠	•	•	0	•	•		
S3							•	•	•	•	•	•	•	0	•	•		
S											•	•	•		•			
D			•	•	0	0		0										
• 51 = 0~	23	• 52 =	= 0~5	9	• 53 =	0~55	•	5 0000	uples a	comp	onents			Jupies	3 COIII	poneni	IS	
Vac			S 1) S 2	S 3	S	D			S1 : th	ne "Ho	ur" fo	r com	parisc	n			
	, [тсм	P K8	K30	K20	D0	M0			S2 : th	ne "Mi	nute"	for co	mpari	son			
I I	l		~							S3 : th	ie "Se	cond"	for co	ompai	rison			
			08	'' 30''	20 ^s					S : th	ne regi	sters	of the	time	combi	nation	to do	the
										D : th	ne con	npare	result	; OCCL	upyina	3 con	isecut	ive
										p	oints				. , 0			
If 08 ^h 3	80 ^m 20) ^s >	D0 (D1 (D2 (Hour) Minut Secor	e) nd)	, then	M0 =	= "ON	33									
If 08 ^h 3 If 08 ^h 3	30 ^m 20 30 ^m 20) ^s =	D0 (D1 (D2 (D0 (D1 (D2 (Hour) Minut Secor Hour) Minut Secor	e) nd) e) nd)	, then , then	M1 = M2 =	= "ON = "ON	22									

Operano	4								Dev	ices								
oporane	X	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"
S1													•		•			
S2											•	•	•		•			
S											•	•	•		•			
D			٠		0	0												
xz 	20	TZCF	(S1 P D0) (<u>S</u> 2) D10	S D20	D M0				S1 : th S2 : th S : th	e low e upp e reg ompa	er sett ber set isters rison	ting of ting o of the	the tii f the ti time c	me pe me pe combii	riod co eriod c nation	ombir ombi to do	nation nation o the
The time upper se	e value etting o	is defi If the ti	ned b ime p	eriod c	, it wil define	l be co d by (ompai S2). A	red to and the	the lo en, the	D : th po wer se e comp	e cor pints etting pare r	npare of the result v	result time p vill be	occu period stored	pying define d in (D	3 con ed by (secut S1) a	ive nd the
The time upper so When X	e value etting o 20 = "(<u>(</u> <u>S</u> 1)	is defi f the ti DN", th	ned b ime p ne ins	eriod c tructio	, it wil defined n will I S)	l be co d by (: be per	ompai <u>\$</u> 2). A	red to and the ed.	the lo en, the	D : th po wer se e comp	e cor pints etting pare r	npare of the esult v	result time p vill be	; occu period stored	pying define d in (D	3 con ed by (secut	ive nd the
The time upper so When X	e value etting o 20 = "C <u>(S</u> 1) 00 (Hour	is defi f the ti DN", th	ned b ime pr ne ins	eriod c tructio (D20 (H	, it wil defined n will I <u>S</u> Hour)	l be ca d by (be pel	ompai <u>\$</u> 2). A	red to and the ed.	the lo en, the	D : th po wer se e comp	e cor pints etting pare r	npare of the result v	result time p vill be	; occu period stored	pying define d in (D	3 con ed by (secut	ive nd the
The time upper so When X	e value etting o 20 = "($\underline{S_1}$) 0 (Hour 1 (Minu	is defi f the ti DN", th) te)	ned b ime pr ne ins	by S eriod c tructio (D20 (H D21 (H	, it wil defined n will I S Hour) Winute	l be co d by (be per	ompai S2). A rforme then N	red to and the ed. VI0 =	the lo en, the "ON"	D : th po wer se comp	e cor pints etting pare r	npare of the esult v	result time p vill be	eriod stored	pying define d in (D	3 con ed by f	secut	ive nd the
The time upper so When X D D	e value etting o 20 = "(<u>S</u> 1) 0 (Hour 1 (Minu 2 (Seco	is defi f the ti DN", th) te) ond)	ned b ime pr ne ins	eriod c tructio (D20 (H D21 (N D22 (S	, it wil defined n will I S Hour) Minute Second	l be co d by (be per) ,	then N	red to and the ed. M0 =	the lo en, the "ON"	D : th po wer se e comp	e cor pints etting pare r	npare of the esult v	result time p vill be	eriod stored	pying define d in (D	3 con	secut	ive nd the
The time upper so When X D D	e value etting o 20 = "C (S_1) 0 (Hour 1 (Minu 2 (Seco	is defi of the ti DN", th) te) ond)	ned b ime pr ne ins	y (S) eriod c tructio (D20 (H D21 (N D22 (S	, it wil defined n will I S Hour) Winute Secon	l be ci d by (be per) , d)	ompains $\underline{S_2}$. A formed then N	red to and the ed. M0 = $(\underline{S2})$	the lo en, the "ON"	D : th po wer se comp	e cor pints etting pare r	npare of the esult v	result time p vill be	; occu period stored	pying define d in (D	3 con	secut	ive nd the
The time upper so When X D D D	e value etting o 20 = "(<u>S</u> 1) 0 (Hour 11 (Minu 2 (Seco	is defi f the ti DN", th) te) ond)	ned b ime po ne ins	y (S) eriod c tructio (D20 (H D22 (S D20 (H	, it wil defined n will I S Hour) Minute Second Hour)	l be co d by (be per) , d)	$\sum_{i=1}^{i}$ ompains $\sum_{i=1}^{i}$ of $i \in I$	red to and the ed. $M0 = \frac{(S_2)}{10 (Ho$	the lo en, the "ON"	D : th po wer se comp	e cor pints etting pare r	npare of the esult v	result time p vill be	; occu beriod stored	pying define d in (D	3 con	secut	ive nd the
The time upper so When X D D D	e value etting o 20 = "C <u>S</u> 1) 0 (Hour 11 (Minu 2 (Seco 0 (Hour 11 (Minu	is defi f the ti DN", th) te)) te)	ned b ime points ins	y (S) eriod c tructio (D20 (H D22 (S D20 (H D21 (N	, it wil defined n will I S Hour) Minute Second Hour) Minute	l be co d by (be per) , d) ;	$\frac{\text{Dompain}}{S_2} = \frac{D}{D}$	red to and the ed. $VI0 = \frac{S_2}{10 (Ho)}$	the lo en, the "ON" our) nute)	D : th po wer se comp	e cor pints etting pare r	npare of the esult v	result time p vill be	; occu period stored	pying define d in (D	3 con	secut	ive nd the
The time upper so When X D D D D D	e value etting o 20 = "C <u>S</u> 1 0 (Hour 1 (Minu 2 (Seco 1 (Minu 2 (Seco	is defi if the ti DN", th) te) ond) te) ond)	ned b ime p ne ins $\left \right\rangle =$	y (S) eriod c (D20 (H D21 (H D22 (S) D20 (H D21 (M D22 (S)	, it wil defined n will I S Hour) Minute Second Hour) Minute Second	l be co d by (be per) d)	$\frac{\text{ompain}}{S_2}. \text{A}$	red to and the ed. $M0 = \frac{S_2}{10 (Ho)}$	the lo en, the "ON" () pur) nute) (cond)	D : th po wer se comp	e cor points etting poare r	npare of the esult v	result time p vill be	; occu period stored	pying define d in (D	3 con	Sî) a	ive nd the
The time upper so When X D D D D D D	e value etting o 20 = "C (S_1) 0 (Hour 11 (Minu 2 (Seco 0 (Hour 11 (Minu 2 (Seco	is defi if the ti DN", th () te) () te) te) () te)	ned b ime p ne ins > [] ≤ [] ≤ [y (S) eriod c tructio (D20 (H D21 (N D20 (H D21 (N D22 (S	, it wil defined n will I S Hour) Minute Secon Minute Secon	l be co d by (be per), d)	$\frac{D}{S_2}$	red to and the ed. $VI0 = \frac{S_2}{10 (Ho)}$ $\frac{11 (Min)}{12 (Se)}$	the lo en, the "ON" our) nute) cond)	D : th po wer se comp	e cor points etting pare r	npare of the esult v	result time p vill be	; occu period stored	pying define d in (D	3 con	secut	ive nd the
The time upper so When X D D D D D	e value etting o 20 = "C <u>S</u> 1 0 (Hour 1 (Minu 2 (Seco 0 (Hour 1 (Minu 2 (Seco	is defi f the ti DN", th) te) ond) te) ond)	ned b ime p ne ins } 	y (S) eriod c tructio (D20 (H D22 (S D20 (H D22 (S D20 (H	, it wil defined n will I S Hour) Minute Second Hour) Minute Second	l be co d by (be per) , d)	$\frac{\text{ompain}}{\text{S}_2}. \text{A}$	red to and the ed. $M0 = \frac{S_2}{10 (Ho)}$ $\frac{11 (Min)}{12 (Se)}$	the lo en, the "ON" our) nute) cond) our)	D : th po wer se comp	e cor pints etting pare r	npare of the esult v	result time p vill be	; occu period stored	pying define d in (D	3 con	Sî) a	ive nd the
The time upper so When X D D D D D	e value etting o 20 = "C <u>S</u> 1 0 (Hour 11 (Minu 2 (Seco 0 (Hour 11 (Minu 2 (Seco	is defi f the ti DN", th te) te) te)	ned b ime p ne ins }	y (S) eriod c tructio (D20 (H D21 (f D22 (s D20 (H D22 (s) D22 (s)	, it wil defined n will I S Hour) Minute Second Hour) Minute	l be cd d by (be per), d) , d)	$\frac{\text{ompains}}{\text{S}_2}. \text{A}$	red to and the ed. $VI0 = \frac{S^2}{10 (Ho)}$ $\frac{11 (Min)}{12 (Se)}$ $\frac{10 (Ho)}{11 (Min)}$	the lo en, the "ON" our) nute) cond) our) nute)	D : th power see comp , the	e cor points etting pare r r en M ²	npare of the esult v 1 = "(2 = "(result time p vill be DN"	; occu beriod stored	pying define d in (D	3 con	secut	ive nd the

- When X20 = "OFF", the instruction is disabled, the "ON"/"OFF" status of M0, M1 and M2 remains the same as the status before X20 = "OFF".
- When $(\underline{S}_1) > (\underline{S}_2)$, the content value of (\underline{S}_1) will become both upper/lower settings to be compared with the (\underline{S}) .
- If the content value of the register designated by (S_1) , (S_2) or (S) exceeding the time value required, the PLC will regard that as an operational error.

Onar	and									Dev	ices								
Opera	ana _	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"
S1												•		•		•			
S2												•	•	•		•			
D												•	•	•		•			
• All th	ne S1,	S2 and	d D oc	cupies	s 3 cor	nponer	nts res	pective	ely										
-	X20 ⊣	[TADI	(S1 D D0) <u>S</u> 2 D10	D D20						S1 : 1 S2 : 1 D : 1	the sur the ado the sur	nmand dend c n of th	d of th If the t e time	e time ime co comb	comb ombin pinatio	oinatio ation n	n
the c	desigr ombir	nated natior	time 1 of th	comb le sun	n will b	n of th be stor	e sum red at	imanc the as	d (<u>S</u> 1) N ssigne	vill be d regi:	adde sters (d to D.	the des	signate	ed tim	e com	binatio	on (<u>S2</u>) and
• If the displa	$D0 = 8$ $D1 = 3$ $D2 = 0$ 08^{h} result ay the	3 (Hou 30 (Mir) (Seco 30 ^m 30 ^m t of the	r) hute) ond) 0 ^s le time e whe	+ C c e add ere 24	010 = 6 011 = 3 012 = 3 06 ^h 3 ition is hours	(Hour) 5 (Minu 0 (Seco 35 ^m 30 s exce	eded	24 hou	0 = 15 (I = 5 (M 2 = 30 (i 5 ^h 05 ^r urs, th m the	Hour) finute) Seconc ⁿ 30 ^s e Carr total.	y Flag	g M9	022 wil	l be se	et "ON	l" and	the ([D) will	
		S 1			(S 2			D)									
	00 = 8 01 = 2 02 = 3 08^{h}	(Hour 5 (Min 0 (Sec 25 ^m 3) iute) cond) 30 ^s		010 = 2 011 = 1 012 = 2 20^{h} 1	0 (Hou 0 (Minu 0 (Seco 10 ^m 20	r) ute) = ond)) ^s	D20 D21 D22 0) = 4 (H I = 35 (2 = 50 (i 4 ^h 35 ^r	lour) Minute Seconc ⁿ 50 ^s) , al:	so th	ie M90	22 = "	ON".				
If the	result conte	t of th ent va	e tim	e add f the r	ition e egiste	quals rs that	to "0" t desig	(0 ho gnatec	2 ur 0 m d by (S	8-24 : iin 0 si	= 4 ec), th S2) ex	ien tł ceec	ne Zero ding the	o Flag e time	M902 value	0 will t requir	be set ed, the	"ON". e PLC	will

03 1																	0	
Operand									Dev	ices								
Operand	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"
S1											٠	•	•		•			
S2											٠	•	•		•			
D											٠		•		•			
 X20 The desig and the c When X20 D0 = D1 =) ombir 0 = "(<u>S</u> 1) 18 (Ho 28 (Mi	TSU d time nation DN", t our) nute)	B D0 comb of the he ins	D10 D10 Dinatio differ structio (110 = 8 111 = 4	n of thence	be pe	uend (store erform = D20 = D21	<u>S1</u>) w d at th ed. <u>D</u> = 9 (H = 48 (ill be s le ass) lour) Minute	S2 : th D : th subtrac igned	e suk e diff ted t regis	otrahei erence o the o ters	d of the of the design	he time e time nated	time c	nation binatio ombin	on n ation	<u>S</u> 2
 If the result the value 	128^{m} 28^{m}	50 ^s ne tim e 24 h	e sub ours is	08^{h}	$40^m 20^m$ s a need to t \overline{S}^2) ^s gative he diff	value ferenc	$9^{h} 48^{r}$, the E e. (D)	m 30 ^s Borrow	' Flag	M902	21 will	be set	"ON"	and t	he D) will d	display
D0 = D1 = D2 = 06	30 (Mi 20 (Se	nute) cond) 20 ^s	— D	11 = 2 11 = 2 12 = 1 $20^{h} 2$	0 (Minu 0 (Seco 20 ^m 10	i) ite) = ond)) ^s	= D21 D22	r = 10 (= 10 (r = 10 (r = 10 ($r = 10^{h}$ 10 ^r (Minute Second ^m 10 ^s -14)+), als d) 24 =	so the	e M902	21 = "	ON".				
 If the result If the con regard the 	Ilt of tl tent va at as a	ne tim alue o an ope	e subt f the re eration	tractio egiste nal err	n equ rs tha or.	als to t desig	"0" (0 gnatec	hour d by (S	0 min	0 sec) <u>S</u> 2) ex	, ther	n the Z	ζero Fl	ag MS value	9020 w	rill be s	set "C	DN". ⊊will

NC		т			7					Poor		Data	,					2	IVI
66	1	I	ΠUΓ							neau	INIC	Dale	1				0	0	\bigcirc
Operand									Dev	ices									
oporaria	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$	"
D											٠		•		•				
• D occup	ies 7 c	ompor	nents																
Vo	2		(D)					D : the	e heac	l regis	ter tha	at stor	es the	Prese	ent Val	ue of	the R ⁱ	ГС	

X20 TRD D0 \dashv \vdash

FNC

1

D : the head register that stores the Present Value of the RTC

2

M 3

- When the Main Unit has installed a VS-MCR multi-function memory card, the PLC will provide with the real time clock (RTC) function. The real time clock has seven sets of data, such as year, month, date, hour, minute, second and day of the week, the data will be stored in the Special Registers D9013~D9019 sequentially.
- Programmers do not need to memorize the Special Registers of the RTC, they can use this instruction to read the current time and store the time data to contiguous 7 registers which are specified by (D).
- When X20 = "ON", the instruction will be performed to read the current time from the RTC.

Item	Special Register	Content Value		
Year (C.E.)	D9018	2000~2099		D0
Month	D9017	1~12		D1
Date	D9016	1~31	Read	D2
Hour	D9015	0~23		D3
Minute	D9014	0~59		D4
Second	D9013	0~59		D5
Week	D9019	0~6]) (D6

- The meaning of the content value at the D9019:
 - 0 =Sunday,
 - 1 = Monday,
 - 2 = Tuesday, 3 = Wednesday,
 - 4 = Thursday,
 - 5 = Friday,
 - 6 =Saturday.

FI	NC	1.1	Т								Sot E) oto					1	2 [V 3
1	67 🛛		1			<u></u>					Setr	NIC L	Jala					0	\bigcirc	0 0
	Operand									Dev	ices									
	oporana	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"]
	S											•								
	S occup	ies 7 c	ompor	nents																

X20 (S)

 $\ensuremath{\mathsf{S}}$: the head register that stores the set time data of the RTC

- When the Main Unit has installed a VS-MCR multi-function memory card, the PLC will provide with the real time clock (RTC) function. The real time clock has seven sets of data, such as year, month, date, hour, minute, second and day of the week, the data will be stored in the Special Registers D9013~D9019 sequentially.
- When X20 = "ON", the instruction will be performed to write the designated data at $(S) \sim (S)$ +6 to the RTC.

S	Content Value		Special Register		RTC
D0	2000~2099		D9018		Year (C.E.)
D1	1~12		D9017		Month
D2	1~31	Write	D9016	Write	Date
D3	0~23	$\left \right\rangle \Box \left\rangle \left\langle \right\rangle$	D9015	$\left \right\rangle \Box \left\rangle \left\langle \right\rangle$	Hour
D4	0~59		D9014		Minute
D5	0~59		D9013		Second
D6	0~6	ļ	D9019		Week

- The meaning of the content value 0~6 at the D9019 represents Sunday~Saturday.
- If one of the content value in the source register block (S) is exceeding its available range above, the PLC will regard that as an operational error.
- Alternatively, can use the programming software Ladder Master S to set up the current time of the RTC.

6-15 Code Conversion and Timer Instructions

FNC	Mnomonic in Laddor Diagram	Eurotian Description	Ap	plica	able	VS
No.		Function Description	1	2	Μ	3
169		Hour Meter	0	0	0	0
170		Convert BIN to Gray Code	0	0	0	0
171		Convert Gray Code to BIN	0	0	0	0
176	$\vdash \vdash \vdash \top FT (D) (S) (D_2)$	Timer (10 ms.)	0	0	0	0
177		Timer (100 ms.)	0	0	0	0
178		Timer (1 sec.)	0	0	0	0

NC 169		D	ΗΟΙ	JR	S) (D1) D 2				Hour	Mete	r					1	2 N
									Dov	ioos								
Operanc	I	1		-		1		1	Dev	1665		1		1				1
	X	Y	M	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"
S							•	•	٠	•	٠	•	٠	0	•			
D1													•					
D2		•	٠		0	0												
• For a 16	B-bit ins	tructior	n, D1 o	ccupie	es 2 cor	npone	nts	•	For a 3	2-bit in	structi	on, D1	occup	ies 3 c	ompon	ients		
×	0		(S	D 1	D 2	1			S : th	ne set	value	of the	timer	(Unit:	hour)		
H	Ĭ	HOU	R K1	000	D7000) Y0]			D1 : th	ne Pre	sent V	alue c	of the t	timer (Unit: ŀ	nour)	

- This instruction creates a timer which is using the hour as the counting unit.
- When the condition contact is "ON", this timer increases its Present Value at (D_1) . After a while, the Present Value of the timer will equal to or larger than the set value (S), that causes the timer's output contact $(D_2) = "ON"$.

D2: the output contact of the timer

- The real setting period of the timer = 1 hour \times the set value \bigcirc .
- The (D1) stores the integer number of the Present Value (in hours). Besides, the register next to the (D1) is to store the remnant Present Value which is less than 1 hour (in seconds).
- As the example diagram above:

When X0 = "ON", the Present Value of the register (D) will begin to do the increase counting (hourly). If the Present Value of D7000 reaches the set value K1000 (1000 hours), the output contact of the timer Y0 = "ON". When X0 = "OFF", the Present Value of the timer at the registers will be retained. Therefrom, the characteristic of this instruction is similar to a retentive timer.

- Mostly, this instruction is used to monitor the lifespan of a component or to remind the regular maintenance.
 For to retain the Present Value of the timer during the power cut off, please assign the D1 to a latched register.
 If assign the D1 to an unlatched general register, when the power cut off or the PLC is "STOP", the content value of the (D1) will be reset to "0".
- After the timer's output contact $(D_2) = "ON"$, the timer's Present Value at the (D_1) will continuously execute the increase counting.
- When the timer's Present Value (D) reaches the maximum value of a 16-bit or 32-bit register, the counting will be stopped.
- Even though, the driving condition contact of this instruction (X0 in this example) is "OFF", its output contact (D_2) will turn "ON" as long as the Present Value $(D_1) >=$ the set value (S); on the other hand, if $(D_1) < (S)$, that will cause the $(D_2) =$ "OFF".

For a 32-bit instruction: 0~2.147.483.647

٦٦	NC L		Т				2				Time	r (10 i	me)					1	2 N	13
1.	76	1				5 02					TITLE	1 (101	113.)					0	\circ	$) \bigcirc$
	Operand									Dev	ices									
	oporaria	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"	
	D1													•						

• $S = 0 \sim 32,767$, will be treated as 0 if it is exceeding this range.

Ο

۲

 \bullet

S

D2

D1 : the Present Value of the timer (Unit: 10 ms.)

•

S : the set value of the timer (Unit: 10 ms.)

•

D2 : the output contact of the timer

• This instruction creates a timer which is using 10 ms. as the basic unit for the counting.

Ο

- When the condition contact is "ON", this timer increases its Present Value (\underline{D}_1) . After a while, the Present Value of the timer will equal to the set value (\underline{S}) , that causes the timer's output contact $(\underline{D}_2) = "ON"$.
- The real setting period of the timer = 10 ms. \times the set value \bigcirc .
- As the example diagram above:

When X0 = "ON", the Present Value of the register (D_1) will begin to do the increase counting (by every 10 ms.). If the Present Value of D0 reaches the set value K100 (1 second), the output contact of the timer M0 = "ON". When X0 = "OFF", the Present Value of the timer in the register D0 will be reset to "0". And also, the output contact M0 will be reset to "OFF".

NC L		Т				2				Timo	r (100	me)					1	2	M
77		1	ГП(9				TITLE	1 (100	/1113.)					\bigcirc	\bigcirc	С
Operand									Dev	ices									
operand	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"	
D1													•						
S													•		•	•			
D2		•	•	•	0	0													
• S = 0~	32,767,	will be	e treate	d as 0	if it is e	exceed	ing this	s range).										
	0	TFH	(D1) D0	<u>(S)</u> K100	D2 M0					D1 : th S : th	ne Pres ne set	sent V value	alue c	of the timer	timer ((Unit:	Unit: 1 100 n	100 m ns.)	s.)	
										U2 : th	ie outi	out co	ontact	ot the	timer				

- This instruction creates a timer which is using 100 ms. as the basic unit for the counting.
- When the condition contact is "ON", this timer increases its Present Value (D1). After a while, the Present Value of the timer will equal to the set value (S), that causes the timer's output contact (D2) = "ON".
- The real setting period of the timer = 100 ms. \times the set value (S).

• As the example diagram above: When X0 = "ON", the Present Value of the register (D1) will begin to do the increase counting (by every 100 ms.). If the Present Value of D0 reaches the set value K100 (10 second), the output contact of the timer M0 = "ON". When X0 = "OFF", the Present Value of the timer in the register D0 will be reset to "0". And also, the output contact M0 will be reset to "OFF".

FNC	Timer (1 sec.)	1	2	Μ	3
178		0	0	\bigcirc	\bigcirc

Operand									Dev	ices								
oporaria	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"
D1													•					
S															•	•		
D2		٠	٠	•	0	0												
• S = 0~3	2,767,	will be	treate	d as 0	if it is e	exceed	ing this	s range).									

 D_1 : the Present Value of the timer (Unit: second) S: the set value of the timer (Unit: second)

D2 : the output contact of the timer

- This instruction creates a timer which is using a second as the basic unit for the counting.
- When the condition contact is "ON", this timer increases its Present Value (D1). After a while, the Present Value of the timer will equal to the set value (S), that causes the timer's output contact (D2) = "ON".
- The real setting period of the timer = 1 sec. \times the set value \bigcirc .
- As the example diagram above:

When X0 = "ON", the Present Value of the register (D) will begin to do the increase counting (by every second). If the Present Value of D0 reaches the set value K100 (100 second), the output contact of the timer M0 = "ON". When X0 = "OFF", the Present Value of the timer in the register D0 will be reset to "0". And also, the output contact M0 will be reset to "OFF".

6-16 RND, DUTY, CRC and HHCMV Instructions

FNC	Mnemonic in Ladder Diagram	Eurotion Description	Ap	plica	able	VS
No.	Milemonic in Lauder Diagram	r unction Description	1	2	Μ	3
184		Generate Random Number	0	0	0	0
186		Timing Pulse Generation				0
188		Cyclic Redundancy Check - 16	0	0	0	0
189		Hardware High-Speed Counter Data Move	0	0	0	0

		RI	۱DP	D						Gene	erate	Rando	om Nu	Imber			1	2 I 0 0	N
Operand									Dev	rices]
	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"	1
D								•	•	•		•	•		•				
X0 -	[RND	D P D0)							D : th ra	e dest .ndom	inatior numb	n devi ber is s	ce whe	ere the	e gene	eratec	
 This instruing instruction in the second seco	iction iat the	uses rang	the cc e of th	ontent ne nur	value nber is	at the s from	e (D91 0 to	61, D9 32,76	9160) 7, thei	and by n the ii	y its c nstruc	alcula	tion to tores t	gene he res	erate a sult to	pseud the de	do-rar esigna	idom ited	
9																			
• When VO .	_ "∩⊑		"ON"	, thio	inotru	otion f	ollow	the f	ormul		w to c	noporo	to o ro	ndor		oor op	data	oo th	
 When X0 = random ni 	= "OF umbe	F" → r to th	"ON" e D0.	', this	instru	ction f	ollows	s the fo	ormula	a belo	w to g	genera	te a ra	andom	n numl	oer an	d stor	es the	è
• When X0 = random nu Step 1: (E Step 2: D	= "OF umbe)9161	F" → r to th , D91	• "ON" e D0. 60) =	', this (D910	instruc 61, D9	ction f	ollows	51524	ormula 15 + 1	a belo [.] 2345.	w to g	genera	te a ra	andom	n numl	oer an	d stor	es the	è
• When X0 random nu Step 1: (E Step 2: D ※	= "OF umbe 09161 0 = [{ Whe	F" → r to th , D910 (D916 n the l	• "ON" e D0. 60) = 61, D9 PLC's	', this (D910 (160) powe	instruc 61, D9 > 16] r is tu	ction f 9160)> ∧ (00 rned f	ollows <1103 007FF rom "(s the fo 51524 FFH) OFF" 1	ormula 15 + 1 to "ON	a belo [,] 2345. N", the	w to g value	genera e in the	te a ra e (D91	andom 61, DS	n numl 9160) ⁻	oer an will be	d stor	es the	<u>;</u>
• When X0 random nu Step 1: (E Step 2: D %	= "OF umbe 09161 0 = [Whei auto	F" → r to th , D910 (D916 n the l matica	• "ON" e D0. 60) = 61, D9 PLC's ally. A	, this (D916 (D9160) (160) powe	instruc 61, D9 > 16] r is tui ne valu	otion f 0160)> ∧ (00 rned f ue in t	ollows <1103 007FF rom "(he (DS	s the fo 51524 FFH) OFF" 1 9161,	ormula 15 + 1 to "ON D9160	a belo [,] 2345. N", the D) can	w to g value not b	genera e in the e a ne	te a ra e (D91 gative	andom 61, D9 numl	n numl 9160) ber.	oer an will be	d stor	es the))
 When X0 = random nu Step 1: (E Step 2: D %) Program e 	= "OF umbe 09161 0 = [Whe auto	$FF" \rightarrow$ r to th , D910 (D910 n the l matica	" "ON" e D0. 60) = 61, D9 PLC's ally. A	', this (D910 1160) powe Iso, th	instruc 61, D9 > 16] r is tui ne valu	ction f 160)> ∧ (00 rned f ue in t	ollows <1103 007FF rom "(he (D§	s the fo 51524 FFH) OFF" 1 9161,	ormula 15 + 1 to "ON D9160	a belo 2345. J", the)) can	w to g value not b	genera e in the e a ne	te a ra e (D91 gative	andom 61, D9 numl	n numl 9160) ber.	oer an will be	d stor	es the	<u>)</u>
 When X0 = random nu Step 1: (E Step 2: D 2: C) Program e M9000 	= "OF umbe 09161 0 = [Whe auto	$FF" \rightarrow$ r to th , D910 (D916 n the l matica	"(ON" e D0. 60) = 61, D9 PLC's ally. A	7, this (D916 (160) powe Jso, th	instruc 61, D9 > 16] r is tur ne valu	ction f 160)> ∧ (00 rned f ue in t	ollows <1103 007FF rom "(he (DS	s the fo 51524 FFH) OFF" 1 9161,	ormula 15 + 1 to "ON D9160	a belo 2345. J", the)) can	w to g value not b	genera e in the e a ne	te a ra e (D91 gative	andom 61, D e numl	n numl 9160) ber.	oer an will be	d stor	es the) ,
 When X0 = random nu Step 1: (E Step 2: D * * Program e M9000 + M9002 	= "OF umbe 09161 0 = [Whe auto examp	$FF" \rightarrow$ r to th , D910 (D910 n the l maticable:	"ON" e D0. 60) = 51, D9 PLC's ally. A 7000	7, this (D910 160) powe Jso, th	instruc 61, D9 > 16] r is tur ne valu	ction f 160)> ∧ (00 rned f ue in t regis	ollows <1103 007FF rom "C he (DS ter (D	s the fo 51524 FFH) DFF" 1 9161, 7001,	ormula 15 + 1 to "ON D9160 D7000	a belo [,] 2345. J", the D) can D) acc	w to g value not b umula	genera e in the e a ne ates th	te a ra e (D91 gative e time	andom 61, D9 e numl es of s	9160) ber. can cy	oer an will be /cle.	d stor	es the	9
 When X0 = random nu Step 1: (E Step 2: D 2: D 2: M 2) Program e M9000 M9002 M9002 M9002 	= "OF umbe)9161 0 = [When auto examp - DIN	FF" \rightarrow r to th (D910 n the l matica ole:	• "ON" e D0. 60) = 51, D9 PLC's ally. A 7000	7, this (D916 160) powe Iso, th The la	instruc 51, D9 > 16] r is tur ne valu ttched	otion f 160)> ∧ (00 rned f ue in t regis	ollows (1103) 007FF rom "(he (DS ter (D)	s the fo 51524 FFH) DFF" 1 9161, 7001,	ormula 15 + 1 to "ON D9160 D7000	a below 2345. J", the D) can D) acc $T \rightarrow $	w to g value not b umula BUN"	genera e in the e a ne ates th	te a ra e (D91 egative e time	andom 61, D9 numl es of s	9160) ber. can cy	ver an will be vele.	d stor	es the	÷
 When X0 = random nu Step 1: (E Step 2: D %) Program e M9000 M9002 M0 M0	= "OF umbe 09161 0 = [When auto examp - DIN	FF" \rightarrow r to th (D910 (D910 n the l matical ole: NC D7 ON D	(ON) e D0. 60) = 31, D9 PLC's ally. A 7000	', this (D910 160) powe Jso, th The la <u>M0 K</u>	instruction 51, D9 > 16] r is turne valution itched	otion f 160) > ∧ (00 rned f ue in t regis Wher conte	ollows (1103 007FF rom "(he (D ter (D ter (D	s the fo 51524 FFH) DFF" 1 9161, 7001, from " he (D	ormula 45 + 1 to "ON D9160 D7000 STOF 7001,	a below 2345. N", the D) can 0) acc $0^{"} \rightarrow " $ D7000	w to g value not b umula RUN"	genera e in the e a ne ates th , that t ensuri	te a ra e (D91 gative e time akes t ing it is	andom 61, D9 numl es of s the ab s a pc	9160) ber. can cy psolute psitive	ver an will be velue. value value.	d stor set to	es the	9
 When X0 = random nu Step 1: (E Step 2: D	= "OF umbe 09161 0 = [When auto examp - DIN - DB	F To th , D910 (D916 n the l matica ole: NC D7 NC D7 EGP	"ON" e D0. 60) = 31, D9 PLC's ally. A 7000 7000 D7000	', this (D910 160) powe Iso, th The la	instruction 61, D9 > 16] r is turne valu ttched	ction f 1160)> ∧ (00 rned f ue in t regis Wher conte	ollows <1103 007FF rom "(he (DS ter (D ter (D n PLC	s the fo 51524 FFH) DFF" 1 9161, 7001, from " he (D7	ormula 15 + 1 to "ON D9160 D7000 STOP 7001,	a belov 2345. J", the D) can 0) acc P \rightarrow " D7000	w to g value not b umula RUN")), for	genera e in the e a ne ates th , that t ensuri	te a ra e (D91 e gative e time akes t ing it is	andom 61, D9 numl es of s the ab s a pc	on numl 9160) ber. can cy osolute ositive	ver an will be vele. value. value.	d stor	es the	Ģ
 When X0 = random nu Step 1: (E Step 2: D * * Program e M9000 + H M9002 + H M9002 + H M0 + H M002 + H M0002 + H M0002	= "OF umbe 09161 0 = [Whe auto examp - DI - DB - DN - DM	$F^{"} \rightarrow F^{"} \rightarrow F^{'} \rightarrow F^{'$	"ON" e D0. 60) = 31, D9 PLC's ally. A 7000 7000 07000	7, this (D910 160) powe Jso, th The la M0 K	instruction 61, D9 > 16] r is turne value atched (31) Whom the	ction f 160)> ∧ (00 rned f ue in t regis Wher conte en PL (D916	ollows <1103 007FF rom "(he (DS ter (D ent in t c fron 51, D9	s the fo 51524 FFH) DFF" 1 9161, 7001, from " he (D n "ST(160) a	ormula 15 + 1 to "ON D9160 D7000 STOP 7001, OP" — as the	a below 2345. 1, the $2, the2, the 2, the2, the 2, the2, the 2, the2, the$	w to g value not b umula RUN")), for V", tha value	genera e in the e a ne ates th , that t ensuri at mov for the	te a ra e (D91 gative e time akes t ing it is res the e RND	andom 61, D9 e numl es of s the ab s a pc e value) instru	9160) ber. can cy osolute ositive e in (D uction.	oer an will be /cle. : value value. 7001,	d stor e set to e of the D700	es the o K1 o) to	`

• When the X0 = "ON", the instruction drives the M9330 "ON" 10 Scan Times then "OFF" 5 Scan Times, this timing sequence pulse will be alternately again and again.

When the (n1) or (n2) is equal to 0, the result of
 (D) is below:

If $(\underline{n}1) = 0$ and $(\underline{n}2) > = 0$, the (\underline{D}) is kept "OFF";

If $(n_1) > 0$ and $(n_2) = 0$, the (D) is kept "ON".

- The D of this instruction can assign to M9330~M9334 and those 5 destination components can not repeat. Thus, the instruction can use 5 times only.
- Each the D9330~D9334 is the cooperated timing sequence cycle counter for the M9330~M9334. When the content value of the D9330~D9334 reaches the amount of <u>n</u> + <u>n</u>² or the condition contact of this instruction turns "OFF" → "ON", the value will be reset to "0".
- When the condition contact is set to "ON" once, the operation is started. Even if the condition is turned to "OFF", the operation would not end. Also, the operation is suspended when the PLC is set to STOP. Cut off the power is the only way to stop the operation.
- If the content value of the (n1) or (n2) is less than 0, or the (D) is not assigned to the M9330~M9334, the PLC will be regarded as an operating error.
- The related special devices are summarized below:

(■: Means read only.)

Relay ID No.	Description
M9330	Destination #1 for the timing sequence pulse generative instruction DUTY (FNC186).
M9331	Destination #2 for the timing sequence pulse generative instruction DUTY (FNC186).
M9332	Destination #3 for the timing sequence pulse generative instruction DUTY (FNC186).
M9333	Destination #4 for the timing sequence pulse generative instruction DUTY (FNC186).
M9334	Destination #5 for the timing sequence pulse generative instruction DUTY (FNC186).

Register ID No.	Description
■D9330	Cycle counter #1 for the timing sequence pulse generative instruction DUTY (FNC186).
■D9331	Cycle counter #2 for the timing sequence pulse generative instruction DUTY (FNC186).
■D9332	Cycle counter #3 for the timing sequence pulse generative instruction DUTY (FNC186).
■D9333	Cycle counter #4 for the timing sequence pulse generative instruction DUTY (FNC186).
■D9334	Cycle counter #5 for the timing sequence pulse generative instruction DUTY (FNC186).

· ·									Dev	ices								
Operand	X	Y	м	S	D.b	R.b	KnX	KnY	KnM	KnS	т	С	D.R	V.Z	UnG	К.Н	E	"\$'
S	~				0.0	11.0			•		•	•	•	-,_		,	-	Ŷ
<u>ס</u>							-				•							
								•			-							
		dealar			V K		l or K	C that			1/ 4		1	25.0				
• When o (01 D 13	ucsigi			<i>n</i> 7X, 1X <i>n</i>	1, 1\11		<i>i</i> 0, inai	. I Ch I I C	13 10 DC				200				
)	CRC	(S) 5 D0	D D100	(n) K7					S : the D : the n : the	head devi num	d ID of ce wh nber of	conti ere the source	nuous e resu ce dat	data It of C a to be	sourc RC is e cheo	e store cked	d
This instruction	uction	calcu	lates t	the CF	RC-16	(Cycli	c Rec	lundar	ncy Cl	neck) c	ode	from t	ne cor		of cont	tinuou	s (n)	byte
		<i>5-011)</i> (ιαια Π	cauce), un	51030	111 13 31	orcur		lesigi	alcu			•			
The instru M916 • This m	uction	has two DFF"	(16-b wo op (16-b parate	the Up	the M mode de)	bits a	pendii	ower 8	the st	atus of	M91 16-b	61:	ce as	two 8-	-bit da	tta. Th		
D (I	by a 1	6-bit v	value).	1(7)0	-Dit Ga		,aucu	Uy (3					-10 00		10 3101	03 110	, 1030	11 10
							Devic				aiue	-						
					3		Lower	8 bits										
						D1	Lower	8 bits		H04		$\left \right $						
						D1	Upper	8 bits		HED		150	n) =	K7				
						D2	Lower	8 bits		H85								
						D2	Upper	8 bits		HA3		_						
						D3	Lower	8 bits		H28								
					\bigcirc		D10	0		H58A6	6							
	6 1 = "(ode w	DN" (vill take ses (1)+1 (t	8-bit i e the L n) (= by two	node _ower K7) 8 8-bit) 8 bits -bit da values	of ead ita (he	ch dev eaded	vice as by S	s an 8)) to	-bit dat calcula	a (wh ate th	nile igr e CRC	nore th 2-16 c	ne Upp ode a	oer 8 k nd sto	oits). res th	The e resu	ılt to
• This m instruc D ar	nd D				$\overline{\mathbf{S}}$		Lower	8 hits		H01								
 M916 This m instruc D ar 	nd D					1 00		8 hits	-	1101								
• This m instruc D ar	nd D				<u> </u>	D1	Lower	0 0110		H03								
• This m instruc D ar	nd D				0	D1 D2	Lower Lower	8 bits		H03 H04								
• This m instruc D ar	nd D				3	D1 D2 D3	Lower Lower Lower	8 bits 8 bits		H03 H04 HED			<u>n</u>) =	K7				
• This m instruc ① ar	ition u nd D					D1 D2 D3 D4	Lower Lower Lower Lower	8 bits 8 bits 8 bits		H03 H04 HED H85			<u>n</u>) =	K7				
• This m instruc D ar	ition u nd (D					D1 D2 D3 D4 D5	Lower Lower Lower Lower Lower	8 bits 8 bits 8 bits 8 bits		H03 H04 HED H85 HA3			<u>n</u>) =	K7				
• This m instruc D ar	ition u nd D					D1 D2 D3 D4 D5 D6	Lower Lower Lower Lower Lower	8 bits 8 bits 8 bits 8 bits 8 bits 8 bits		H03 H04 HED H85 HA3 H28			<u>n</u>) =	K7				
• This m instruc D ar	ition u nd D				D	D1 D2 D3 D4 D5 D6	Lower Lower Lower Lower Lower Lower	8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 0		H03 H04 HED H85 HA3 H28 HA6			<u>n</u>) =	K7				
• This m instruc ① ar	ition u nd D					D1 D2 D3 D4 D5 D6	Lower Lower Lower Lower Lower D10 D10	8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 0 1		H03 H04 HED H85 HA3 H28 HA6 H58			<u>n</u>) =	K7				

6-17 Block Data Handling Instructions

FNC	Mnomonic in Ladder Diagram	Europian Description	Ap	plica	able	VS
No.		Function Description	1	2	Μ	3
192	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Block Data Addition				0
193	$\vdash \vdash \squareBK - \square (S1 (S2) (D) (n)$	Block Data Subtraction				0
194	$\square \square $	Block Data Compare (S1) = (S2)				0
195	$\vdash \vdash \square BKCMP > \square (S1 (S2)) (n)$	Block Data Compare (S1) > (S2)				0
196	$\vdash \vdash \square BKCMP < \square (S1) (S2) (D) (n)$	Block Data Compare (S1) < (S2)				0
197	$\vdash \vdash \square BKCMP <> \square (S1) (S2) (D) (n)$	Block Data Compare (S1) ≠ (S2)				0
198	$ \qquad \qquad$	Block Data Compare (S1) \leq (S2)				0
199	$ \qquad \qquad$	Block Data Compare (S1) \geq (S2)				0

FNC	Block Data Compare $(S1) = (S2)$	1	2	Μ	3
194					\bigcirc
FNC	Block Data Compare $(S1) > (S2)$	1	2	Μ	3
195					\bigcirc
FNC	Block Data Compare $(S1) < (S2)$	1	2	Μ	3
196					0
FNC	Block Data Compare (S1) \neq (S2)	1	2	Μ	3
197	$\begin{bmatrix} \text{Diotic Data Compare (C1)} \neq (02) \\ \end{bmatrix}$				\bigcirc
FNC	Block Data Compare $(S1) \leq (S2)$	1	2	Μ	3
198	$\begin{bmatrix} \text{Block Data Compare } (31) \ge (32) \\ \end{bmatrix}$				\bigcirc
FNC	Block Data Compare (S1) > (S2)	1	2	Μ	3
199					\bigcirc

also D occupies n components

X0		S 1	S 2	\bigcirc	(n)
	BKCMP=P	D0	D10	M0	K5

- S1 : the comparison value or the head ID of the comparison data block
- $\ensuremath{\mathsf{S2}}$: the head ID of another comparison data block
- ${\sf D}~$: the head ID of the comparison result block
- n : the length of the data block to be compared

When X0 = "OFF" → "ON", each component in the first block (D0~D4) will compare with the relevant component of the second block (D10~D14), and store the compare result to the destination block (M0~M4) one by one.

S 1) D0	K100		S	2 D10	K10		(D)M0	0(OFF)	
D1	K200			D11	K200			M1	1(ON)	
D2	K234	n	"=" CMP	D12	K-10	n	\Box	M2	0(OFF)	n
D3	K400		CIVII	D13	K400			M3	1(ON)	
D4	K-1			D14	K8			M4	O(OFF)	

• The FNC194~FNC199 are designed for to execute the =, >, <, <>, \leq and \geq comparisons respectively.

- The S1 can directly use a constant number.
- When all the comparative results in the D block are "ON", the M9090 = "ON".
- For a 32-bit instruction, the components at the (S_1) , (S_2) and (n) are all organized by the 32-bit format.

Assume the content value of the 32-bit instruction's n at (D101, D100) is equal to K3, the treatment is as the following:

(D1, D0)	K123456]	S 2 (D11, D10)	K123456		. (D M0	O(OFF)] 1
(D3, D2)	K200000	n "<>"	(D13, D12)	K-2	n	\Box	M1	1(ON)	n
(D5, D4)	K5		(D15, D14)	K10		ŗ	M2	1(ON)	

• The related special devices are summarized below:

(■: Means read only.)

Relay ID No.	Description
■M9090	All bits "ON" flag at the result of a block data comparison BKCMP (FNC194 \sim FNC199) instruction.

6-18 Character String Handling Instructions

FNC	Mnemonic in Ladder Diagram	Eunction Description	Ap	plica	able	VS
No.		r unction Description	1	2	Μ	3
200		BIN to Character String Conversion				0
201		Character String to BIN Conversion				0
202	$\vdash \vdash \stackrel{\texttt{$+P} (S1) (S2)}{\longrightarrow}$	Join Up Two Character Strings				0
203		Character String Length Detection				0
204	⊣⊢ RIGHT₽ S D n	Read Character from the Right of String				0
205		Read Character from the Left of String				0
206	$\vdash \vdash \underbrace{MIDRP(S)}_{MIDRP}(S)$	Extract Character from Specific Place of String				0
207	$\vdash \vdash \vdash MIDW \textcircled{S} (\textcircled{S}) (\textcircled{D} (\textcircled{S}))$	Rewrite Characters to Specific Place of String				0
208	$\left - \right \left - \frac{INSTRP(S_1 \otimes D)}{INSTRP(S_1 \otimes D)} \right $	Search Character String from another String				0
209		Transfer Character String				0

Image: Second state of the second state state of the second state of the second state of the se	ŏ ⊢			STR	P (<u>s</u>	1) (S 2) (D)				BIN t	o Ch	aract	er Strir	ng Co	nversi	on		
Sperand V V N<										Dev	ices								
S1 S1 <th< th=""><th>Operand .</th><th>X</th><th>Y</th><th>м</th><th>s</th><th>D.b</th><th>R.b</th><th>KnX</th><th>KnY</th><th>KnM</th><th>KnS</th><th>т</th><th>С</th><th>D.R</th><th>V.Z</th><th>UnG</th><th>K.H</th><th>E</th><th>"\$"</th></th<>	Operand .	X	Y	м	s	D.b	R.b	KnX	KnY	KnM	KnS	т	С	D.R	V.Z	UnG	K.H	E	"\$"
S2 Image: S2 <thimage: s2<="" th=""> <thimage: s2<="" th=""> <th< td=""><td>S1</td><td>~</td><td></td><td></td><td></td><td>0.0</td><td>11.0</td><td></td><td></td><td></td><td></td><td>•</td><td>•</td><td>•</td><td>-,_</td><td></td><td>,</td><td>-</td><td>÷</td></th<></thimage:></thimage:>	S1	~				0.0	11.0					•	•	•	-,_		,	-	÷
N S) S) D S1: the devices to appoint the conversion format S2: the source of a BIN number D: the head ID of the devices where conversed character string is stored D: the head ID of the devices where conversed character string is stored D: the head ID of the devices where conversed character string is stored S1: the devices which are headed by D: S: the source of a BIN number at the S). By the format to convert each fight of the converted string. The stores into the devices which are headed by D: S1: Image: The the converted string of the time brown book on the devices which are headed by D: S: the source of a BIN number at the S). By the format to convert each fight of the converted string. The stores into the devices which are headed by D: S1: Image: The the converted string of the time brown book on the digits = 0 - 13. S: the source of a BIN number struction, the length = 2 - 13. S1: Image: The the converted string of the time brown as the struction, the digits = 0 - 10. S: the struction will use the following ASCII conversion table: Sing Number SPACE - i< 0	S2							•	•	•	•	•	•	•	0	•	•		
Si : the devices to appoint the conversion formal S: the devices to appoint the conversion formal S: the source of a BiN number D: the head ID of the devices where conversed character string is stored This instruction uses the format parameters at the (S) to interpret a BiN number at the (S). By the format to convert each digit of that number become an ASCII code and combine those codes to a string, then stores into the devices which are headed by ①. (S) [Length of the converted string] 16-bit instruction, the length = 28; 32-bit instruction, the length = 213. (S) the theorem of digits after the 30 the devices which are headed by ①. (S) [Length of the converted string] 16-bit instruction, the length = 26; 32-bit instruction, the digits = 010. This instruction will use the following ASCII conversion table: 30 the devices devices are appoint to the conversion of the devices of the de	D											•	•	•					
This instruction uses the format parameters at the (2): to interpret a BIN number at the (2). By the format to convert each digit of that number become an ASCII code and combine those codes to a string, then stores into the devices which are headed by (1). (2) Length of the converted string 16-bit instruction, the length = 2-8; 32-bit instruction, the length = 2-13. (3) +1 Length of the converted string 16-bit instruction, the length = 2-8; 32-bit instruction, the digits = 0-10. (3) Length of the converted string 16-bit instruction, the digits = 0-5; 32-bit instruction, the digits = 0-10. This instruction will use the following ASCII conversion table: Sign & Number of digits after the distribution of the string 16-bit instruction table: Sign & Number of 12 DI 2 DI 2 DI 3 DI 1 2 DI 1 DI 1	X0 -		STR	(S1) D10	(S2) D20	D D0				S1 : thi S2 : thi D : thi sti	e devi e sour e heac ring is	ces to ce of I ID c store	o appo f a BIN of the o ed	oint the I numb device	e conv per s whe	versior re con	n forma	at d char	acter
Image: Section of digits after the decimal point at the string 16-bit instruction, the digits = 05; 32-bit instruction, the digits = 0-10. This instruction will use the following ASCII conversion table: Image: Section of the decimal point at the string of the decimal point at the string of the decimal point. Image: Section of the decimal point. Ascinction will use the following ASCII conversion table: Image: Section of the decimal point. Image: Section of the decimal point. Societ of the decimal point. Image: Section of the decimal point. Image: Section of the decimal point. Societ of the decimal point. Image: Section of the decimal point. Image: Section of the decimal point. Societ of the decimal point. Image: Section of the decimal point. Image: Section of the decimal point. Societ of the decimal point. Image: Section of the decimal point. Image: Section of the decimal point. Societ were the decimal point. Image: Section of the decimal point. Image: Section of the decimal point. Societ were the decimal point. Image: Section of the decimal point. Section of the decimal point. Societ were the decimal point. Image: Section of the decimal point. Section of the decimal point. Societ were the decimal point. Image: Section of the decimal point. Section of the decimal point. Societ were the decimal point. <td>This instruction converted devices w</td> <td>action ach c hich ength</td> <td>n uses digit of are he</td> <td>the fc that n eaded conve</td> <td>ormat iumbe by (D rted str</td> <td>baram r becc D. ing 16</td> <td>eters ome a 6-bit ir</td> <td>at the n ASC nstruct</td> <td>(<u>S</u>1) to CII cod</td> <td>o inter le and ne lenç</td> <td>oret a comb gth = 2</td> <td>BIN r ine th $2\sim 8;$</td> <td>numbe hose d 32-b</td> <td>er at th codes it instru</td> <td>e (<u>S</u>2) to a st uction</td> <td>. By th tring, th , the le</td> <td>he forn hen sti ength :</td> <td>nat to ores ir = $2 \sim 1$</td> <td>nto the</td>	This instruction converted devices w	action ach c hich ength	n uses digit of are he	the fc that n eaded conve	ormat iumbe by (D rted str	baram r becc D. ing 16	eters ome a 6-bit ir	at the n ASC nstruct	(<u>S</u> 1) to CII cod	o inter le and ne lenç	oret a comb gth = 2	BIN r ine th $2\sim 8;$	numbe hose d 32-b	er at th codes it instru	e (<u>S</u> 2) to a st uction	. By th tring, th , the le	he forn hen sti ength :	nat to ores ir = $2 \sim 1$	nto the
This instruction will use the following ASCII conversion table: Sign & Number (SPACE 0 1 2 3 4 5 6 7 8 9 ASCII Cord 20H 2DH 2EH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H Assume the D10 = 8, D11 = 2, D20 = -12345 and X0 = "ON", the instruction will be executed as follows: (S) Length of the converted string Number of digits after the decimal point (S) D0 D0 D0 D1 UD1 (D1 (D1 (D1 (D1 (D1 (D1 (D1 (D1 (D1 ($(\underline{S}_1) + 1 \frac{N}{d}$	lumbe ecima	er of dig al point	gits afte at the	er the string	16	6-bit ir	nstruct	ion, th	ne digi	ts = 0	~5;	32-bit	t instru	ction,	the di	gits =	0~10).
Sign & Number (SPACE) - 0 1 2 3 4 5 6 7 8 9 ASCII Cord 20H 2DH 2EH 30H 31H 32H 33H 34H 36H 37H 38H 39H Assume the D10 = 8, D11 = 2, D20 = -12345 and X0 = "ON", the instruction will be executed as follows: Image: Converted string Number of digits after Image: Converted string Number of digits after 0 8 Image: Converted string Number of digits after Image: Converted string Number of digits after 1 2 - 1 1 3 4 1 3 4 5 6 7 8 9 201 204 201 208 0 Image: Converted string Number of digits after Image: Converted string Image: Converted string Image: Converted string 1 <td< td=""><td>This instru</td><td>uctio</td><td>n will u</td><td>se the</td><td>e follov</td><td>ving A</td><td>SCII c</td><td>onver</td><td>sion ta</td><td>able:</td><td></td><td></td><td></td><td>I</td><td></td><td></td><td></td><td></td><td></td></td<>	This instru	uctio	n will u	se the	e follov	ving A	SCII c	onver	sion ta	able:				I					
ASCII Cord 20H 2DH 2EH 30H 31H 32H 33H 34H 36H 37H 38H 39H Assume the D10 = 8, D11 = 2, D20 = -12345 and X0 = "ON", the instruction will be executed as follows: Image: Converted string Number of digits after Image: Converted string Number of digits after 010 8	Sign & Num	ber S	PACE	-	•	0	1	2	3	4	5		6	7	8	9			
Assume the D10 = 8, D11 = 2, D20 = -12345 and X0 = "ON", the instruction will be executed as follows:	ASCII Cord		20H 2	2DH	2EH	30H	31H	32H	331	1 341	H 35	3	6H 3	37H 3	38H	39H			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(S2) D20 −12	345]	\rightarrow		12	3.	45	The ex	pande	d numt	ber du	uring th	ie conv	ersion				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ſ																		
Positive or Space Integr part Decimal point 2 digits after the string sign The positive or negative sign is using the 20H to represent positive; the 2DH represents negative. The byte next to the positive or negative sign is a blank space, that will fill in the code 20H. When the expanded number converts to the ASCII codes, the instruction adds the end of string at the tail automatically. If the set length of the string is an odd number, the end of string is 00H; in addition, the string with even number set length will add the end of string 0000H. Thus, the D4 at the converted string with the value 0000H that is the end of string. Assume the content value of the 16-bit instruction's D10 = 7, D11 = 0 and D20 = 12345, the instruction will be executed as follows:) ver ts	D0 Upper 8 bits 20H (· Lc 8	D1 ower bits H(1)	D1 Uppe 8 bit	er L s 8	D2 ower bits	D2 Upp 8 bi	er L ts S	D3 Lower B bits 4H(4)	Up 81	D3 oper bits	D4					
The positive or negative sign is using the 20H to represent positive; the 2DH represents negative. The byte next to the positive or negative sign is a blank space, that will fill in the code 20H. When the expanded number converts to the ASCII codes, the instruction adds the end of string at the tail automatically. If the set length of the string is an odd number, the end of string is 00H; in addition, the string with even number set length will add the end of string 0000H. Thus, the D4 at the converted string with the value 0000H that is the end of string. Assume the content value of the 16-bit instruction's D10 = 7, D11 = 0 and D20 = 12345, the instruction will be executed as follows: S_{10} T_{0} C_{00} C	Positiv nega sig	/e or tive n	Space	, <u> </u>	lr	nteger	part		Decir Decir poir	mal <u></u> nt	2 digits decima	after I poir	the	End o string	f				
The byte next to the positive or negative sign is a blank space, that will fill in the code 20H. When the expanded number converts to the ASCII codes, the instruction adds the end of string at the tail automatically. If the set length of the string is an odd number, the end of string is 00H; in addition, the string with even number set length will add the end of string 0000H. Thus, the D4 at the converted string with the value 0000H that is the end of string. Assume the content value of the 16-bit instruction's D10 = 7, D11 = 0 and D20 = 12345, the instruction will be executed as follows: S_1 D_10 T_1 O D_11 O D_11 O D_2 D_20 D_2345 D_20 D_245 D_20 D_245 D_2345	The p	ositi	ve or n	negativ	ve sigr	n is us	ing th	e 20H	to rep	oreser	t posit	ive;	the 2[DH rep	resen	ts neg	ative.		
Assume the content value of the 16-bit instruction's $D10 = 7$, $D11 = 0$ and $D20 = 12345$, the instruction will be executed as follows: Si Length of the converted string $D10 \overline{7}$ Number of digits after the decimal point S_2 $D_20 \overline{12345}$ $D_20 \overline{12345}$ $D_23 \overline{45}$ Since the D11 = 0, that indicates an integer will be shown, so there is no decimal point in the string.	The b Wher autor with e value	oyte r n the natic even 000	next to expan ally. If numbe 0H tha	the po ded n the se er set t is the	ositive umbe et leng length e end	or ne r conv gth of t will a of strii	gative verts to the str dd the ng.	sign i o the A ing is e end	is a bl ASCII (an od of strii	ank sp codes Id num ng 000	bace, t , the ir nber, th 00H. T	hat v istruc ie en Thus,	vill fill i ction a id of s the D	in the c adds th tring is 4 at th	code 2 ne end s 00H; e con	20H. I of stri in ado verted	ing at [.] dition, string	the tai the sti with t	l ring he
$\begin{array}{c} (S_{1}) \\ D 10 \\ D 11 \\ \hline 0 \\ \hline \\ D 11 \\ \hline 0 \\ \hline \\ \\ D 20 \\ \hline \\ \\ D 20 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Assume t executed	he co as fo	ontent ollows:	value	of the	16-bii	t instru	uction'	s D10	= 7,	D11 =	0 ar	nd D2() = 12	345, t	he inst	tructio	n will k	De
$\begin{array}{c} (\underline{S}_2) \\ D20 \end{array} \xrightarrow{1} 12345 \end{array}$ Since the D11 = 0, that indicates an integer will be shown, so there is no decimal point in the string.	(S1) D10 7 D11 0	N tł	convert lumber ne decir	of diginal po	ng ts after int														
Since the $D11 = 0$, that indicates an integer will be shown, so there is no decimal point in the string.	(S2) D20 123	345]	\rightarrow		12	34	5											
	Since the	D11	= 0, tł	nat inc	dicates	s an ir	iteger	will be	e shov	vn, so	there	is no	decin	nal poi	nt in t	he stri	ng.		

• Assume the content value of the 32-bit instruction's D10 = 13, D11 = 8 and (D21, D20) = -123450, the instruction will be executed as follows: (S1) (S2) (D) X0 DSTR D10 D20 D0 ┥┝ **S**1 Length of the converted string Number of digits after the decimal point D10 13 D11 8 **S**2 (D21, D20) -123450 Negative sign 123450 Empty, inserts two space codes Insert the 0s and a decimal point • For example, the $(\underline{S_1}) = 3$ and $(\underline{S_2}) = 123$, that will be regarded as an operating error. Since, the $(\underline{S_2}) = 123$ is a 3 digits number, but to convert that will need a digit for the positive or negative sign in the front. So, the $(\underline{S_1})$ should greater than or equal to 4.

01	H	[DVA		S) (D1	D (D2)				Chara	acter S	tring	to Bl	N Co	nversi	on	1	2	M
I																			-
Oper	and					1			Devi	ices								1	_
		X Y	M	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"	
S	;										•	•	•						
D	1							-			•	•	•						_
D2	2							•	•	•	•	•	•		•				
			(\mathbf{S})	(\mathbf{D}_1)	(\mathbf{D}_2)			S :	the he	ead ID	of the	devid	es w	here d	charac	ter str	ing is	store	ed
L	X0 			D10	D20			D1 :	the fo	ormat c	of the cl	narad	cter s	tring			0		
I	1 1	•7		DIO	020			D2 :	the co	onverte	ed BIN	numl	oer re	esult					
Thio	inctruo	tion up	ao a atr	ina eta	urtad fr	om th		to porf	form th		numb		avore	ion th	on et	araa th	not for	mot	
into 1	the dev	rices (D	$\frac{1}{1}$ and $\frac{1}{2}$	the res	ults of	BIN p	ure nu	imber	into th	ne dev	ice D2).	IVEIS	ion, u	ien su	วเคร แ	101	mai	
	ler	ath of th		orted st	ring 16	8-hit in	etruct	on th	e lena	th = 2	v~8· 3'	2-hit	inetri	iction	the le	nath :	= 2~	13	
	Num		digita of	tor the			1511 401	on, ur	cieng	ur – 2	. 0, 0/		inotic	iotion,		ngtri		10.	
D 1) -	$+1 \left \frac{1 \text{Null}}{\text{dec}} \right $	riber of simal po	int at the	e string	16	6-bit in	istruct	on, th	e digit	s = 0	~5; 32	-bit iı	nstruc	ction,	the dig	gits =	0~10).	
 This 	instruc	tion will	l use th	e follov	wing A	SCII c	onver	sion ta	ıble:										
ASCI	II Cord	20H	2DH	2EH	30H	31H	32H	33H	34	1 35F	H 36H	37	Н 3	8Н ;	39H				
Sign	& Numbe	r SPACE	-		0	1	2	3	4	5	6	7		8	9				
									-										
• Whe	en X0 =	"ON",	the 16-	bit inst	tructio	n will b	e exe	cuted	as foll	OWS:									
\bigcirc	D0	D	0	D1	D1		D2	D2											
J			0					02		D3	D3		D4		04				
<u> </u>	Lower 8 bits	Upp 8 b	ber L its 8	ower bits	Uppe 8 bit	er Lo s 8	ower bits	Uppe 8 bit	er L s 8	D3 ower bits	D3 Uppe 8 bits	r L	D4 .ower 3 bits	ם Up 8	04 oper bits				
3	Lower 8 bits 2DH (-	· Upp 8 b -) 20H	ber L its 8	ower bits IH(1)	Uppe 8 bit 32H (er Lo s 8 2) 33	ower bits H(3)	Uppe 8 bit 2EH(er L s 8	D3 ower bits 4H(4)	D3 Uppe 8 bits 35H(5	r L 5)	D4 ower 3 bits 00H	ם Up 8 ו	04 oper oits				
J	Lower 8 bits 2DH (- Positive	-) 20H	ber L its 8 () 3 ⁻ ace	ower bits H(1)	Uppe 8 bit 32H (er Lo s 8 2) 33	ower bits H(3)	Uppe 8 bit 2EH (er L s 8 •) 34	D3 ower bits 4H(4)	D3 Uppe 8 bits 35H (9	r L 5) E	D4 ower 3 bits 00H ind of	Up 81	04 oper oits				
	Lower 8 bits 2DH (- Positive negativ sign	Upr 8 b -) 20H or Spa	oper L its 8 () 3 ⁻ ace	ower bits IH(1)	Uppe 8 bit 32H (er Lo s 8 2) 33	ower bits H(3)	Uppe 8 bit 2EH (er L s 8 •) 34	D3 ower bits 4H(4)	D3 Uppe 8 bits 35H (5	r L 5) E	D4 ower bits 00H and of string	0 Up 8	04 oper oits				
	Lower 8 bits 2DH(- Positive negativ sign	-) 20H or Spa	ber L its 2 () 3 ace	ower bits H(1)	Uppe 8 bit 32H (er Lo s 8 2) 33	bits H(3)	Uppe 8 bit 2EH (er L s & •) 34	D3 ower 3 bits 4H(4)	D3 Uppe 8 bits 35H (5	r L 5) E	D4 ower bits 00H and of string	Up 81	04 oper oits				
	Lower 8 bits 2DH(- Positive negativ sign	· Upr 8 b -) 20H or Spa 'e	ace	ower bits H(1) 	Uppe 8 bit 32H (1 2	er Luss 8 2) 33	bits H(3) 4 5	Uppe 8 bit 2EH(er L s 8 •) 34	D3 ower 3 bits 4H(4)	D3 Uppe 8 bits 35H(!	r L 5) E	D4 ower bits 00H ind of string		04 oper oits				
	Lower 8 bits 2DH (- Positive negativ sign	· Upp 8 b -) 20H or Spa e [Coer L its E () 31 ace	bits bits IH(1)	Uppe 8 bit 32H (1 2	er Lu s 8 2) 33	altering and a second s	Upper 8 bit 2EH($\begin{array}{c} \text{er} & \text{L} \\ \text{s} & \text{t} \\ \hline \end{array}$	D3 ower bits 4H(4) 20 -12	D3 Uppe 8 bits 35H(5 2345	r L 5) E	D4 ower bits 00H and of string		04 oper oits				
3	Lower 8 bits 2DH (- Positive negativ sign	-) 20H or Spa e	ber L its E () 31	B bits B bits I H (1)	Uppe 8 bit 32H (1 2	er Lu s 8 2) 33	20wer bits H(3) 4 5	Uppe 8 bit 2EH(er L s 8 ·) 34 → D2 → D2	D3 ower 3 bits 4H (4) 2 2 2 2 0 -12 1 0	D3 Uppe 8 bits 35H (1 2345 8 L	r L { 5) E	D4 ower 3 bits 00H End of string	e conv	of oper oits	string			
3	Lower 8 bits 2DH (- Positive negativ sign	-) 20H or Space	Coer L its E () 31 ace	0 ower 3 bits 1 H (1) 	Uppe 8 bit 32H (1 2	er Lu s 8 2) 33	20wer bits 3H(3) 4 5	Uppe 8 bit 2EH(er L s E •) 34 ↓ D2 ↓ D1 ↓ D1 ↓ D1	D3 ower 3 bits 4H(4) 20 -12 10 -12 1	D3 Uppe 8 bits 35H (! 2345 8 2	r L 5) E 9	D4 ower bits 00H ind of string	e conv	verted s	string e decim	nal poir	nt	

The positive or negative sign: the 20H represents positive; the 2DH represents negative. The byte next to the positive or negative sign is a blank space, that should fill in the code 20H. After the conversion, will get the BIN pure number part at (D_2) (-12345) and the string format at (D_1) .

- If the operation has one of the following situation, the PLC will regard that as an operational error.
 - 1. Length of the converted string for the 16-bit instruction is not between $2\sim 8$; 32-bit instruction is not between $2\sim 13$.
 - 2. Number of digits after the decimal point at the string for the 16-bit instruction is not between $0 \sim 5$; 32-bit instruction is not between $0 \sim 10$.
 - 3. The beginning (lowest byte) of the source string (S) is not the ASCII code 20H (positive) or 2DH (negative).
 - 4. The source string (\underline{S}) contains a code which is improper.
 - 5. The result of the converted BIN number for the 16-bit instruction is over the available range $-32,768 \sim 32,767$; 32-bit instruction is over $-2,147,483,648 \sim 2,147,483,647$.

	H	\vdash	[L	enP	(\mathbf{S})	D					Chara	acter	String	g Leng	gth De	etectio	n	1	2
~										Dev	ices								
Oper	and	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"
S								•	•	•	•	•	•	•		•			
D									•	•		٠	•	•		•			
• To co	X0 	he lei	LEN	S D0	D D100] hat is	from	the he	ad co	S D mpon	: the ł : the c ent (S	nead device) to th	ID of t e to st ne las	he ch ore th t chara	aracte e leng acter (r string th of t before	g to be he stri e the e	e mea ng end of	sure string
"00F	1" app	bears) and	store	the res	sult nu	mber	into (<u>D</u>).										
• Whe	n X0 :	= "O	N", th	e instr	uction	will b	e exec	cuted	as foll	OWS:									
		L e	Jpper 3 bits	Lo 8	ower bits														
	_	_			<u> </u>	, T													
(S)DC	20	H()	49	H(I)	-													
	D1)H(I)	4C	H(L)	-													
		3 56	H(V)	20	$H(\mathbf{K})$		X0 =	"ON	"		D100	1	2						
	D4	47	'H(G)	49	H(I)	1			-		2.00	1	-						
	D5	5 52	2H (R)	4F	H(O)	1													
	De	3		0	ЮH	1													
	"	Ι	LIKE	V	IGO	_ R "													

Operand									Dev	ices	-							-
operana	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"
S							•	•	•	•	•	•	•		•			
D								•	•	•	•	•	•		•			
n S D n X0 S D n N RIGHT D0 D10 K1 RIGHT D0 D10 K5 S S S K1 RIGHT D0 D10 K5 S S S K1 RIGHT D0 D10 K5 S S S K1 S S S K1 S S S K1 S S S K2 S S S K3 S S S K4 S S S K4 S S S K4 S S S K4 S S S K5 D0 CON", the instruction will be executed as follows: Upper Lower S S S S K5 D0 COH() 49H(I) Upper Lower S <t< td=""></t<>																		
X0		RIG	HT D	5) (D 0 D1) (n) 0 K5)]	tripa	<u>c</u>) on	g [r d ator	S : the) : the 1 : the	head head lengt	ID of ID of h of th	the so the st ie cha	ource o orage racter	charac block s to be	ter str for the e read	ing e reac	l strin
To read th	ie last	of) cha	racter	s from	the st	tring (S) an	d stor	e the e	extrac	ted re	sult in	toD				
When X0	= "0	N", the	e instr	uction	ı will b	e exec	cuted	as foll	OWS:									
	U 8	pper bits	Lo 8	ower bits														
		<u> </u>		<u> </u>	, T													
(S) Di	20	H()	49	H(I)	-						Linn	or		r				
D.	1 49	H(I)	4C 4R	H(L)	-						8 bit	S	8 bits	5				
D: D:	3 56	H(V)	20	$H(\mathbf{R})$	-					 ا ۱۵ 0	49H(I)	56H()	$\overline{)}$				
D	4 47	H(G)	49	H(I)	1 .	X0 =	"ON	" ~		D11	4FH($\overline{(0)}$	47H((
D	5 52	H (R)	4F	H(O)						D12	100	-	52H (R)				
D	3		0	0H						- · - L			י קר					
	'T 1		N7	ICO	」 □ "							viG	JK					
			· L V	IGU	K													
The instru	ction	will ac	dd the	end o	of strin	g at th	ne tail	of res	ult (D) auto	matica	ally. If	the (n) is e	equal t	o 0 or	an ev	ren
number, t	he en	d of st	tring "	0000	H" will	be ad	ded;	if the (n) is	an od	ld nun	nber, t	he en	d of st	ring is	"00H		
Whon the	string	g from	S) v	vhich	does r	not ha	ve the	end o	of strin	g cod	le "00	H" or f	the (n) is ne	egative	e or th	e (n)	is
	g the s	string	from (S) cc	ould pr	ovide	with,	the PL	_C will	regar	d that	as an	opera	ationa	l error.		_	
exceeding																		
exceeding																		
exceeding																		
exceeding																		
exceeding																		
exceeding																		
exceedin																		
exceeding																		
exceeding																		
exceeding																		
exceeding																		
exceeding																		
exceeding																		
exceeding																		
exceeding																		

	┤	LE	FT	PS) (D	(n)				Reac	l Chai	racter	from	the Le	eft of S	String	1	2
									Dev	ices								
Operand	X	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$
S							•	•	•	•	•	•	•		•			
D								•	•	•	•	•	٠		•			
n													0			0		
			\bigcirc		(\mathbf{n})				c	: tha	hoad	ID of t	ha sc	urca	harad	ntor etr	rina	
X0		IEET	<u> </u>	D10	Ke) : the	head	ID of t	he st	orage	block	for the	e reac	l stri
	L		00	DIU	NU				r	: the	lengt	h of the	e cha	racter	s to be	e read		
To read th	na hadi	nninc	n of (T) cha	aracta	e fron	n tha c	etrina (s) ar	nd sta	ra tha	ovtrac	tod re	eult ir	nto (D)		
io reau li	ie begi			-) UNE	adicid	5 11011		sung	3) ai	10 5101		exilac	leuie	Suit II).		
When X0	= "ON	l", the	e instri	uction	ı will b	e exec	cuted	as foll	OWS:		Lloo	or	Lowo	r				
	81	bits	8	bits							8 bit	S	8 bits					
(S)D	0 201	+()	491	+(1)	Ì					D10	20H(19H(1					
D	1 491	+(I)	4CI	H(L)		X0 =	"ON	" ~		D11	49H(I) 4	4CH(I	_)				
D	2 451	H(E)	4B	H(K)	ţ					D12	45H(E) 4	1BH(H	<)				
D	3 561	H(V)	201	H()						D13		0000	Н					
D	4 471	H(G)	491	H(I)	-						" I	LII ت	KE"					
D	5 52H	H (R)	4FI	H(0)	-													
D	ю	11/17																
	ΙυL	IKE	L V	IGO	K													
	iction v	vill ad	ld the	end c	of strin	g at th	ne tail	of res	ult (D) auto	matica	ally. If	the () is e	equal t	o 0 or	an ev	ren
The instru		in ao		$\cap \cap \cap \cap \sqcup$	l" will	be ad	ded;	if the (n)is	an od				h of et	rina is	• "OOH		
The instru number, t	he end	l of st	ring "	00005						anou	d nun	nber, th	ne eno	1013	ing is	0011		
The instru number, t	he end	l of st	ring "	0000						anou	d nun	nber, th	ne eno		inig is	0011		
The instru number, t When the	he end	from	ring "i	vhich	does I	not ha	ve the	end	of strin	g cod	d nun	nber, th H" or ti	he end) is n	egative	e or th	". e n	is
The instru number, t When the exceeding	he end string g the s	from tring f	rring " (S) w from (vhich (S) cc	does i buld pi	not ha rovide	ve the with,	end o the PL	of strin _C will	g cod regar	d nun e "00 d that	hber, th H" or ti as an	he (n opera) is nationa	egative	e or th	". e (n)	is
The instru number, t When the exceeding	string the s	from tring f	rring " S w from (vhich (S) cc	does i buld pi	not ha rovide	ve the with,	end o the PL	of strin _C will	g cod regar	d nun e "00 d that	hber, th H" or ti as an	he (n opera) is nationa	egative error.	e or th	". e n	is
The instru number, t	string	from tring f	ring " (S) w from (vhich (does i buld pi	not ha rovide	ve the with,	end o the PL	of strin _C will	g cod regar	d nun le "00l d that	hber, th H" or ti as an	he (n opera) is nationa	egative l error.	e or th	". e (n)	is
The instru number, t When the exceeding	string g the s	from tring f	ring " ⁱ	vhich (S) cc	does i buld pi	not ha rovide	ve the with,	end o the PL	of strin _C will	g cod regar	d nun e "00 d that	hber, th H" or ti as an	he (n opera) is nationa	egative I error.	e or th	". e n	is
The instru number, t	string g the s	from tring f	ring " ^I	vhich (S) cc	does i buld pi	not ha rovide	ve the with,	end o the PL	of strin C will	g cod regar	d nun e "00 d that	hber, th H" or ti as an	he (n opera) is nationa	egative l error.	e or th	". e n	is
The instru number, t	string g the s	from tring 1	ring " ^I	vhich (S) cc	does i buld pi	not ha rovide	ve the with,	end o	of strin ₋C will	g cod regar	d nun le "00l d that	hber, th H" or ti as an	he (n opera) is nationa	egative	e or th	". e (n)	is
The instru number, t	string g the s	from tring f	ring " ^I	vhich (does i buld pi	not ha rovide	ve the with,	end o	of strin C will	g cod regar	d nun e "00l d that	hber, th H" or ti as an	he (n opera) is nationa	egative	e or th	". e n	is
The instru number, t	string g the s	from tring 1	ring " ^I	vhich (S) cc	does i buld pi	not ha rovide	ve the with,	end o	of strin ₋C will	g cod regar	d nun e "00 d that	hber, th H" or ti as an	he (n opera) is nationa	egative error.	e or th	". e (n)	is
The instru number, t	string g the s	from tring t	ring " ^r ing " (S) w	vhich (S) cc	does i buld pi	not ha rovide	ve the with,	end o	of strin C will	g cod regar	d nun e "00l d that	hber, th H" or ti as an	he (n opera) is n itiona	egativo	e or th	". e (n)	is
The instru number, t	string g the s	from tring t	ring " ^I	vhich (S) cc	does i buld pi	not ha rovide	ve the with,	end o the PL	of strin C will	g cod regar	d nun e "00l d that	hber, th H" or ti as an	he (n opera) is nationa	egativo error.	e or th	". e n	is
The instru number, t	string g the s	from tring t	ring " ^I	vhich (S) cc	does i buld p	not ha rovide	ve the with,	end o	of strin C will	g cod regar	d nun le "00l d that	hber, th H" or ti as an	he (n opera) is n ationa	egative error.	e or th	". e n	is

F١	NC			M	IDR			(\mathbf{S}_2)]		Extract Character from Specific Place of String 1 2 M Of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Devices Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Constraint of String Image: Con	3										
2	06		1 1	101				<u> </u>]			of St	ring									0
	Opera	and									Dev	ices										
	open		Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$	"	
	S1														•							
	D											•		•								
	S2											•		•								
		X0 ⊣		MID	(<u>S1</u> R D0) (D D10) <u>(S</u> 2)) D20				S D S	1 : the) : the 2 : to a	head head appoir	ID of ID of nt the	the sc the sto pattern	ource o orage ns of t	charac block he str	ter str for the	ing e read ading	d strii	ng	
	• To rea	ad 🔇	S2)+1	chara	acters	by the	e (S2) d	desigr	nated	startin	g pos	ition a	t the s	source	string	S	, and s	store th	ne ex	tracte	ed	

- To read $(\underline{S_2})$ +1 characters by the $(\underline{S_2})$ designated starting position at the source string (\underline{S}) , and store the extracted result into (\underline{D}) .
- When X0 = "ON", the instruction will be executed as follows:

If the D21 = 0, this instruction will not execute.

If the D21 = -1, this instruction will extract a part of source string which is starting from the third position to the last character. That is shown in the example below.

- If the operation has one of the following situation, the PLC will regard that as an operational error.
 - 1. The string from (S_1) which does not have the end of string code "00H".
 - 2. The (S_2) is negative.
 - 3. The value of $(\underline{S_2})+1$ is exceeding the string from $(\underline{S_1})$ could provide with, or the $(\underline{S_2})+1$ is less than -1.

If the D21 ((\underline{S}_2) +1) is equal to 0, the instruction will not execute.

• If the D21 = -1, this instruction will extract all the characters at the source string (S_1) . As the example below, the characters "LOVE168" are caught.

If use the extracted characters to replace a part of string D and that range is exceeded the string D have, the replacement will only affect to the original occupied space, as the example below.

- If the operation has one of the following situation, the PLC will regard that as an operational error.
 - 1. The string from (S_1) or (D) which does not have the end of string code "00H".
 - 2. The (\underline{S}_2) designated starting location is not in the string (\underline{D}) or the (\underline{S}_2) is negative.
 - 3. The value of $(\underline{S_2})+1$ is exceeding the string from $(\underline{S_1})$ could provide with or the $(\underline{S_2})+1$ is less than -1.

As the example instruction below, the (S_1) can be substituted by a key-in string between two quotation marks. The instruction will get the result (D) = D20 = 8.

. X0		S 1	S 2	\bigcirc	(n)
	INSTR	"VIGOR"	D10	D20	K3

• If the operation has one of the following situation, the PLC will regard that as an operational error.

1. The string from (\underline{S}_1) or (\underline{S}_2) which does not have the end of string code "00H".

2. The \fbox{n} designated starting location is not in the string $\underline{(s_2)}$.

6-19 Data Table Handling and Shift Instructions

FNC	Mnomonic in Laddor Diagram	Eurotion Description	Ар	plic	able	VS
No.		Function Description	1	2	Μ	3
210	FDEL SD n	Delete Data from Specific Location of Table				0
211	FINS S D n	Insert Data into Specific Location of Table				0
212		Shift the Last Register Read (FILO Last Read)				0
213		Shift n Bit Right in 16-bit Word Data with Carry				0
214		Shift n Bit Left in 16-bit Word Data with Carry				0

F١	1C						(\mathbf{n})				Delet	te Dat	a fron	n Spe	cific L	.ocatio	on	1	2	М	3
2	10	1					\square				of Tal	ble									0
FNC 210 FDEL® (S) (D) (n) Delete Data from Specific Location of Table 1 2 M Operand					Devices																
	oporaria	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"		
	S											•	•	•							
	D											•	٠	٠							
	n													0			0				
	• n>0																				

X0 (S) (D) (n) FDELP D0 D2 D1 S : the register is to store the split data from the data table

D : the head ID of the data table to be shortened n : to appoint the point at the table to be cut

is of word components starting with the (\mathbf{D}) to form a data table, and the components

This instruction uses a series of word components starting with the D to form a data table, and the component D is used to define the size of the data table.

When the instruction is executed, the (n) th data in the table will extract out and store to the component (S), and all the data behind will shift one position backward, also the size of the data table at the (D) will decrease one.

• When X0 = "OFF" \rightarrow "ON" and (n) = (D1) = K3, the process result is below.

- Please pay attention to the total size of the data table, the programmer should manage it to avoid interferes with other data is used.
- When the instruction executes, the content value of (n) should bigger than 0, and also it should equal or less than the size of the data table at (p); otherwise, the PLC will regard that as an operational error.

FNC	Insert Data into Specific Location	1	2	Μ
211	of Table			

Onerend		Devices																
Operand	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"
S											•	٠	•			•		
D											•	٠	•					
n													0			0		
• n>0																		

S : the register is to store the split data from the data table

D : the head ID of the data table to be shortened n : to appoint the point at the table to be cut

This instruction uses a series of word components starting with the D to form a data table, and the component
 D is used to define the size of the data table.

When the instruction is executed, all the data starting from the (n)th component at the table will shift one position forward and insert the content of (s) into the place of (n)th in the table, also the size of the data table at the D will increase one.

• When X0 = "OFF" \rightarrow "ON" and (n) = (D1) = K3, the process result is below.

- Please pay attention to the total size of the data table, the programmer should manage it to avoid interferes with other data is used.
- When the instruction executes, the content value of (n) should bigger than 0, and also it should equal or less than the size of the data table at (D) plus one; otherwise, the PLC will regard that as an operational error.

341

 When X1 = "OFF" → "ON", the 16-bit data of (D1) will be shifted by 4 bits to the left, and the status of the lowest bit that shifted out will be copied to the Carry Flag M9022. All blank bits will be filled with 0 at every blank bit.

FNC	Mnemonic in Ladder Diagram	Eunction Description	Ар	plica	able	VS
No.		Tunction Description	1	2	Μ	3
224		Initial In-line Compare, Connect Up if (S1) = (S2)	0	0	0	0
225		Initial In-line Compare, Connect Up if (S1) > (S2)	0	0	0	0
226		Initial In-line Compare, Connect Up if $(S1) < (S2)$	0	0	0	0
228		Initial In-line Compare, Connect Up if $(S1) \neq (S2)$	0	0	0	0
229		Initial In-line Compare, Connect Up if $(S1) \leq (S2)$	0	0	0	0
230	$ -\mathbb{D}\rangle = (S_1) (S_2) - $	Initial In-line Compare, Connect Up if $(S1) \ge (S2)$	0	0	0	0
232		Serial In-line Compare, Connect Up if $(S1) = (S2)$	0	0	0	0
233		Serial In-line Compare, Connect Up if $(S1) > (S2)$	0	0	0	0
234		Serial In-line Compare, Connect Up if (S1) < (S2)	0	0	0	0
236	$\vdash \vdash \boxdot <> (S_1) (S_2) - \bigcirc$	Serial In-line Compare, Connect Up if $(S1) \neq (S2)$	0	0	0	0
237	$\vdash \vdash \boxdot <= (S_1) (S_2)$	Serial In-line Compare, Connect Up if $(S1) \leq (S2)$	0	0	0	0
238	$ - - \square > = (\underline{S}_1) (\underline{S}_2) - (\underline{S}_2)$	Serial In-line Compare, Connect Up if $(S1) \ge (S2)$	0	0	0	0
240		Parallel In-line Compare, Connect Up if $(S1) = (S2)$	0	0	0	0
241		Parallel In-line Compare, Connect Up if (S1) > (S2)	0	0	0	0
242		Parallel In-line Compare, Connect Up if (S1) < (S2)	0	0	0	0
244		Parallel In-line Compare, Connect Up if $(S1) \neq (S2)$	0	0	0	0
245		Parallel In-line Compare, Connect Up if $(S1) \leq (S2)$	0	0	0	0
246	$\square > = (S_1) (S_2) \square$	Parallel In-line Compare, Connect Up if $(S1) \ge (S2)$	0	0	0	0

6-20 In-Line Comparison Instructions

FNC 224		Initial In-line Compare, Connect Up if $(S1) = (S2)$	1	2	M 0	3
FNC 225		Initial In-line Compare, Connect Up if $(S1) > (S2)$	1	2	M	3
FNC 226		Initial In-line Compare, Connect Up if (S1) < (S2)	1	2	M	3
FNC 228		Initial In-line Compare, Connect Up if $(S1) \neq (S2)$	1	2	M	3
FNC 229		Initial In-line Compare, Connect Up if $(S1) \leq (S2)$	1	2	M	3
FNC 230	► () > = ()	Initial In-line Compare, Connect Up if $(S1) \ge (S2)$	1	2	M	3
FNC 232		Serial In-line Compare, Connect Up if (S1) = (S2)	1	2	M	3
FNC 233		Serial In-line Compare, Connect Up if (S1) > (S2)	1	2	M	3
FNC 234		Serial In-line Compare, Connect Up if (S1) < (S2)	1	2	M	3
FNC 236		Serial In-line Compare, Connect Up if $(S1) \neq (S2)$	1	2	M	3
FNC 237		Serial In-line Compare, Connect Up if $(S1) \leq (S2)$	1	2	M	3
FNC 238	$ - - \square > = (S_1) (S_2) - (S_2)$	Serial In-line Compare, Connect Up if $(S1) \ge (S2)$	1	2	M	3
FNC 240		Parallel In-line Compare, Connect Up if (S1) = (S2)	1	2	M	3
FNC 241		Parallel In-line Compare, Connect Up if (S1) > (S2)	1	2	M	3
FNC 242		Parallel In-line Compare, Connect Up if (S1) < (S2)	1	2	M	3
FNC 244	□<> <u>(5</u>) <u>(5</u> 2)	Parallel In-line Compare, Connect Up if $(S1) \neq (S2)$	1	2	M	3
FNC 245	□<= (S1) (S2)	Parallel In-line Compare, Connect Up if $(S1) \leq (S2)$		2	M	3
FNC 246	□>= (S1) (S2)	Parallel In-line Compare, Connect Up if $(S1) \ge (S2)$	1	2	M	3

Operand									Dev	ices								
oporaria	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"
S1									•					0				
S2							•		•		٠		•	0	•	•		

S1 : the compare value #1 S2 : the compare value #2

• Since the programming software Ladder Master S at the monitoring mode could not to read the status at the special module's BFM directly, the operand in the instruction which is appointed to the UnG will not have the correct value to display. Furthermore, that in-line comparison could not display the result. However, the logical processing at the PLC is correct.

6-21 Handy Instructions and DABIN, BINDA, HSCT Instructions

FNC	Mnomonic in Laddor Diagram	Eurotion Description	Ap	plica	able	٧S
No.		Function Description	1	2	Μ	3
256	$\vdash \vdash \square LIMIT \square (S1 (S2 (S3 (D))))$	Limit Control				0
257	$\vdash \vdash \blacksquare BAND \blacksquare (S1) (S2) (S3) (D)$	Dead Band Control				0
258	$\vdash \vdash \Box ZONE \square (S1) (S2) (S3) (D)$	Zone Shift Control				0
259	$\vdash \vdash \square SCLP (S) (S_2) D$	Scaling (Coordinate by Point Data)	0	0	0	0
269	$\vdash \vdash \square SCL2 \square (S1 (S2))$	Scaling 2 (Coordinate by X/Y Data)	0	0	0	0
260		Convert Decimal ASCII String to BIN Number				0
261	H H BINDAR SD	Convert BIN Number to Decimal ASCII String				0
280	$\vdash \vdash \square \blacksquare $	Software High Speed Counter Table Compare	0	0	0	0

FNC 257			D	BAN	DP	<u>S1</u> (S2) (S	53 D	\sum		Dead	d Bano	d Con	trol				1	2 M	3
										Day	iaaa									_
Oper	and	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"	
S	1							•	•	•	•	•	•	•		•	•			
S2	2							•	•	•	•	•	•	•		•	•			
D	5							•	•	•	•	•	•	•		•				
• S1<	<s2< td=""><td></td><td></td><td></td><th></th><td></td><td></td><td></td><th></th><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></s2<>																			
Use unre curve curve outp If the differ If the differ	X0 the v. spon a as s a, an ut val (S3) rence (S1) (S3) rence	alues sive () shown input ue at < (S) < = ((> (S) < = (> (S) < = of (S)	of low $\overline{S_2}$ to $\overline{S_2}$ to $\overline{S_2}$ to $\overline{S_3}$ ($\overline{S_3}$ (S_3	(D K-4 (C K-4 (C C K-4 $($ C C K-4 $($ C C K-4 (C C K-4 $($ C C	S1) 5000 e a de diagu the (S , the , the	(S2) K500 nsive (ad bar ram. T 3) can is equ is equ	(S3) 0 D0 S1) ar nd cor hroug get at ual to t t (D) i al to t) D D1 D1 nd upp nversig h that n adju the arit he arit	ber on sted ithmet al to 0	ical cal	S1 : t S2 : t S3 : t D : t	he low he upp he inp he out Outp	ver uni per un ut valu put va ut	(S (S (S (S) (S) (S)	3 - (S)	value ovalue value ad ba lead b	of the of the nd cor and co	dead dead ntrol ontrol	oand band) Input	
 Whe use at the By the S2 If the If the If the 	n X0 the d e righ e set e D0 < = -50	= "O ead b tt diag tting a 00: < - 50 000 <	N", the band b gram t at the r 000, th = D0 00, the	e instr etwee o gen right d ne outp <= 5 outpu	uctior en two erate iagrai out D 000, t it D1 i	n and t unres an adj m, the 1 is eq he out is equa	he inp ponsi usted (S1) = ual to put D al to D	out val ve poi result =-500 D0 1 is ec 00 (ue D0 nts : D1. 00 and (-50 qual to 5000)	d 000). → 0.	-3	(D) D 32767 (0) (0) (32768 (-327)	1 ≈ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(D0) (D0) (D0) (D0) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (<u>S</u>)–(50)–(–50	2 00) 1 000) 5000 (S2) ⁵ 327		3) D0	
• For a For a	a 16-k a 32-k	bit ins bit ins	tructic tructic	n, the n, the	availa availa	able ra able ra	inge c inge c	of the (f the (S3) ar S3) ar	nd D nd D	are - are -	-32,76 -2,147	68∼+3 7,483,€	32,767 548~-	7. +2,14	7,483,	647.			

																			1
Operand									Dev	ices									
operana	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"	
S1							•	•	•	•	٠	•	•		•				1
S2							•	•	•	•	•	•	٠		•				
S 3										•	•	•	•						1
D								•	•	•	•	•	•		•				

S2 : the positive bias value of the shift control

S3 : the input value of the zone shift control

D : the output value of the zone shift control

Output (D) $(S_3) + (S_2)$ **(S**₂) 0 $\overline{(\mathbf{S}_3)} = \overline{\mathbf{O}} = \overline{(\mathbf{D})}$ **S**1 $(S_3) + (S_1)$ (S3) Input 0

• Use the values of negative bias (S1) and positive bias (S2) to create two shift control conversion curves as shown in the right diagram. Through the curves, an input value from the (S_3) can get an adjusted output value at the (D).

If the $(S_3) < 0$, the output (D) is equal to the amount of $(S_3) + (S_1).$

If the $(\underline{S}_3) = 0$, the output (\underline{D}) is equal to 0.

If the $(S_3) > 0$, the output (D) is equal to the amount of $\overline{(S_3)} + \overline{(S_2)}$.

• When X0 = "ON", the instruction and the input value D0 use the two bias values and curves at the right diagram to generate a shifted result D1.

By the setting at the right diagram, the $(\overline{S_1}) = -5000$ and $(S_2) = 5000$:

If the D0 < 0, the output D1 is equal to D0 + (-5000).

If the D0 = 0, the output D1 is equal to 0.

If the D0 > 0, the output D1 is equal to D0 + (5000).

• For a 16-bit instruction, the available range of the (S_3) and (D) are $-32,768 \sim +32,767$. For a 32-bit instruction, the available range of the $\overline{(S_3)}$ and $\overline{(D)}$ are -2,147,483,648~+2,147,483,647.

FNC 259			D	SCL	PS	1) S 2	D]			Scali	ng (C	Coordi	nate b	y Poi	nt Dat	a)	1	2	N
FNC				201	20	<u>م</u> (<u>م</u> (٦	- 			Scali	na 2	(Coor	dinate	by X	/Y Dat	a)	1	2	V
269		1		SUL		3) (3		ノ _			ocan	ng z	(0001	unate	, by A	TDat	a)	\bigcirc	\bigcirc	С
										Dav	iaaa									1
Oper	rand		V					K - V	K-V	Dev	ices	-			V 7	11-0	K LI		"	
		X	ř	IVI	5	D.D	R.D	KNX	KNY	KNW	KNS			D,R	V,Z	Ung	к,⊓	E	þ	-
S	1							•	•	•	•	•	•	•		•	•			-
S	2													•						-
)																			
	X0 — -		SCL	<u>(S1)</u> D0	<u>(\$2</u>) D100	D 0 D1]				S1 : th sc S2 : th is	ie sou caling ie hea used	irce de (X co ad regi	evice t ordina ister IE	o stor te)) of th	e the i e conv	nput v /ersior	alue c n data	of table	ļ
											D:th (Y	ie dev ′ coor	vice to dinate	store e)	the re	sult va	lue of	scalir	ng	
• Whe con (Y c	en this versio oordir	s SCL in data nate) a	instru a table afterw	ction i e start ards s	is acti ed fro stores	ve, it v m the that to	vill bas (S_2) , to the s	se on t hen b pecifié	the sp y the o ed de ^v	ecifie compa vice([d inputarison	t value and p	e at (S propor	(X c tion to	oordi prod	nate) a uce a	and the result	Э		

• When X0 = "ON", the content value at the source device D0 and the conversion data table (that is started from the D1000) will be used to calculate the scaled result, then the result will be stored at the destination device D1.

For 16-b Convers	sion	data tab	ction: le (S 2)
Number Coordina Points	of ite	S 2	D1000
Doint 1	Х	(S2)+1	D1001
FOILT	Υ	<u>S</u> 2+2	D1002
Doint 0	Х	S 2+3	D1003
FUIII	Υ	$(S_2) + 4$	D1004
Doint 0	Х	$(S_2) + 5$	D1005
Point 3	Y	S 2+6	D1006
Doint 4	Х	<u>S</u> 2)+7	D1007
Point 4	Y	S 2)+8	D1008

For 32-bit SCL instruction:	
Conversion data table S2	

Number Coordina Points	of ite	$(\underline{S}_2) + 1, (\underline{S}_2)$
Doint 1	Х	$(\underline{S}_2) + 3$, $(\underline{S}_2) + 2$
FOILT	Υ	$(\underline{S}_2) + 5$, $(\underline{S}_2) + 4$
Doint 0	Х	$(\underline{S}_2) + 7$, $(\underline{S}_2) + 6$
FOIII 2	Υ	$(\underline{S}_2) + 9, \ (\underline{S}_2) + 8$
Doint 2	Х	$(\underline{S}_2) + 11, (\underline{S}_2) + 10$
FOILTS	Υ	$(\underline{S}_2) + 13, (\underline{S}_2) + 12$
Doint 4	Х	$(\underline{S}_2) + 15, (\underline{S}_2) + 14$
FUIIL 4	Y	$(\underline{S}_2) + 17, (\underline{S}_2) + 16$

- It is an easy and effective solution for to transform the values between analog I/O and external physical quantity (such as weight, length, temperature....).
- If the result data (Y coordinate) is not an integer, round the number to the nearest integer.
- If two or more points in the conversion data table are specified their X coordinate values to a same number, moreover the content value of the source (S_1) is just equal to this number, the result value at (D) will be the Y coordinate value of the second point.
- Any one of the following mistake may cause an operating error: (the Operation Error flag M9067 = "ON" and the error code in D9067 = K9067 .) 1. At the conversion data table, those Xn are not edited by the ascending order. (do not let Xn > Xn+1) 2. When the input source value (S1) exceeds the range of the conversion data table.

3. When the difference between two adjacent points (Xn and Xn+1 or Yn and Yn+1) is more than "65,535".

• Application example: To transform the position from a linear potentiometer

Use the 1^{st.} channel of a VS-4AD module to connect with a 500 mm stroke linear potentiometer for measuring the position. This application in the machine just needs to use a part of the potentiometer (50 mm to 450 mm). The request is to get a value which is between 0 to 4,000 (unit: 0.1 mm).

Input a standard 10 VDC to the $0 \sim 500$ mm potentiometer, it should return a relative $0 \sim 10$ V analog signal to the AIN1+/AIN- of the VS-4AD's AI1 channel, then at the module's BFM#5 will have a value between $0 \sim 32,000$. Since this application only uses the segment between $50 \sim 450$ mm in the meter, so at the BFM#5 will get $3,200 \sim 28,800$.

The chart below is to show the conversion curve of this application.

	Item		Register ID	Content value
S 2	Number o Coordinate P	of oints	D1000	2
<u>S</u> 2)+1	Doint 1	Х	D1001	3200
<u>S</u> 2)+2	POINT	Y	D1002	0
S 2+3	Doint 2	Х	D1003	28800
$(S_2) + 4$	FUILZ	Y	D1004	4000

Conversion data table for SCL instruction

X axis represents analog input value.

Y axis represents the current position (Unit : 0.1mm)

M9000

SCL D0 D1000 D1 By the SCL instruction, to transform at the location of the potentiometer and put the position data into D1. (unit: 0.1 mm)

• Functionally, both the SCL2 and SCL instructions are the same. The difference between these instructions are the arrangement of data in the conversion table. The tables below are the way to organize the data tables of the SCL2 instruction. (assume the total number of the points is 4)

For 16-	bit SCL	2 instruction
Number Coordinate	of Points	<u>(S2</u>)
	X1	<u>(S2</u>) + 1
Х	X ₂	<u>(S2)</u> +2
coordinate	Хз	(S 2)+3
	X ₄	$(S_2) + 4$
	Y1	$(S_2) + 5$
Y	Y ₂	$(S_2) + 6$
coordinate	Y ₃	<u>(S2)</u> +7
	Y ₄	<u>(\$2)</u> +8

For 32-bit SCL2 instruction

Number Coordinate	of Points	$(\underline{S}_2) + 1$, (\underline{S}_2)
	X1	$(S_2) + 3$, $(S_2) + 2$
Х	X ₂	$(\underline{S}_2) + 5$, $(\underline{S}_2) + 4$
coordinate	Хз	$(S_2) + 7$, $(S_2) + 6$
	X4	$(S_2) + 9, (S_2) + 8$
	Y1	$(\underline{S}_2) + 11, (\underline{S}_2) + 10$
Y	Y ₂	$(\underline{S}_2) + 13, (\underline{S}_2) + 12$
coordinate	Y ₃	$(S_2) + 15, (S_2) + 14$
	Y ₄	$(S_2) + 17, (S_2) + 16$

352

									Dei									
Operano		V	м	9	Dh	Rh	KnX	KnV	Dev	KnS	Т			R V	7 n(с кн	F	"\$"
D								•	•	•								
NC Image: Convert Decimal ASCII String to 1 2 M Operand Image: Convert Decimal ASCII String to 1 2 M 5 Silv Number Image: Convert Decimal ASCII String to 1 2 M 5 Operand Image: Convert Decimal ASCII String to 1 2 M 5 Image: Convert Decimal ASCII String to Image: Convert Decimal ASCII String to 1 2 M Image: Convert Decimal ASCII String to Image: Converted BIN number 1 2 M 5 Image: Convertion Mill uses to converted BIN number result Image: Converted BIN number result 1 1 2 1 2 3 4 5 1 3 1 3																		
This ins convers	tructior	– DAB n uses en stor	IN D a dec	D	0 0 ormat It into	ASCII the de	string) numl D) .	oer sta	S : th As D : th arted f	e hea SCII s e cor rom t	id ID string iverte he (of the is sto ed BIN S) to	e devi ored I num perfoi	ces whe ber res m the E	ere the ult BIN nun	decir nber	nal
This ins	tructior	n will u	se the	e follov	ving A	SCII c	onver	sion ta	able:									
ASCII Co	rd (он :	20Н	2DH	30H	31H	32H	33H	34	H 35	н з	6H	37H	38H	39H			
Sign & Nu	Imber N	IULL S	PACE	_	0	1	2	3	4	5	+	6	7	8	9			
			I	I		I	1							1	1			
The low otherwis The rem or 30H, For a 16	est byt se, 20H naining that wi S-bit ins	e in the I mear bytes Il be tr structio	D -1 e strin is pos are to eated on, the	g is the store as 30 available available store as 30 available store as 30 available store available store as 30 available store available store as 30 available store availab] the sigr the d H. able ra	n code ata of ange is	e for th a valu s -32,	ne con ie. If t 768~-	versic he AS +32,7	on. If t SCII cc 767.	he sig	gn is n this	2DH, s segr	the n ment d	umber i	is nega have tł	tive; ne 20	H, 00H
For a 32 (assume	e the	structic S) is a	n, the ssigne	struc ed to f	ture of the DC	f the s	ource	string	starti	ng fro	m the	e S	is sh	own b	elow.			
S La Sig	D0 ower bits n code	D0 Upper 8 bits 10 ⁹	- Lo 8	D1 ower bits 0 ⁸	D1 Uppe 8 bit 10 ⁷	er Lo s 8	D2 ower bits 10 ⁶	D2 Upp 8 bit	er ts	D3 Lower 8 bits 10 ⁴	Up 8	03 oper bits 0 ³	D, Low 8 b	4 ver its 2	D4 Upper 8 bits 10 ¹	D5 Lowe 8 bits 10 ⁰	r L 5 8	D5 Ipper bits gnore
For a 32 will occu	2-bit ins upy 11	structic bytes.	on, the	availi	able ra a cod	ange is le whic	s –2,14 ch is ir	47,483	3,648 er or	~+2,1 the res	47,4	83,64	47. Th	nerefo	re, with e availa	a sign	code ge, tł	, that
If the so	urce si		onor	ationa	l orror													

1	\vdash	DB	INDA	P (S)	D				Conv ASCI	ert B I Stri	IN N ng	umbe	er to	Deo	cimal		1	2	Ν
								I											
Oper	2 Image: Display Convert BIN Number to Decimal ACU String 1 2 M 3 perand X Y M S D R K K Key Key Key Key Key Key Key Key Key																		
-	X	Y	M S	D.b	R.b	KnX	KnY	KnM	Convert BIN Number to Decimal 1 2 M 3 ASCII String I										
S	;					•	•	•	•	•	•			0	•	•			
FNC Image: Simple S																			
ENC Convert BIN Number to Decimal 1 2 M 3 Solid String 1 2 M 3 Solid String to explain the number at he (3) to perform the conversion adher result is using a decimal format ASOI string Solid String to explain the number at he (3) to perform the conversion adher Solid String to explain the number at he (3) to perform the conversion adher Solid String to explain the number of the stores the string into the devices started from (5). This instruction will use the following ASOI conversion table: Solid String to explain the number of the following ASOI conversion table: Solid String to explain the number of the following ASOI conversion table: Solid String to explain the number of the following ASOI conversin the following ASOI conversion table:																			
FNC Image: I																			
FNC Image: The second seco																			
FNC Image: Convert Bin Number to Decimal ACII string Image: Convert Bin Number to Decimal ACII string Operand X Y M S Db Rb MX KY KM KM KM TO CONVERTS Second String Second X Y M S Db Rb MX KY KM KM KM TO CONVERTS Second XI Y M S Db Rb MX KY KM																			
Sign	& Number	NULL SPA	ACE –	0	1	2	3	4	5		6	7	8		9				
ASC	II Cord	00H 20)H 2DH	30H	31H	32H	33H	341	1 35F	1 30	бH	37H	38⊦	1 3	39H				
FNC Convert BIN Number to Decimal 1 1 2 M Operand x y M s D Devices Image: Second Sec																			
	8 bits	8 bits	8 bits	8 bits	8	bits	8 bit	S	011	-									
	It is	20日()	20⊓()	<u>1316(</u> 1	1) 32	2	5	5)	<u>л</u>]									
	positive.	Empty,	fill in 20H.							— A:	ssun	ne the	M90)91	= "O	FF".			
For a (ass	a 32-bit in ume the (struction	, the struc signed to	ture of the D0	the re)	esult s	tring s	tarting	g from	the (D) is	s shov	vn be	elov	V.				
D	D0 Lower 8 bits	D0 Upper	D1 Lower	D1 Uppe	r L	D2 ower	D2 Upp	er L	D3 ower	D Up	3 per	D4 Low	1 ver	D Up)4 per	D5 Lower	U	D5 ppe	r
	Sign code	10 ⁹	10 ⁸	10 ⁷	, 0	10 ⁶	10 ⁵	5	10 ⁴	1) ³	10	2	1	0 ¹	10 ⁰	OH	or 20	ЭН
For –2,1 The	a 32-bit in 47,483,64 refore, wit	istructior 18 ~ +2 h a sign	n, the ava ,147,483, code, tha	ilable ra 647. It will oc	ange i ccupy	s 11 by	rtes.		lf 1 lf 1	the M the M	1909 1909	1 = "(1 = "(OFF" ON",	', wi will	ll fill ir fill in	n 00H. 20H.			
F	Relay ID N	о.						[Descrip	otion									
	M9091	A: 16 32	ssign the E 3-bit instruc 2-bit instruc	BINDA or ction: WI Wi ction: Wi	peratin hen M hen M hen M	ig mod 9091 = 9091 = 9091 =	e. "OFF", "ON", v "OFF",	will ac will onl will ac	ld the e y conve ld the e	nd of ert the nd of	strin data strin	g 0000 witho g 00H)H aft ut to a at the	er th add e res	ne resu the er sult's la	ilt. Id of str	ing. er 8 bi	ts.	
1				1.4.0								~							
FNC	Software High Speed Counter Table	1	2	Μ	3														
-----	-----------------------------------	------------	---------	------------	------------														
280	Compare	\bigcirc	\circ	\bigcirc	\bigcirc														

Operand									Dev	ices								
oporaria	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"
S1																		
m																0		
S2												٠						
D		٠	٠	•														
n																0		
• 1≤m≤1	6•	S2 = (235~	-C255	• W	/hen D	is ass	igned t	o Y, on	ly Y0~	Y7 hav	e insta	int resp	onse	ability	• 1 =	≤n≤1	6

X20		S 1)	(\mathbf{m})	S 2	\bigcirc	(\mathbf{n})
	DHSCT	D0	K6	C235	Y4	K3

- S1 : the head register ID of the comparison table
- m : the number of data sets to be compared
- S2 : the ID of the designated Software High Speed Counter
- D : the head ID of output components for the comparison results
- n : the number of output components for the comparison results
- This instruction uses a comparison table which is headed by the (S1) and continuously occupies (m) × 3 registers, then takes the Present Value of the (S2) designated Software High Speed Counter to compare to that table, furthermore the comparison result presents through the (D) headed continuously (n) components. Both the values comparison and result outputting at this instruction are operated by the interruption of system.

	(S 1) Compa	arison Table	D0100		
	Data Set to be Compared	Output Appointer	Table Counter		
	(D1, D0) K100	D2 H05	0 <	Present Value of	1
	(D4, D3) K200	D5 H02		C235 Y4	_
(m)	(D7, D6) K300	D8 H06	2	Y5	
	(D10, D9) K400	D11 H03	3	Y6	
	(D13, D12) K500	D14 H04	↓ ↓ ↓ ↓	Table Counter at	
	(D16, D15) K600	D17 H00	¥	D9162	
				J NI9162	

- When X20 = "ON", this instruction starts operation. The Present Value of C235 SHSC assigned by(S2) will compare with the content value of the 1st data set (D1, D0) in the comparison table. If the input makes those values equal, the content value of the 1st output appointer (D2) in the comparison table will be instantly output through the Y4~Y6 (assigned by (D) and (n)), also it increases the value in the table counter D9162 by 1 (become 1 from 0). After that, the Present Value of C235 will compare with the content value of the 2nd data set (D4, D3) in the table. When the values are equal, the content value of the 2nd output appointer (D5) in the table will be instantly output through the Y4~Y6, also it increases the value in the table counter D9162 by 1 (become 2 from 1). The comparison action is continuous, until the value of the last data set in the table is equal to the Present Value of C235. That causes the operation completion flag M9162 for one Scan Time and the D9162 will be reset to 0, furthermore the comparison operation should start over again from the 1st data set.
- When the X20 turns from "ON" to "OFF", this instruction stops and the content value of D9162 will be reset to 0 but the result status which has output previously will still remain.
- This instruction is a 32-bit instruction. Therefore, be sure to input DHSCT in the program.
- This instruction can only be used once in the program.
- The related special devices are summarized below:

(■: Means read only.)

Relay ID No.	Description				
■M9162	o indicate the completion of HSCT instruction.				
Register ID No	Description				
Register ID No.	Description				

	DHSCT	D0	K6	C235	Y4	K4	The DHSCT table compare instruction
--	-------	----	----	------	----	----	-------------------------------------

6-22 Positioning Control Instructions

The VS series PLCs are provided with 4 axes control function. Given that to use positing control function is more than understanding positioning control instructions, more professional description is needed. Thus, this manual provides a special chapter 8 "Statement of Positioning Control Functions" for detailed description about the function. Hereby provides the table of positioning control instructions for reference.

FNC	Mnomonio in Loddor Diogram	Eurotian Departmetian	Ар	plicable		e VS	
No.		Function Description	1	2	Μ	3	
300	$\square \square $	Zero (Home Position) Return	0	0	0	0	
301	$\vdash \vdash \blacksquare JOGF (S_1) (S_2) (D_1) (D_2)$	Jog Forward	0	0	0	0	
302	$\vdash \vdash \blacksquare JOGR (S1) (S2) (D1) (D2)$	Jog Reverse	0	0	0	0	
303	$\vdash \vdash \blacksquare DRVR (S1) (S2) (D1) (D2)$	Drive to Relative Position	0	0	0	0	
304	$\vdash \vdash \blacksquare DRVA (S1) (S2) (D1) (D2)$	Drive to Absolute Position	0	0	0	0	
305	$\vdash \vdash \blacksquare DV2R(S_1)(S_2)(D_1)(D_2)$	Drive to Relative Position by 2 Stages	0	0	0	0	
306	$\vdash \vdash \blacksquare DV2A (S1) (S2) (D1) (D2)$	Drive to Absolute Position by 2 Stages	0	0	0	0	
307	$\vdash \vdash \blacksquare DVIT (S1) (S2) (D1) (D2)$	Interrupt Constant Quantity Positioning	0	0	0	0	
308	$\vdash \vdash \blacksquare DV2I (S1) (S2) (D1) (D2)$	2 Stages Interrupt Constant Quantity Positioning	0	0	0	0	
309	$\vdash \vdash \blacksquare DVSR (S_1) (S_2) (D_1) (D_2)$	Interrupt to Stop or Drive to Relative Position	0	0	0	0	
310	$\vdash \vdash \blacksquare DVSA (S1) (S2) (D1) (D2)$	Interrupt to Stop or Drive to Absolute Position	0	0	0	0	
311	$\vdash \vdash \blacksquare PLSV (S) (D) (D2)$	Variable Speed Pulse Output	0	0	0	0	
312	$\vdash \vdash \vdash \Box TBL (S1) (S2) (D1) (D2)$	Data Table Positioning	0	0	0	0	
313		Absolute Current Value Read	0	0	0	0	
314	$\vdash \vdash \vdash MPG (S1) (S2) (D1) (D2)$	Handwheel Positioning	0	0	0	0	
315		Relatively Linear Interpolation	0	0	0	0	
316	H H DLIA S D	Absolutely Linear Interpolation	0	0	0	0	

7. Statement of Communication Functions

In the field of industrial automatic control, communication between equipment has become an extremely important part. The abilities to transmit data mutually, collaborate and communicate with each other to complete the control work together are highly valued. PLCs are the most basic and most common control equipment in industrial automatic control, and thus naturally it is also very important to enhance their communication capacity.

According to the different model of the VS series PLC, could have 3 to 6 communication ports.

Those are not only equipped to execute the programming, but also vertically uplink with the Human-Machine Interface (HMI) or Supervisory Control And Data Acquisition system (SCADA) to construct a monitoring network; horizontally, it can be connected to multiple VS PLCs to operate the distributed control. In addition, can be the master to connect with peripheral equipments (such as thermostat, inverter, etc.). Therefore, these create a complete control system. Compared to the company's previous products, the VS series PLC has made great progress in increasing the number of communication ports, communication speeds, the flexibility of application types and user-friendliness. This chapter is specifically for the VS series PLC communication function to provide a detailed description, and provides useful help when users operate these communication functions.

7-1 Key Points of Communication Functions

7-1-1 Fundamental Object about the Communication Function

Communication Interface

The communication interface which can go with the VS series PLC is including the USB, RS-232 and RS-485.

- USB interface the most popular interface used on computers. The VS PLC's main units are all equipped with a built-in USB port to be the programming interface of the PLC and that with a speed rate up to 12 Mbps.
- RS-232 interface often used in point-to-point short distance (within 15 meters) communication.
- RS-485 interface often used for multi-points long distance communication. Since it provides with multi-points data exchange capability and long distance communication performance; therefore, now is widely used in industrial control field.
- Communication Parameters

To transfer data through communication interface, the settings such as "data bit length", "parity", "stop bit" and "baud rate" must be configured first. These settings are collectively referred to as communication parameters and can be regarded as communication protocols at the hardware level. The communication parameters must be consistent for all communication devices in a system.

Communication Protocol

All the device which provided with communication function should have a communication protocol to support data transmitting with other equipment.

The communication protocol is a protocol at the software level. Through the same communication protocol, can reach the purpose of data exchange between different devices.

A communication protocol usually consists of starting character, station number, communication command, data content, end character, check code, and so on. Of course, each device will define the appropriate communication protocol according to its communication needs. Meanwhile, some equipment will follow the commonly used communication agreement on the market and the MODBUS is undoubtedly the most common one.

• Communication Principles

When two or more devices exchange data between each other, these devices must be linked together to form a communication circuit. Moreover, this communication circuit needs to follow the basic principles below to start working:

- Have consistent communication interface.
- Have consistent communication parameters.
- Have consistent communication protocol.
- The communication circuit must have a main leader, and only one at a time.

7-1-2 Notes for Constructing Communication Systems

- Keep away from high noise sources as can as possible while wiring. In the distribution box, do not use the same groove with the power wire. For the external environment, keep away from the equipment which produces electromagnetic radiation.
- Pay attention to the communication distance and select the appropriate communication interface. As the specifications of the RS-485 interface are much better than the RS-232, should use the RS-485 interface as far as possible in industrial control systems. Even so, in the use of RS-485 interface, many things must be noted in accordance with its specifications.
- Guidelines for the use of RS-485
 - A. The transfer wire need to use shielded twisted pair wire. Normal twisted pair wire can be used when conducting short distance communication in low noise environment to cut down cost. But in high noise environment, long distance communication or in occasions where high communication quality is required, the dedicated transfer wire for RS-485 (like the Belden 9841) is recommended. It may make higher budget, but the communication quality will be improved magnificently.
 - B. Make sure the principle of connect in sequence is followed when do hardware wiring. Do not use the T-type, the radial distribution type or any other wiring method for the purpose of convenience.

C. Terminal resistances must be parallel connected to the two terminal devices of the whole communication circuit. For the twisted pair wire used by RS-485 interface, the terminal resistances should choose 120 Ω 1/2 W resistors.

All of the VS series communication cards have built-in terminal resistances, user can be enabled the function by short connect the TR terminals. For those communication devices which have no built-in terminal resistances, take special note during wiring to ensure that the external terminal resistance is well connected.

D. Although the RS-485 is a two-wires-style interface, when the distance between 2 communication devices is too long, communication often fails for the earth electric potential difference of the 2 devices is too big. Thus we normally recommend using the shield layer of the transfer wire to connect the SG terminals of the 2 devices, so that the earth electric potential difference can be reduced, and to achieve the purpose of normal communication.

- E. When the number of serial connections at the RS-485 circuit has exceeded a certain amount (depends on the specification of the devices connected, usually 32), an RS-485 amplifier has to be added to the circuit.
- F. According to the standard specifications of the RS-485 interface, the longest communication distance is 1200 meters. When the RS-485 communication circuit exceeds this distance, the RS-485 amplifier must be added to increase the communication distance.
- It is possible that one communication circuit to connect with different devices at the same time, thus when the communication fails, carefully inspect whether all wirings are correct and stable, furthermore check the configuration values of each device are correct. On the other hand, usually a complicated structure is more difficult to find out the problem. Therefore, can separate a device to do individual checking before connecting it with many other devices, that for to make sure every device can work well.

• Misconception about communication speed.

The communication systems are built for various purposes and applications. Most people feel that faster communication means better. In fact, this concept is not necessarily correct. The reason is that faster communication speed relies on the higher communication quality to support, which also means that higher communication construction costs may be required.

Therefore, the correct approach is to, in response to the needs, choose the appropriate communication speed, consider moderate construction costs and pursue stable communication quality.

- For the situations when the constructed system can communicate acceptably, but sometimes breaks or error occurs. That results the unsmooth and delayed data transmission, there are several suggestions listed below:
 - A. Check whether the communication software is working properly, including whether the communication parameters (such as the time-out period setting) are correct.
 - B. Reduce and improve on the interference from the surrounding environment. Specific practices include reducing the carrier frequency of the inverter, setting appropriately the grounding system of inverters and a variety of power equipment. Besides, can even add noise suppress devices to the power wire.
 - C. It is recommended to use RS-485 dedicated transmission cable if the general transmission line is currently used.
 - D. Rewire the communication cables that following the principle of keeping away from sources of interference.
- Overall consideration for the communication quality:

When building a communication system, it is often necessary to connect a variety of devices with different brands and which is the difficult part. Additionally, the impact of environmental factors makes it more complicated. When constructing communication systems, users often ask questions such as how long can this communication distance be, then how long will the communication distance be? Nothing is wrong to ask such questions, since only the excellent communication quality can ensure smooth communication. However, there is no standard answer. Too many factors impact the communication quality of a project, such as the quality of equipment, wiring quality, the quality of the environment at the site, even software quality and so on.

The suggestions to improve the quality of communication are made as follows.

A. Equipment quality:

The isolated communication interface is definitely better than non-isolated communication interface. However, for many cheap communication interface converters on the market, even their specifications do not meet the standard. They may work in a simple testing, but the communication quality is poor, so should avoid using them.

B. Wiring quality:

Each communication interface has its standard transmission cable. The user often uses inappropriate cables in order to reduce costs. When the communication system begins to appear to be unstable, please replace the standard transmission cable to enhance the communication quality.

C. The quality of the environment at the site:

When a high noise source at the work site affects the communication, this situation should be improved by reducing noise interferences. If this cannot be changed, should consider changing the routes of wiring to keep away from the noise source.

D. The quality of the software program:

The communication system is generally used as monitor of equipments. There are monitoring computer and monitoring software at the monitoring center. There are possibilities for errors to occur during communication. During the communication, there may have the possibility of error. Therefore, the ability of monitoring software to handle errors is related to the stability of the entire system.

At the hardware part, the communication quality should be improved as much as possible to avoid communication errors. When the occasional error occurs, the quality of the software can offer a correct treatment. Only by the two-pronged approach can build a stable and reliable communication system.

7-2 Structure of Communication System

Every VS PLC Main Unit is equipped with a built-in mini USB interface programming port for to connect and communicate with the programming device.

Moreover, each VS series PLC Main Unit is also equipped with the built-in CP1 which is a RS-485 multi-functional communication port. This CP1 can select the correct application type for fit with the external peripherals from a various of prepared modes, and then to achieve the control objectives cooperatively.

If more communication ports are needed, can be achieved by installing communication expansion cards to expand the number of communication ports. Moreover, all of the expanded communication ports are multi-functional and can be applied to a variety of purposes.

The VS series PLC Main Unit not only has a built-in CP1 communication port, but also the EC1 Expansion Card Socket is available to install a communication expansion card. Thus, by the EC1 socket, the PLC could have the additional CP2 and CP3. Moreover, the VS3 can use its EC1 and EC3 to expand CP2~CP5. However, if the CP5 at a VS3 PLC is required, its EC2 socket may install a VS-3AV-EC card or not to use; any DIO or SF Card at EC2 will cause the CP5 at EC3 ineffective.

A communication port at CP card is not related to the working area of DIO expansion or SF card, to operate the port is directly by the installed setting and program.

ltem	Model Name	Main Specification
	VS-485-EC	RS-485 Comm. Expansion Card: One non-isolated RS-485 port with TX / RX indicators; dist. 50m Max.
	VS-485A-EC	RS-485 Comm. Expansion Card: One isolated RS-485 port with TX / RX indicators; dist. 1000m Max.
	VS-D485-EC	RS-485 Comm. Expansion Card: Dual non-isolated RS-485 ports with TX / RX indicators; dist. 50m Max.
_Comm.	VS-D485A-EC	RS-485 Comm. Expansion Card: Dual isolated RS-485 ports with TX / RX indicators; dist. 1000m Max.
Expansion Card	VS-D232-EC	RS-232C Comm. Expansion Card: Dual non-isolated RS-232 ports with TX / RX indicators; dist. 15m Max.; wiring by the RX / TX / SG terminals
	VS-D52A-EC	RS-485 + RS-232C Comm. Expansion Card: One isolated RS-485 port (1000m) & one non-isolated RS-232C port (15m), both with TX / RX indicators and wiring by terminals
	VS-ENET-EC	Ethernet + RS-485 Communication Expansion Card: One Ethernet port (with additional non-isolated RS-485, dist. 50m) & one non-isolated RS-485 port (dist. 50m), both with TX / RX indicators

The communication application types supported by the VS series PLC are briefly introduced below:

• The VS Computer Link Slave (hereby referred to as the VS Slave)

When the VS PLC's communication port has been set to the application type of the "VS Computer Link Slave", the human-machine interface (HMI) or supervisory control and data acquisition system (SCADA) can access the VS PLC's data through the "VS Computer Link protocol" (hereby referred to as the VS Protocol).

• The VS Computer Link Master (hereby referred to as the VS Master) When the VS PLC's communication port has been set to the application type of the "VS Computer Link Master", it cooperates with the LINK instruction and a LINK communication table to operate communication procedures. This Master links and communicates with Slaves through the "VS Computer Link protocol" (hereby referred to as the VS Protocol).

• The VB Computer Link Slave (hereby referred to as the VB Slave)

When the VS PLC's communication port has been set to the application type of the "VB Computer Link Slave", the human-machine interface (HMI) or supervisory control and data acquisition system (SCADA) can access the VS PLC's data through the "VB Computer Link protocol" (hereby referred to as the VB protocol).

• The MODBUS Slave

When the VS PLC's communication port has been set to the application type of the "MODBUS Slave", the human-machine interface (HMI) or supervisory control and data acquisition system (SCADA) can access the VS PLC's data through the "MODBUS protocol".

• The MODBUS Master

When the VS PLC's communication port has been set to the application type of the "MODBUS Master", it cooperates with the MBUS instruction and a MODBUS communication table to operate communication procedures. This Master links and communicates with MODBUS Slaves (such as inverters, temperature controllers, power meters, etc.) through the "MODBUS protocol".

• The CPU Link

The VS series PLC uses this application to share instant data between VS PLCs to serve the purpose of distributed control.

When the communication ports of VS PLCs have been set the application for to share instant data between PLCs, select one of the PLC to cooperate with the CPUL instruction and CPUL communication table, through its particular protocol to share instant data.

• The Non Protocol communication

When the VS PLC's communication port has been set to the application type of the "Non Protocol", the PLC does not execute any specified communication protocol. All communication procedures are operated by the PLC's user program. Then the RS instruction is used to receive and send out data in order to complete the communication operation. This application type is often applied to communicate between PLC and peripheral, such as temperature controllers, inverters and barcode readers.

7-2-1 Main Unit Built-in Communication Port

Every VS PLC Main Unit is equipped with a built-in mini USB port, which is the programming interface with 12 Mbps transmission rate and uses the "VS Computer Link Protocol". User can follow the protocol to make a communications procedure for to access the data in the VS PLC.

VIGOR provides the VSPC-200A noise suppression USB cable that is designed for industrial environment use, could reduce the USB communication failed. Therefore, use a computer to do the programming can acquire stable and rapid communication quality.

Furthermore, every VS PLC Main Unit is equipped with a built-in CP1 communication port, which is a non-isolated RS-485 interface. Through the installed project (which includes the port's parameter setting and appropriate program), this communication port can choose one application from a variety of communication functions.

• The specification of CP1

Item	Specification
Communication Interface	RS-485
Isolation Method	No isolation
Max. Communication Distance	50 M
Communication Method	Half-duplex
Baud Rate	By the setting of installed project (115,200 bps. Max.)
Wiring Method	Fixed 5mm Screw-Clamp Terminal Block
Parameter Configuration	By the installed project (via the "COM Port setting" page in the programming software)

7-2-2 VS-485-EC Communication Expansion Card

The VS-485-EC Communication Expansion Card offers one set of non-isolated RS-485 port. By way of the parameter setting and well planned program at the VS series PLC Main Unit, the port can perform one of various communication functions.

• Product Exterior

ltem	Specification
Communication Interface	RS-485
Isolation Method	No isolation
Communication Indicator	TX (transmitting) and RX (receiving)
Max. Communication Distance	50 M
Communication Method	Half-duplex
Baud Rate	By the setting of installed project (115,200 bps. Max.)
Power Consumption	DC5V 50mA (from PLC Main Unit)
Wiring Method	Fixed 5mm Screw-Clamp Terminal Block
Terminal Resistor	120 Ω , enabled when two TR terminals are short-connected
Parameter Configuration	By the installed project (via the "COM Port setting" page in the programming software)

7-2-3 VS-485A-EC Communication Expansion Card

The VS-485A-EC Communication Expansion Card offers one set of isolated RS-485 port. By way of the parameter setting and well planned program at the VS series PLC Main Unit, the port can perform one of various communication functions.

Product Exterior

Item	Specification
Communication Interface	RS-485
Isolation Method	PLC internal circuit and external driving circuit are isolated by a magnetic coupler
Communication Indicator	TX (transmitting) and RX (receiving)
Max. Communication Distance	1000 M
Communication Method	Half-duplex
Baud Rate	By the setting of installed project (115,200 bps. Max.)
Power Consumption	DC24V 25mA from the DC input terminal
Wiring Method	Fixed 5mm Screw-Clamp Terminal Block
Terminal Resistor	120 Ω , enabled when two TR terminals are short-connected
Parameter Configuration	By the installed project (via the "COM Port setting" page in the programming software)

7-2-4 VS-D485-EC Communication Expansion Card

The VS-D485-EC Communication Expansion Card offers two sets of non-isolated RS-485 port. By way of the parameter setting and well planned program at the VS series PLC Main Unit, each port can separately perform one of various communication functions.

• Product Exterior

ltem	Specification					
item	CH1	CH2				
Communication Interface	RS-485	RS-485				
Isolation Method	No isolation	No isolation				
Communication Indicator	TX (transmitting) and RX (receiving)	TX (transmitting) and RX (receiving)				
Max. Communication Distance	50 M	50 M				
Communication Method	Half-duplex	Half-duplex				
Baud Rate	By the setting of installed project (115,200 bps. Ma	ax.)				
Power Consumption	DC5V 100mA (from PLC Main Unit)					
Wiring Method	Fixed 5mm Screw-Clamp Terminal Block	Fixed 5mm Screw-Clamp Terminal Block				
Terminal Resistor	120Ω, enabled when two TR terminals are short-connected					
Parameter Configuration	By the installed project (via the "COM Port setting" page in the programming software)					

7-2-5 VS-D485A-EC Communication Expansion Card

The VS-D485A-EC Communication Expansion Card offers two sets of isolated RS-485 port. By way of the parameter setting and well planned program at the VS series PLC Main Unit, each port can separately perform one of various communication functions.

• Product Exterior

ltom	Specification		
item	CH1	CH2	
Communication Interface	RS-485	RS-485	
Isolation Method	PLC internal circuit and external driving circuit are isolated by a magnetic coupler; no isolation between two channels		
Communication Indicator	TX (transmitting) and RX (receiving) TX (transmitting) and RX (receiving)		
Max. Communication Distance	ə 1000 M 1000 M		
Communication Method	Half-duplex Half-duplex		
Baud Rate	By the setting of installed project (115,200 bps. Max.)		
Power Consumption	DC 24 V 50m A from the DC input terminal		
Wiring Method	Fixed 5mm Screw-Clamp Terminal Block	Fixed 5mm Screw-Clamp Terminal Block	
Terminal Resistor	$120\Omega,$ enabled when two TR terminals are short-connected	$120\Omega,$ enabled when the D- and TR terminals are short-connected	
Parameter Configuration	By the installed project (via the "COM Port setting" page in the programming software)		

7-2-6 VS-D232-EC Communication Expansion Card

The VS-D232-EC Communication Expansion Card offers two sets of non-isolated RS-232C port. By way of the parameter setting and well planned program at the VS series PLC Main Unit, each port can separately perform one of various communication functions.

• Product Exterior

lite m	Specification		
item	CH1	CH2	
Communication Interface	RS-232C RS-232C		
Isolation Method	No isolation	No isolation	
Communication Indicator	TX (transmitting) and RX (receiving)	TX (transmitting) and RX (receiving)	
Max. Communication	15 M	15 M	
Communication Method	Half-duplex Half-duplex		
Baud Rate	By the setting of installed project (115,200 bps. Max.)		
Power Consumption	DC5V 25mA (from PLC Main Unit)		
Wiring Method	Fixed 5mm Screw-Clamp Terminal Block Fixed 5mm Screw-Clamp Terminal Block		
Parameter Configuration	By the installed project (via the "COM Port setting" page in the programming software)		

7-2-7 VS-D52A-EC Communication Expansion Card

The VS-D52A-EC Communication Expansion Card offers one isolated RS-485 port and one non-isolated RS-232C port. By way of the parameter setting and well planned program at the VS series PLC Main Unit, each port can separately perform one of various communication functions.

• Product Exterior

ltom	Specification	
item	CH1	CH2
Communication Interface	RS-485	RS-232C
Isolation Method	PLC internal circuit and external driving circuit are isolated by a magnetic coupler	No isolation
Communication Indicator	TX (transmitting) and RX (receiving) TX (transmitting) and RX (receiving)	
Max. Communication Distance	2 1000 M 15 M	
Communication Method	Half-duplex Half-duplex	
Baud Rate	By the setting of installed project (115,200 bps. Max.)	
Power Consumption	DC24V 50mA (from the DC input terminal) + DC5V 25mA (from PLC Main Unit)	
Wiring Method	Fixed 5mm Screw-Clamp Terminal Block	Fixed 5mm Screw-Clamp Terminal Block
Terminal Resistor	120 Ω , enabled when two TR terminals are short-connected	_
Parameter Configuration	By the installed project (via the "COM Port setting" page in the programming software)	

7-2-8 VS-ENET-EC Communication Expansion Card

The VS-ENET-EC Communication Expansion Card is a dual port card. It offers one Ethernet port (with an additional non-isolated RS-485 interface) and one non-isolated RS-485 port.

By way of the parameter setting and well planned program at the VS series PLC Main Unit, each port can separately perform one of various communication functions.

Product Specification

ltem	Specification about the Ethernet
Physical Transport Layer	10BASE-T / 100BASE-TX
Transport Protocol	TCP (Client / Server); UDP (Client / Server)
Application Protocol	Transparent or conversion MODBUS TCP to MODBUS RTU
Connected Serial Port	CH1
IP Address Allocation	Automatic by DHCP server or Static (manual) allocation
Unique Identifier	The media access control address (MAC address) is used
Comm. Parameter Modify	Use the specific configuration software
Status Indicator	LINK (green, ON when physical link is established); Data (yellow, blink when data is transferring)
Interface	Ethernet RJ-45 jack

ltow	Specification about Serial Communication Ports	
item	CH1*	CH2
Communication Interface	RS-485	RS-485
Isolation Method	No isolation	No isolation
Communication Indicator	TX (transmitting) and RX (receiving)	TX (transmitting) and RX (receiving)
Max. Communication	50 M	50 M
Communication Method	Half-duplex	Half-duplex
Baud Rate	By the setting of installed project (115,200 bps. Max.)	
Power Consumption	Ethernet DC5V 100mA + RS-485 ports DC5V 100mA (total is 200mA from PLC Main Unit)	
Wiring Method	Fixed 5mm Screw-Clamp Terminal Block Fixed 5mm Screw-Clamp Terminal Block	
Parameter Configuration	By the installed project (via the "COM Port setting" page in the programming software)	

* For the CH1 of the VS-ENET-EC, there is a sliding switch under the card. If the communication Master is the CP2/CP4 at the PLC, please turn the switch ON. If the Master's request is from the Ethernet, turn the switch OFF.

7-3 Communication Types

The VS series PLCs have a complete selection of communication functions. They can be connected with a maximum of five communication ports $CP1 \sim CP5$. Furthermore, each one is a multi-functional communication port and can be applied separately to a variety of communication application types. Each communication operating type will be introduced below.

7-3-1 Selections of Communication Types

Since the CP1~CP5 are multi-functional communication ports, the operation type of each port must be set precisely before use.

The operation types of communication ports are specified from the Ladder Master S programming software. The setting procedure is shown below:

💖 Ladder Master S		-		\times
File Edit View Project Tools (Connect System Windows Help			
D ▷ 💾 台 🔍 🔍 🔜 🖪 🛤	k 🖬 🋍 🕨 📕 🗣 📽 🕅			
PLC Type: VS1 7 ×	K COM Port Setup			
PLC Configuartion Project Parameter Setup	CP1 CP2			
COM Port Setup	Application: VS Computer Link Slave VS Comput	er Link Sla	ave	~
⊡-∰ Program ⊛-∰ Main Programs	Baud Rate: 19200 Paud Rate: 19200			~
Sub Programs	Station Number: 0 Station Number: 0			~ :
DATA Tables	Answer Delay (1ms): 5 Answer Delay (1ms): 5			$\square \parallel \cdot$
 LINK Tables MBUS Tables CPUL Tables Position Control Tables Component Information Monitor Monitor Components Monitor Pages Input Simulation Box Testing Output Point 				
	C COM Reversion			>
	VS-USB General R	ow:0	Col:0	11

🏀 COM Port Setup)
CP1	
Application:	VS Computer Link Slave 🗸 🗸
Baud Rate:	VS Computer Link Slave
Station Number	: MODBUS Slave MODBUS Master
Answer Delay (1r CPU Link Non Protocol

7-3-2 VS Computer Link Slave

When the VS PLC's communication port has been set to the application type of the "VS Computer Link Slave", the human-machine interface (HMI) or supervisory control and data acquisition system (SCADA) can access the VS PLC's data through the "VS Computer Link Protocol" (hereby referred to as VS Protocol).

A computer or HMI through the "VS Protocol" could communicate with the VS PLCs. The HMI or SCADA supplier base on the "VS Protocol" to compile its driving programs, by way of that communicates with VS PLC's to construct a monitoring area network.

Item	Specification	
Communication Interface	RS-232	RS-485
Communication Protocol	VS Compurter Link Protocol (hereby referred to	as VS Protocol)
Commection Method	Half-duplex	
Communication Paramete	Bits-per-character: 8 bits; parity check: None; s	stop bit: 1 bit
Baud Rate	Selectable: 300/600/1200/2400/4800/9600/19200/34800/57600/115200 bps.	
Distance	Up to 15 meters	Non-isolated: 50 m.; Isolated: 1 km.
No. of Slave Stations	1 Slave station only	Max. 255 stations (Must insert the RS-485 repeater(s) if the RS-485 wiring with more than 32 devices.)
Linking Equipment	CP2~CP5: VS-D232-EC CP3, CP5: VS-D52A-EC(CH2)	CP1: Main Unit built-in CP2~CP5: VS-D485-EC, VS-D485A-EC CP2, CP4: VS-485-EC, VS-485A-EC, VS-D52A-EC(CH1)
Available Model	VS series PLC (including VS1, VS2, VSM and VS3)	
Transferable Device	All the X, Y, M, S, T, C, D, R are included	

- The VS PLC will respond to the communication requirement by any device (such as a computer, HMI,...) if that follows the particular "VS Computer Link Protocol" to give correct command. For the detail of the VS Protocol, please refer to the section "7-4 VS Series PLC Communication Protocol" for details.
- Usually, HMI or SCADA supplier base on the "VS Computer Link Protocol" to compile driving program. Therefore, the HMI or SCADA user just needs to select the correct communication type when planning the system, so that can communicate with VS PLCs to construct a monitoring area network.
- Some software or HMI may not be equipped with the driving program of the VS series PLC. In this case, the "MODBUD Slave" application type can be used to connect them. Please refer to the section "7-3-5 MODBUD Slave" for details.

• Application Example

In this example, a computer uses its USB port to connect with an USB to RS-485 converter to transfer the communication signal to the RS-485 interface. Then, the RS-485 is connected to two VS series PLC's CP1 those station numbers are assigned to #1 and #2. After that, executes the Ladder Master S programming software on the computer to connect with the station #1 and station #2 PLCs for to read the project, control STOP/RUN and monitor those PLCs.

Please follow the procedures below to operate the test:

1) Edit the project of PLC Station #1

Use the Ladder Master S to set the CP1's parameters of PLC Station #1 and compile relevant program. Then, connect to the USB programming port of Station #1 and write the project into the PLC Station #1.

🔓 COM Port Setup	🏹 COM Port Setup	🌠 COM Port Setup
CP1	CP1	CP1
Application: VS Computer Link Slave ~	Application: VS Computer Link Slave ~	Application: VS Computer Link Slave 🗸
Baud Rate: VS Computer Link Slave VS Computer Link Master	Baud Rate: 19200 ~	Baud Rate: 19200 V
VB Computer Link Slave Station Number: MODBUS Slave	Station Number: 115200 57600	Station Number: 1
Answer Delay (1r CPU Link Non Protocol	Answer Delay (1r 19200 9600 4800 2400 1200 600 300	Answer Delay (11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Set the application type:	Set the baud rate:	Set the station number:

VS Computer Link Slave

et the baud rate: 19200 bps

t the station numb #1

W Usually the default delay response time is not necessary to change, except that: When the communication mistake is caused by the signal collision in the circuit, try to extend the delay response time.

The program writes to the PLC Station #1.

M9013 K1000 C0

By the USB programming port, the project is written into the PLC Station #1

2 Edit the project of PLC Station #2

Use the Ladder Master S to set the CP1's parameters of PLC Station #2 and compile relevant program. Then, connect to the USB programming port of Station #2 and write the project into the PLC Station #2.

Rectup to t	
CP1 Application: VS Computer Link Slave Baud Rate: 19200 Station Number: 2 Answer Delay (1ms): 5	The program writes to the PLC Station #2. M9013 $K2000$ $K2000$
	By the USB programming port, the project is written into the PLC Station #2
Set the station number: #2	Ladder Master S PLC Station #2

- ③ After complete to edit and load the projects to those two PLCs sequentially, do the wiring jobs between the computer, RS-485 converter and two PLCs' CP1.
- ④ Usually the application of the SCADA software is to monitor equipments through the communication network. In this example, the Ladder Master S replaces the SCADA software to execute the monitoring work. However, the Ladder Master S can only be connected to a single PLC at a time. Therefore, it is necessary to link and test with different PLC stations one by one.

In the real applications, when a communication system is finished the wiring but which cannot function normally, may use the Ladder Master S to test each station one by one to ensure the correctness of communication network.

To set the connection method of the Ladder Master S:

File Edit View Project Tools Connect Display Component Nickname PLC Type: VS1 Image: Contruct Ladder after Complied Writing project when PLC running, Use Stop-Write-Run Mode Project Parameter Setup Project Parameter Setup Project Parameter Setup Project Parameter Setup Position Control Setup Program Table DATA Tables UNK Tables Connection Type Setup Ponitor Monitor Components Monitor Components Monitor Pages Input Simulation Box Testing Output Point	💖 Ladder Master S		– 🗆 X
PLC Type: VS1 PLC Configuation Project Parameter Setup Color Asignment Color Asignment Connection Type Setup DATA Tables LINK Tables Component Information Monitor Components <	File Edit View Project Tool	s Connect System Windows Help	
Program	File Edit View Project Tool Pile Pile Pile Pile Pile Pile PLC Type: VS1 Pile Pile Pile Pile Pile PLC Type: VS1 Pile Pile <td>s Connect System Windows Help Display Component Nickname F8 Contruct Ladder after Complied Writing project when PLC running, Use Stop-Write-Run Mode Color Assignment Connection Type Setup Language</td> <td></td>	s Connect System Windows Help Display Component Nickname F8 Contruct Ladder after Complied Writing project when PLC running, Use Stop-Write-Run Mode Color Assignment Connection Type Setup Language	
🛗 Program		<	¥ >
		Program	vr0 Col:1 🏴

To set the connection method

🄀 Connection Setup	×
Connect Type:	USB ~
<u>D</u> evice : Baud Rate:	USB COM Port Ethernet
Timeout (ms):	200
<u>0</u> K	<u>C</u> ancel

This example is using the USB to RS-485 converter, thus the "USB" is selected. For using the computer's own communication port, select the "COM Port". To set the connection device

Connection Setup	×
Connect Type:	USB ~
<u>D</u> evice : Baud Rate:	USB(COM4) VS PLC USB(COM4)
Timeout (ms):	200
<u>о</u> к	Cancel

In this example, the given port is COM4 after the USB to RS-485 converter is applied.

To set the baud rate

🏠 Connection Setup		×
Connect Type:	USB ~	
Device :	USB(COM4) ~	
Baud Rate:	19200 ~	
	115200 57600 38400	
Station Number :	19200 9600 4800	
Timeout (ms):	400	
<u>0</u> K	<u>C</u> ancel	

Set the baud rate as same as all PLCs' in the network circuit, that is 19200 bps in this example.

⑤ To test the connected PLC Station #1.

Connection Setup	×		
Connect Type:	USB ~		On the entropy, it shows the pressure of the DLC
Device :	USB(COM4) ~	To read the PLC's project	Station #1 as written in the procedure ①.
Baud Rate:	19200 ~		
Station Number :		To monitor the PLC	The ladder diagram on the screen by the monitor mode to display status.
Timeout (ms):	3 4 5 6 7 7	V	The Present Value of C0 in the program increases
<u>0</u> K	<u>C</u> ancel	To let the PLC RUN	with a frequency of 1 per second.
Set the conne	cting station number		

Set the connecting station number to the #1.

⑥ To test the connected PLC Station #2.

Set the connecting station number to the #2.

7-3-3 VS Computer Link Master

When the VS PLC's communication port has been set to the application type of the "VS Computer Link Master", it should cooperate with the LINK instruction and a LINK communication table to operate communication procedures. This Master PLC links and communicates with Slaves through the "VS Computer Link protocol" (hereby referred to as the VS Protocol).

It is available to connect with several VS PLCs by the RS-485 interface.

Select one of these linked PLCs and set its application type as the "VS Computer Link Master" (this application type). This PLC is referred to as the Master station and the other PLCs are the Slaves. Therefore, all the Slave PLCs should set the application type as the "VS Computer Link Slave". The only one Master station of the connected PLCs should cooperate with the LINK instruction (FNC 89) and a LINK communication table to designate its data transferring between the Slave and Master.

Through this, the Master can sequential read and store data for all the Slave PLC stations on the net, therefore reaches the purpose of data transmission.

This application type is suitable for sharing a large amount of data between PLCs.

Item	Specification				
Communication Interface	RS-232	RS-485			
Communication Protocol	VS Compurter Link Protocol (hereby referred to	as VS Protocol)			
Commection Method	Half-duplex				
Communication Paramete	Bits-per-character: 8 bits; parity check: None; stop bit: 1 bit				
Baud Rate	Selectable: 300/600/1200/2400/4800/9600/19200/34800/57600/115200 bps.				
Distance	Up to 15 meters Non-isolated: 50 m.; Isolated: 1 km.				
No. of Slave Stations	1 Slave station only Max. 256 stations (Must insert the RS-485 if the RS-485 wiring with more than 32 devi				
Linking EquipmentCP2~CP5: VS-D232-EC CP3, CP5: VS-D52A-EC(CH2)CP1: Main Unit built-in CP2~CP5: VS-D485-EC, VS-D485A-EC CP2, CP4: VS-485-EC, VS-0485A-EC, VS		CP1: Main Unit built-in CP2~CP5: VS-D485-EC, VS-D485A-EC CP2, CP4: VS-485-EC, VS-485A-EC, VS-D52A-EC(CH1)			
Available Model	VS series PLC (including VS1, VS2, VSM and VS3)				
Transferable Device	All the X, Y, M, S, T, C, D, R are included				

M9103	CP1 RS / LINK / MBUS instruction on communication abnormal flag.
■M9104	CP1 LINK / MBUS instruction on execution table complete once flag.
M9113	CP2 RS / LINK / MBUS instruction on communication abnormal flag.
■M9114	CP2 LINK / MBUS instruction on execution table complete once flag.
M9123	CP3 RS / LINK / MBUS instruction on communication abnormal flag.
■M9124	CP3 LINK / MBUS instruction on execution table complete once flag.
M9133	CP4 RS / LINK / MBUS instruction on communication abnormal flag.
■M9134	CP4 LINK / MBUS instruction on execution table complete once flag.
M9143	CP5 RS / LINK / MBUS instruction on communication abnormal flag.
■M9144	CP5 LINK / MBUS instruction on execution table complete once flag.

• The communication table is assigned by the (S_1) of the instruction.

An avample of the "LINII/"	provided by prearer	mming tool the Lodde	r Maatar C ia ahawa halaw
	DIOVIDED DV DIODIAL	ппппо тоог тне г абое	I MASIELO IS SHOWL DEIOW.
	p. o		

Item No.	Command	Device at Master	Direction	Slave St. No.	Device at Slave	Length	Word / Bit	Disable Contact
1	Read	D0	<	1	D0	10	_	M1
2	Write	D10	>	1	D10	5	_	M1
3	Read	D20	<	2	D0	10	_	M2
4	Write	D30	>	2	D10	5		
5	Write	D40	>	255	D40	20		M0

The first item set in the table means that the Master reads the data D0~D9 from the Slave #1 and stores them at the D0~D9 of the Master.

The second item set in the table means that the Master writes its data at D10~D14 to the D10~D14 of the Slave #1. The third item set in the table means that the Master reads the data D0~D9 from the Slave #2 and stores them at the D20~D29 of the Master.

The fourth item set in the table means that the Master writes its data at D30~D34 to the D10~D14 of the Slave #2. The fifth item set in the table means that the Master writes its data at D40~D59 to all the D40~D59 of the Slaves. To set the Slave station #255 means that the Master writes the data to all of the Slaves. Note that Read Command cannot be used in this application.

The last column of the table is for the Disable Contact. If that specified contact is "ON", the communication item set will be ignored. For example, if M1 = "ON", the first and second item sets in the table will skip. This is the new function of the VS series, which can help designers effectively manage the operation of the communication table. A communication item set does not need to specify a Disabled Contact (such as the fourth item set), so that the command of the set does not have the disable control function.

• The working area of the executive instruction is starting from the (S_2) (using D100~D103 as the example).

S 2		Description					
	Lower 8 bits	The record of the Slave's station number when the first communication error is occurred					
D100	0 Upper 8 bits Bits Instruction working status 0: Normal data transmitting / receiving 4: The error is caused by the assigned device is inappropriate 7: The error is caused by the communication command is incorrect A: The communication setting is normal but no response from the Slave station (Time-out occurs) B: Abnormal communication						
D101 \$ D103	The working area is required for the system when this instruction is performed						

The LINK instruction will reset the D100 to be 0 before the first item set at the table is executed.

If any communication error occurs during the execution of the instruction, a code will be recorded in D100. Only when the content value of D100 is 0, the recording action can be executed. Therefor, when there are possibilities of several errors, users can use the program to move out the content value of D100 then reset it to 0. This way allows the D100 to record the next error.

• To edit a communication table

Use the Ladder Master S to set up a LINK communication table and through its interactive window can set up and

edit a communication table easily. In the structure of VS series PLC, the communication tables are a part of the project. When the programmer to copy or access the project, those tables will be duplicated automatically with the program.

Application Example

In this example, those CP1s of three VS PLCs are connected by the RS-485 interface and execute the VS Computer Link.

In the following figure, let the first one from the left be the Master station of VS Computer Link to execute the "VS Computer Link Master" application type and set the baud rate to be 19200 bps. Add the LINK instruction in the program and then edit the LINK communication table, thereby to process data transmitting from or to the VS Computer Link Slaves.

Another two are the VS Computer Link Slave PLCs, those are executing the "VS Computer Link Slave" application type. The baud rate of those connected ports should be the same as the port of the Master PLC. Then, individually set the station numbers of Slaves become the #1 and #2. Afterward, write the relevant control programs into the PLCs.

Please follow the procedures below to operate the test:

1) Edit the project of Slave PLC #1

Use the Ladder Master S to set the CP1's parameters of Slave PLC #1 and compile relevant program. Then, connect to the USB programming port of Slave #1 and write the project into the PLC.

- $\ensuremath{\mathbbmm}$ Usually the default delay response time is not necessary to change, except that:
 - When the communication mistake is caused by the signal collision in the circuit, try to extend the delay response time.

The program writes to the Slave PLC #1.

By the USB programming port, the project is written into the Slave PLC #1

2 Edit the project of Slave PLC #2

Use the Ladder Master S to set the CP1's parameters of Slave PLC #2 and compile relevant program. Then, connect to the USB programming port of Slave #2 and write the project into the PLC.

COM Port Setup CP1	>	The
Application:	VS Computer Link Slave \lor	, M
Baud Rate:	19200 ~	
Station Number	: 2	
Answer Delay (1ms): 5	
		By PL0
Set th	e station number:	

The program writes to the Slave PLC #2

By the USB programming port, the project is written into the Slave PLC #2

③ Edit the project of the Master PLC

#2

Use the Ladder Master S to set the CP1's parameters of Master PLC. Compile the LINK communication table, the LINK instruction and relevant program. Then, connect to the USB programming port of Master and write the project into the PLC.

19200

38400

VS Computer Link Master

COM Port Setup CP1 Application:

115200 Gend Delay (1ms 57600

🔏 COM Port Setur	2	K CON
CP1		(
Application: Baud Send Delay (1n	VS Computer Link Master VS Computer Link Slave VS Computer Link Master VB Computer Link Slave SMOBUS Slave MODBUS Slave MODBUS Master CPU Link Non Protocol	Appli Baud Send
Sat tha	application type	

Set the application type: VS Computer Link Master Set the baud rate: 19200 bps

X Usually the default delay response time is not necessary to change, except that:

When the communication mistake is caused by the signal collision in the circuit, try to extend the delay response time.

Open a new LINK communication table at the Master PLC.

₩ Ladder Master S	-	- 🗆	×
File Edit View Project Tools Connect System Windows Help			
! `))>	l/1l↑1l↓1- B s-U s-D	⊣⊢ -D⊷ (=) I s-P	s-F Ţ
PLC Type: VS1 PLC Configuration Project Parameter Setup COM Port Setup Program Table DATA Tables CPUL Tables CPUL Tables COMponent Information Monitor Pages Tinput Simulation Box Testing Output Point	B SU SD		s+F
🖶 Program			
VS-USB Genera	al Row:0	Col:0	- 19 :

Name this LINK communication table as "LINK_TEST" first, and then compile its contents.

<u>E</u> dit 🗄 😹 🛍 🖻 < ≪ 🕂 🗙 👁 🧷								
No	Command	Master Addr	Data Dir	Slave ID	Slave Addr	Length	Word/Bit	Disable M
1	Write	D0	>	1	D0	1	-	-
2	Read	D10	<	1	D1	1	-	-
3	Write	D1	>	2	D0	1	-	-
4	Read	D11	<	2	D1	1	-	-

Edit the program for the Master PLC.

LINK LINK_TEST D100 K1 The LINK instruction bases on the contents of the "LINK_TEST" table to operate communication.

By the USB programming port, the project is written into the Master PLC.

- ④ After sequentially edit and load the projects to those PLCs, do the wiring jobs between three PLCs. Then, connect the computer to the USB programming port of the Master PLC, to test and monitor the process through the Ladder Master S.
- (5) Read the project from the Master PLC then execute the monitor mode, at the screen to add and monitor the components D0, D1, D10 and D11.

When the example is performing, the data at every PLC will follow its own program and the "LINK_TEST" communication table to execute the operation below.

1. The content value of Master's D0 is written into the D0 at the Slave PLC #1 via communication (the first command in the communication table). At the Slave #1, the content value of D0 is sent to its output points Y0~Y7.

Therefore, when the value of Master's D0 is 1, the Y0 at the Slave #1 turns "ON"; when the value of Master's D0 is 5, the Y0 and Y2 at the Slave #1 turn "ON", and so forth.

At the PLC Slave #1, its content value of D0 will be added 100 up and stored to the D1.

Afterward, the PLC Master reads the value of D1 at the Slave #1 via the communication and stores the value to the Master's D10 (the second command in the communication table).

Thus, to observe the value of D10 at the Master that is always equal to the content value of D0 added up to 100 if the communication is successful.

2. The content value of Master's D1 is written into the D0 at the Slave PLC #2 via communication (the third command in the communication table). At the Slave #2, the content value of D0 is sent to its output points Y0~Y7. Therefore, when the value of Master's D1 is 1, the Y0 at the Slave #2 turns "ON"; when the value of Master's D1 is 7, the Y0, Y1 and Y2 at the Slave #1 turn "ON", and so forth.

At the PLC Slave #2, its content value of D0 will be added 100 up and stored to the D1.

Afterward, the PLC Master reads the value of D1 at the Slave #1 via the communication and stores the value to the Master's D11 (the fourth command in the communication table).

Thus, to observe the value of D11 at the Master that is always equal to the content value of D1 added up to 100 if the communication is successful.

By the VS Computer Link communication, the LINK instruction and its table at the Master PLC that produces the following results:

1. The content value of the Master's D0 is output to the points Y0~Y7 of the Slave #1.

2. The content value of the Master's D10 equals to the sum of the content value of its D0 and 100.

3. The content value of the Master's D1 is output to the points Y0~Y7 of the Slave #2.

4. The content value of the Master's D11 equals to the sum of the content value of its D1 and 100.

7-3-4 VB Computer Link Slave

When the VS PLC's communication port has been set to the application type of the "VS Computer Link Slave", the human-machine interface (HMI) or supervisory control and data acquisition system (SCADA) can access the VS PLC's data through the "M, VB and VH series Communication Protocol" (hereby referred to as VB protocol).

This application type is mainly applied to the following situations:

- 1. When the old versions of HMI or SCADA can only support the "M, VB and VH Protocol" but not support the "VS Computer Link Protocol".
- 2. When the existed "VB Protocol" network is added with a new VS series PLC, the added VS PLC must work under this application type.

When the VS PLC works under this application type, the components can be accessed are limited to the previously VB series PLC can support. (The components which the VS PLC can be used are more then the VB series have.)

Item	Specification					
Communication Interface	RS-232	RS-485				
Communication Protocol	M, VB and VH series Communication Protocol (hereby referred to as VB protocol)				
Commection Method	Half-duplex					
Communication Paramete	Bits-per-character: 7 bits; parity check: Even; s	stop bit: 1 bit				
Baud Rate	Selectable: 300/600/1200/2400/4800/9600/19200/34800/57600/115200 bps.					
Distance	Up to 15 meters	Non-isolated: 50 m.; Isolated: 1 km.				
No. of Slave Stations	1 Slave station only	Max. 256 stations (Must insert the RS-485 repeater(s) if the RS-485 wiring with more than 32 devices.)				
Linking Equipment	CP2~CP5: VS-D232-EC CP3, CP5: VS-D52A-EC(CH2)	CP1: Main Unit built-in CP2~CP5: VS-D485-EC, VS-D485A-EC CP2, CP4: VS-485-EC, VS-485A-EC, VS-D52A-EC(CH1)				
Available Model	VS series PLC (including VS1, VS2, VSM and VS	S3)				
Transferable Device	All the X, Y, M, S, T, C and D are included					

Set the application type: VB Computer Link Slave Set the baud rate

Set the station number

W Usually the default delay response time is not necessary to change, except that: When the suspect of bad communication is caused by the problem of signal collision in the circuit, try to extend the delay response time.

7-3-5 MODBUS Slave

MODBUS is a very popular communication protocol on the market. Various common industrial products such as the human-machine interface (HMI) or the supervisory control and data acquisition system (SCADA) all support the "MODBUS protocol". Nonetheless, if the selected HMI or SCADA does not support the "VS Protocol", use the "MODBUS protocol" to connect it with the VS series PLC's.

Item	Specification					
Communication Interface	RS-232	RS-485				
Communication Protocol	MODBUS Protocol					
Commection Method	Half-duplex					
Communication Paramete	Format: ASCII or RTU; bits-per-character: 7 bits parity check: None / Even / Odd; stop bit: 1 bit ,	/ 8 bits; / 2 bits				
Baud Rate	Selectable: 300/600/1200/2400/4800/9600/19200/34800/57600/115200 bps.					
Distance	Up to 15 meters	Non-isolated: 50 m.; Isolated: 1 km.				
No. of Slave Stations	1 Slave station only	Max. 247 stations (Must insert the RS-485 repeater(s) if the RS-485 wiring with more than 32 devices.)				
Linking Equipment	CP2~CP5: VS-D232-EC CP3, CP5: VS-D52A-EC(CH2)	CP1: Main Unit built-in CP2~CP5: VS-D485-EC, VS-D485A-EC CP2, CP4: VS-485-EC, VS-485A-EC, VS-D52A-EC(CH1)				
Available Model	VS series PLC (including VS1, VS2, VSM and VS	3)				
Transferable Device	All the X, Y, M, S, T, C, D, R are included					

COM Port Set	up
CP1	
Application:	MODBUS Slave
Baud Rate:	VS Computer Link Slave VS Computer Link Master VB Computer Link Slave
Station Numb	er: MODBUS Slave MODBUS Master
Mode	CPU Link
RTU	ASCII
Data Bits	8
Parity	
None	Odd O Even
Stop Bits	
• 1	O 2
Answer Delay	(1ms): 5
MODBUS Ma	apping

Set the application type: MODBUS Slave

CP1		
Application:	MODBUS Slave	~
Baud Rate:	19200	~
Station Number	: 1	~
Mode		
	⊖ ascii	
Data Bits		
○ 7	8	
Parity		
None	○ Odd ○ Even	
Stop Bits		
• 1	○ 2	
Answer Delay (1ms): 5	

Set the corresponding parameters in the sheet

VS1 Contact	MODBUS Bit
X0 ~ X77 (octal)	10000 ~ 10063
Y0 ~ Y77 (octal)	00000 ~ 00063
M0 ~ M8191	01024 ~ 09215
S0 ~ S4095	09728 ~ 013823
T0 ~ T511 (Contact)	00256 ~ 00767
C0 ~ C255 (Conta	00768 ~ 01023
M9000 ~ M9511	09216 ~ 09727
VS1 Register	MODBUS Register
D0 ~ D8999	40000 ~ 48999
T0 ~ T511	49728 ~ 410239
C0 ~ C199	410240 ~ 410439
C200 ~ C255 *	410496 ~ 410607
R0 ~ R9999	410752 ~ 420751
D9000 ~ D9511	49000 ~ 49511

The MODBUS Mapping can be expanded to get the VŠ PLC's components

※ Usually the default delay response time is not necessary to change, except that: When the communication mistake is caused by the signal collision in the circuit, try to extend the delay response time.

7-3-6 MODBUS Master

Many automation devices and equipment (e.g. inverters, temperature controllers) support the "MODBUS protocol". Hence, the VS PLC provides the MBUS instruction and MBUS communication table, that cooperatively produces the MODBUS commands to access devices which possess the MODBUS communication function, to serve the purpose of exchanging data between the PLC and these devices.

When the VS PLC's communication port has been set to the application type of the "MODBUS Master", it cooperates with the MBUS instruction and a MODBUS communication table to operate communication procedures. This Master links and communicates with MODBUS Slaves (such as inverters, temperature controllers, power meters, etc.) through the "MODBUS protocol".

Item	Specification						
Communication Interface	RS-232	RS-485					
Communication Protocol	MODBUS Protocol						
Commection Method	Half-duplex						
Communication Paramete	Format: ASCII or RTU; bits-per-character: 7 bits / 8 bits; parity check: None / Even / Odd; stop bit: 1 bit / 2 bits						
Baud Rate	Selectable: 300/600/1200/2400/4800/9600/19200/34800/57600/115200 bps.						
Distance	Up to 15 meters	Non-isolated: 50 m.; Isolated: 1 km.					
No. of Slave Stations	1 Slave station only	Max. 247 stations (Must insert the RS-485 repeater(s) if the RS-485 wiring with more than 32 devices.)					
Linking Equipment	CP2~CP5: VS-D232-EC CP1: Main Unit built-in CP3, CP5: VS-D52A-EC(CH2) CP2~CP5: VS-D485-EC, VS-D485A-EC CP2, CP4: VS-485A-EC, VS-D52A-EC, VS-D						
Available Model	VS series PLC (including VS1, VS2, VSM and VS	63)					
Transferable Device	All the X, Y, M, S, T, C, D, R are included						

IC 19	\vdash		M	BUS	S (S 1)	S 2	n				MOE	BUS	Comr	nunica	ation	Instru	ction	1	2	
																				_
~										Dev	ices									
Oper	and	х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	E	"\$"	
S	1	Usir	ng a Ta	ble Co	de Q0	~Q31	ı (V, Z in	i dex m	ı odifiab	le) or a	Table	Nickna	ame (b	y user-	l define	d 16 Ei	nglish d	i charac	ters)	-
S2	2													0						-
n																	0			-
• S2 0	occup	ies 4 c	ompoi	nents	• Fo	or the V	'S1, VS	S2 or V	SM ser	ies, n =	= 1~3	; for th	e VS3 s	series,	n = 1-	~5	1			1
																				_
	X20)				S 1		(S 2 (n	S1 : th	ie con	nmuni	cation	table	that c	lescrib	pes th	e dat	а
-	\dashv		MBU	S AC	CESS	S_MBS	S_EQU	JIP D	0100	K1	lt Covth		ig and king g	roo fo	r tha i	y potruc	tion th	not oo	ounio	
											52.tr 4	regist	king a ters	iea io	rtnei	nstruc	tion tr	iat oc	Suble	S
											n : to	assig	gn the	comn	nunica	ation p	ort, 1-	~5 =		
											С	P1~0	P5							
• The	VS se	eries F	PLC us	ses thi	s instr	ructior	n to tra	ansmit	t or ge	t the c	lesign	ated	data v	a its C	Comm	iunica	tion Po	ort		
CP1	~CP	5 with	other	perip	herals	which	n use i	the M	ODBU	IS ASC	CII or F	RTU p	rotocc	ol.						
The	CP1~	-CP5	are m	ulti-fu	nction	al cor	nmun	icatior	n ports	s. Eac	h por	t can o	choos	e an a	pprop	oriate o	comm	unicat	ion	
type	from MOD	its va BUS	rious Maste	tunctio r" Re	ons. V edardi	Nhen the	this in appl	structi icatior	ion is i 1 type	using : select	a port ion ar	, shou nd rela	ild cho ated p	oose th arame	ne "Ap ter se	plicat	ion typ please	be:"b spec	ecom	e
from	the p	progra	immin	ig soft	ware	Ladde	er Mas	ter S a	and at	the "F	Projec	t" "	COM	Port S	etting	".	piouoc	opoc	iny it	
As s	hown	in the	e fiaur	e belc	W. CO	nnect	the Pl	C wit	h othe	er devi	ce(s) l	ov the	RS-2	32 or F	35-48	5 wirir	na. Fu	ırtherr	nore	
to se	et a ur	nique	statio	n num	nber (1	1~247) for e	every o	device	and r	nake t	he otl	ner pa	ramet	ers id	entica	l. Bes	ides,	use tl	٦e
Lado	der M	aster	S to o	pen th	ne pro s "Apr	ject of	f the V	'S seri	es PL	C and	write	this N astor"	IBUS i	nstruc	tion ir	n the N	<i>Aaster</i>	PLC's	Smote	rد
in the	at wir	ndow.	After	that, e	edit th	e MOI	DBUS	comr	nunica	ation ta	able to	o desi	gnate	data t	ransfe	erring	action	s. Mo	reov	ər
to lo	ad thi	is pro	ject to	the N	laster	PLC.	Follo	wing t	hese p	oroceo	dures,	the p	urpos	e of da	ata de	livery	betwe	en the	PLC	;
anu	penp	nerais	Carri	Je lea	icheu.															
			ך		lovico	with		ſ				Г	A devi	o with	Γ				with	1
`	VS sei PLC	ries C			10DBl	JS			VS F	series PLC			MOD	BUS				10DB	US	
					protoc								prot	OCOI				protoc	01	
	IODB	us		Dig	ital sc	ale / _			мо	DBUS			le co	tor			Te	mpera	ture	
	Maste	er		Barc	blay bo code re	eader			M	aster	Ш.		inve	rier			c	ontrol	er	
			J		<u> </u>			L		$\overline{}$		L						_		7
			1S-2	32							RS-	-485								
• Whe	en X20) = "(DN", ti	ne MB	US in	structi	on sta	arts ex	ecutic	n. Ac	cordir	ng to t	he coi	ntents	desc	ribed i	n the			
"ACC	CESS	MBS	EQL	JIP" co	ommu	inicatio	on tab	le, it p	procee	ds da	ta writ	e or re	ead ac	ctions	to the	appo	inted p	beriph	erals	,
While	e the I	D100-	~D10	3 WIII I	be occ	cupiec	to st	ore the	e state	e ot ins	structio	on exe	ecution	٦.						
• Whe	en the	conte	ents of	f the c	ommi	unicati	ion tak	ole sp	ecified	by th	e (S1)	are e	xecuti	on cor	nplete	ed fror	n beg	inning	to er	າດ
the M	VI9104	4 WIII I	be O	IN TOP	a Sca	an iim	e ther	i the p	procec	iure w	ll star	t over	again	Trom	ine fir	st item	i set o	t the t	able.	
 Whe 	en the	X20 t	urns f	rom "(ON" to	o "OFF	=", this	s instru	uction	stops	and t	he da	ta sha	ring ir	nmed	iately	stop b	out dat	a	
WHIC	innas	strans	sierrec	i piev	lously	will St	miterri	an.												
The	relate	ed spe	cial d	evices	s are s	summa	arized	belov	V:				(∎: Me	eans re	ead o	nly.)				
R	Relay	ID No	.																	_
		CP1 DS / LINK / MRLIS instruction on communication obnormal flog								[Descri	ption								
	M9	9103	(CP1 RS	3 / LINI	K / MBI	US inst	tructior	n on co	I ommun	Descri ication	ption abnor	mal fla	g.						
	M9 ■M9	9103 9104	(CP1 RS	3 / LINI NK / M	K / MBI BUS in	US inst	tructior	n on co executi	ommun on tab	Descri ication e com	ption abnor plete c	mal fla	g. ıg.						
	M9 M9 M9	9103 9104 9113		CP1 RS CP1 LII CP2 RS	8 / LINI NK / M 8 / LINI	K / MBI BUS in K / MBI	US inst Istruction US inst	tructior on on e tructior	n on co executi n on co	ommun on tabl	Descri ication e com ication	ption abnor plete c abnor	mal fla once fla mal fla	g. Ig. g.						
	M9 M9 M9 M9	9103 9104 9113 9114		CP1 RS CP1 LII CP2 RS CP2 LII	8 / LINI NK / M 8 / LINI NK / M	K / MBI BUS in K / MBI BUS in	US insi Istructi US insi	tructior on on e tructior on on e	n on co executi n on co executi	ommun on tabl ommun on tabl	Descri ication e com ication e com	ption abnor plete c abnor plete c	mal fla once fla mal fla	g. Ig. g.						
	M9 M9 M9 M9 M9	9103 9104 9113 9114 9123		CP1 RS CP1 LII CP2 RS CP2 LII CP3 RS	8 / LINI NK / M 8 / LINI NK / M 8 / LINI	< / MBI BUS in < / MBI BUS in < / MBI	US inst Istruction US inst Istruction US inst	tructior on on e tructior on on e tructior	n on co executi n on co executi n on co	ommun on tabl ommun on tabl	Descri ication e com ication e com ication	ption abnor plete c abnor plete c abnor	mal fla once fla mal fla once fla mal fla	g. Ig. g. Ig. g.						

CP4 RS / LINK / MBUS instruction on communication abnormal flag. CP4 LINK / MBUS instruction on execution table complete once flag.

CP5 RS / LINK / MBUS instruction on communication abnormal flag.

CP5 LINK / MBUS instruction on execution table complete once flag.

M9133

M9143

■M9134

■M9144

• The communication table is assigned by the (S1) of the instruction.

Item No.	Command	Device at Master	Direction	Slave St. No.	Device at Slave	Length	Word/Bit	Disable Contact
1	H03 Read (4x)	D0	<	1	1000	10		M1
2	H10 Write (4x)	D10	>	1	1100	5	_	M1
3	H03 Read (4x)	D20	<	2	1000	10	_	M2
4	H10 Write (4x)	D30	>	2	1100	5	_	
5	H10 Write (4x)	D40	>	0	100	20		M0

An example of the "MBUS" provided by programming tool the Ladder Master S is shown below.

The first item set in the table means that the Master reads the data $41000 \sim 41009$ from the Slave #1 and stores them at the D0 \sim D9 of the Master.

The second item set in the table means that the Master writes its data at D10 \sim D14 to the 41100 \sim 41104 of the Slave #1.

The third item set in the table means that the Master reads the data 41000 - 41009 from the Slave #2 and stores them at the D20-D29 of the Master.

The fourth item set in the table means that the Master writes its data at D30 \sim D34 to the 41100 \sim 41104 of the Slave #2.

The fifth item set in the table means that the Master writes its data at $D40 \sim D59$ to the $40100 \sim 40119$ of all the Slaves. To set the Slave station #0 means that the Master writes the data to all of the Slaves. Note that Read Command cannot be used in this application.

The last column of the table is for the Disable Contact. If that specified contact is "ON", the communication item set will be ignored. For example, if M1 = "ON", the first and second item sets in the table will skip. This is the new function of the VS series, which can help designers effectively manage the operation of the communication table. A communication item set does not need to specify a Disabled Contact (such as the fourth item set), so that the command of the set does not have the disable control function.

• The working area of the executive instruction is starting from the (S_2) (using D100~D103 as the example).

S 2	Description							
	Lower 8 bits	The record of the Slave's station number when the first communication error is occurred						
D100	Upper 8 bits	 Instruction working status 0: Normal data transmitting / receiving 2: The length of the received data is incorrect 4: The error is caused by the assigned device is inappropriate 7: The error is caused by the communication command is incorrect A: The communication setting is normal but no response from the Slave station (Time-out occurs) B: Abnormal communication 						
D101 \$ D103	The working area is required for the system when this instruction is performed							

The MBUS instruction will reset the D100 to be "0" before the first item set at the table is executed.

If any communication error occurs during the execution of the instruction, a code will be recorded in D100. Only when the content value of D100 is "0", the recording action can be executed. Therefor, when there are possibilities of several errors, users can use the program to move out the content value of D100 then reset it to "0". This way allows the D100 to record the next error.

• To edit a communication table

Use the Ladder Master S to set up a MBUS communication table and through its interactive window can set up and edit a communication table easily.

In the structure of VS series PLC, the communication tables are a part of the project. When the programmer to copy or access the project, those tables will be duplicated automatically with the program.
• Application Example

In this example, those CP1s of three VS PLCs are connected by the RS-485 interface and execute the MODBUS communication.

In the following figure, let the first one from the left be the Master station of MODBUS communication to execute the "MODBUS Master" application type and set the baud rate to be 19200 bps. Add the MBUS instruction in the program and then edit the MBUS communication table, thereby to process data transmitting from or to the MODBUS Slaves.

Another two are the MODBUS Slave PLCs, executing the "MODBUS Slave" application type. The baud rate of those connected ports should be the same as the port of the Master PLC. Then, individually set the station numbers of Slaves become the #1 and #2. Afterward, write the relevant control programs into the PLCs.

Please follow the procedures below to operate the test:

1) Edit the project of Slave PLC #1

Use the Ladder Master S to set the CP1's parameters of Slave PLC #1 and compile relevant program. Then, connect to the USB programming port of Slave #1 and write the project into the PLC.

CP1	
Application:	MODBUS Slave ~
Baud Rate:	VS Computer Link Slave VS Computer Link Master VB Computer Link Slave
Station Numb	er: MODBUS Slave
Mode	CPU Link
RTU	ASCII
Data Bits 0 7	۵ 8
Parity	
None	○ Odd ○ Even
Stop Bits	
1	O 2
Answer Delay	r (1ms): 5
MODBUS M	apping

Set the application type: MODBUS Slave

CP1		
Application:	MODBUS Slave	~
Baud Rate:	19200	~
Station Numbe	r: 1	~
Mode		
● RTU	○ ASCII	
Data Bits	8	
Parity		
None	○ Odd ○ Even	
Stop Bits		
• 1	○ 2	
Answer Delay ((1ms): 5	

CP1		
Application:	MODBUS Slave	~
Baud Rate:	19200	~
Station Number:	1	~
Mode RTU	1 2 (3 4	^
Data Bits	5 6 7 8	
Parity None	9 10 11 12 13	
Stop Bits	14	
• 1	16 17	
Answer Delay (1	18 19	
MODBUS Mapp	20	

Set the station number: #1

W Usually the default delay response time is not necessary to change, except that: When the communication mistake is caused by the signal collision in the circuit, try to extend the delay response time.

Set the baud rate and

relevant parameters

The program writes to the Slave PLC #1.

By the USB programming port, the project is written into the Slave PLC #1

2 Edit the project of Slave PLC #2

Use the Ladder Master S to set the CP1's parameters of Slave PLC #2 and compile relevant program. Then, connect to the USB programming port of Slave #2 and write the project into the PLC.

MODBUS Slav	10 V
MODBUS Slav	10
	ve v
19200	~
2	↓ v
	0
○ ASCII	
08	
⊖ Odd	○ Even
0 2	
ms): 5	
oing	
	2 ASCII 8 0 odd 2 ms): 5 sing

The program writes to the Slave PLC #2

By the USB programming port, the project is written into the Slave PLC #2

 \sim \sim

③ Edit the project of the Master PLC

#2

Use the Ladder Master S to set the CP1's parameters of Master PLC. Compile the MBUS communication table, the MBUS instruction and relevant program. Then, connect to the USB programming port of Master and write the project into the PLC.

况 COM Port Setup		🕻 COM Port Setu	ıp	
CP1		CP1		
Application: MODBUS Master	~	Application:	MODBUS N	1aster
Baud Rate: VS Computer Link Slave VS Computer Link Master VB Computer Link Slave		Baud Rate:	19200	
Mode MODBUS Slave		Mode		
RTU MODBUS Master CPU Link Non Protocol			○ ASCII	
Data Bits	_	Data Bits		
07 08		07	. 8	
Darity		Dority.		
None Odd Even		 None 	⊖ Odd	○ Even
Stop Bits		Stop Bits		
● 1 ○ 2		• 1	○ 2	
Send Delay (1ms): 5		Send Delay (1)	ms): 5	
		, (
Set the application type:		Set t	he baud	rate and
		1000	un para	10003

relevant parameters

- X Usually the default delay response time is not necessary to change, except that:
- When the communication mistake is caused by the signal collision in the circuit, try to extend the delay response time.

Open a new MBUS communication table at the Master PLC

Name this MBUS communication table as "MBUS_TEST" first, and then compile its contents.

MBUS_TEST								
Edit 🗄 😹 🗈 🖻 \land 😒 🕂 🗙 💿 🧷								
No	Command	Master Addr	Data Dir	Slave ID	Slave Addr	Length	Word/Bit	Disable M
1	H06 Write Single (4x)	D0	>	1	0	1	-	-
2	H03 Read (4x)	D10	<	1	1	1	-	-
3	H06 Write Single (4x)	D1	>	2	0	1	-	-
4	H03 Read (4x)	D11	<	2	1	1	-	-

Edit the program for the Master PLC.

M9000 MBUS MBUS_TEST D100 K1 The MBUS instruction bases on the contents of the "MBUS_TEST" table to operate communication.

By the USB programming port, the project is written into the Master PLC.

- ④ After sequentially edit and load the projects to those PLCs, do the wiring jobs between three PLCs. Then, connect the computer to the USB programming port of the Master PLC, to test and monitor the process through the Ladder Master S.
- (5) Read the project from the Master PLC then execute the monitor mode, at the screen to add and monitor the components D0, D1, D10 and D11.

When the example is performing, the data at every PLC will follow its own program and the communication table to execute the operation below.

1. The content value of Master's D0 is written into the 40000 at the Slave PLC #1 via communication (the first command in the communication table that 40000 is corresponding to the D0).

At the Slave #1, the content value of D0 is sent to its output points $Y0 \sim Y7$. Therefore, when the value of Master's D0 is 1, the Y0 at the Slave #1 turns "ON"; when the value of Master's D0 is 5, the Y0 and Y2 at the Slave #1 turn "ON", and so forth.

At the PLC Slave #1, its content value of D0 will be added 100 up and stored to the D1.

Afterward, the PLC Master reads the value of 40001 at the Slave #1 via the communication and stores the value to the Master's D10 (the second command in the communication table that 40001 is corresponding to the D1). Thus, to observe the value of D10 at the Master that is always equal to the content value of D0 added up to 100 if the communication is successful.

2. The content value of Master's D1 is written into the 40000 at the Slave PLC #2 via communication (the third command in the communication table that 40000 is corresponding to the D0). At the Slave #2, the content value of D0 is sent to its output points Y0~Y7. Therefore, when the value of Master's D1 is 1, the Y0 at the Slave #2 turns "ON"; when the value of Master's D1 is 7, the Y0, Y1 and Y2 at the Slave #1 turn "ON", and so forth.

At the PLC Slave #2, its content value of D0 will be added 100 up and stored to the D1.

Afterward, the PLC Master reads the value of D1 at the Slave #1 via the communication and stores the value to the Master's D11 (the fourth command in the communication table that 40001 is corresponding to the D1). Thus, to observe the value of D11 at the Master that is always equal to the content value of D1 added up to 100 if the communication is successful.

By the MODBUS communication, the MBUS instruction and its table at the Master PLC that produces the following results:

- 1. The content value of the Master's D0 is output to the points Y0~Y7 of the Slave #1.
- 2. The content value of the Master's D10 equals to the sum of the content value of its D0 and 100.
- 3. The content value of the Master's D1 is output to the points Y0~Y7 of the Slave #2.
- 4. The content value of the Master's D11 equals to the sum of the content value of its D1 and 100.

7-3-7 CPU Link

The VS series PLC uses this application to share instant data between VS PLCs to serve the purpose of distributed control.

When the communication ports of VS PLCs have been set the application for to share instant data between PLC's, select one of the PLC to cooperate with the CPUL instruction and CPUL communication table, through its particular protocol to share instant data.

Item	Specification				
Communication Interface	RS-232	RS-485			
Communication Protocol	CPU Link particular protocol				
Commection Method	Half-duplex				
Baud Rate	Selectable: 300/600/1200/2400/4800/9600/19200/34800/57600/115200 bps.				
Distance	Up to 15 meters	Non-isolated: 50 m.; Isolated: 1 km.			
No. of Slave Stations	1 Slave station only	Max. 256 stations (Must insert the RS-485 repeater(s) if the RS-485 wiring with more than 32 devices.)			
Linking Equipment	CP2~CP5: VS-D232-EC CP3, CP5: VS-D52A-EC(CH2)	Cp1: Main Unit built-in CP2~CP5: VS-D485-EC, VS-D485A-EC CP2, CP4: VS-485-EC, VS-485A-EC, VS-D52A-EC(CH1)			
Available Model	VS series PLC (including VS1, VS2, VSM and VS3)				
Transferable Device	All the Y, M, S, T, C, D, R are included				

- The most of the VS series PLC communication application types are replying at the particular time that is when the PLC is finished its user program cycle. Thus, the spending time of entire communication does not only depend on the baud rate, but also affected by the PLC's Scan Time. Therefore, it is not easy to calculate the communication turnaround time.
- The CPU Link proceeds the communication by the way of immediate interrupt and thus its communication response is the fastest. Also, the communication turnaround time (TAT) can be calculated. Therefore, it is suitable for a distributed control system which needs to be quickly responded.
- The calculation of the communication turnaround time (TAT) is introduced below: The communication turnaround time is the total time to complete all the item sets in the communication table (excluding disabled item set). The calculation of the time for each communication item set is introduced below:

The calculation of the time for each communication item set is introduced below:

 $(11 + \text{The number of data bytes to be transmitted}) \times 11$ +20 μ s

Baud rate (bps)

Example: The communication baud rate is 38,400 bps. As the communication	Item No.	Station No.	Device Range	Word/Bit	Disable Contact
table at the right shows, there are	1	0	D0 – D9		M1
communication turnaround time	2	1	M0 – M7		M1
(TAT) is calculated as follows:	3	2	D10	_	M2
The spending time of the 1 st item set is: $(2^{n} - 2^{n})^{-1}$ The spending time of the 2 nd item set is: $(2^{n} - 2^{n})^{-1}$ The spending time of the 3 rd item set is: $(2^{n} - 2^{n})^{-1}$ The communication turnaround time (TAT) is the	$\frac{11 + (10)}{384}$ $\frac{(11 + (1))}{384}$ $\frac{11 + (1)}{384}$ ue total tim	$\frac{(2)) \times 11}{00} + \frac{(2)) \times 11}{00} + \frac{(2)) \times 11}{00} + \frac{(2)) \times 11}{00} + \frac{(2)) \times 11}{00} + \frac{(2)}{00} +$	$20\mu s = 8.88ms$ $20\mu s = 3.44ms$ $20\mu s = 3.72ms$ ne 1 st , 2 nd and 3 ^{rc}	$s + 20\mu s =$ $s + 20\mu s =$ $s + 20\mu s =$ d item sets a	8.9ms 3.46ms 3.74ms are completed.

TAT = 8.9ms + 3.46ms + 3.74ms = 16.1ms

- When the contents of the communication table specified by the (S1) are execution completed from beginning to end, it will start over again from the first item set of the table.
- When the X20 turns from "ON" to "OFF", this instruction stops and the data sharing immediately stop but data which has transferred previously will still remain.

- The communication table is assigned by the (S_1) of the instruction.
- An example of the "CPU Link" provided by programming tool the Ladder Master S is shown below.

Item No.	Station No.	Device Range	Word/Bit	Disable Contact
1	0	D0 – D9		M1
2	1	D10 – D19		M1
3	2	D20 – D29	_	M2
4	3	D30 – D39	_	

When the device is selected to be the bit device (Y, M, S or the contact of T, C), the initially ID number at the device range must be a multiplier of 8, such as Y0, Y10, Y20, M0, M24 or T8. Also, the length must be a multiplier of 8 as well, such as M0~M23 (24 devices), T8~T15 (8 devices), Y10~Y27 (16 devices), M24~M63 (40 devices).

The first item set in the table means that Station #0 transmits its $D0 \sim D9$ to the $D0 \sim D9$ of other stations in the communication network.

The second item set in the table means that Station #1 transmits its D10~D19 to the D10~D19 of other stations in the communication network.

The third item set in the table means that Station #2 transmits its D20 \sim D29 to the D20 \sim D29 of other stations in the communication network.

The fourth item set in the table means that Station #3 transmits its $D30 \sim D39$ to the $D30 \sim D39$ of other stations in the communication network.

The last column of the table is for the Disable Contact. If that specified contact is "ON", the communication item set will be ignored. For example, if M1 = "ON", the first and second item sets in the table will skip. This is the new function of the VS series, which can help designers effectively manage the operation of the communication table. A communication item set does not need to specify a Disabled Contact (such as the fourth item set), so that the command of the set does not have the disable control function.

• The working area of the executive instruction is starting from the (S_2) (using D100~D103 as the example).

S 2	Description					
	Lower 8 bits	The record of the station number when the first communication error is occurred				
D100	Upper 8 bits	Instruction working status 0: Normal data transmitting / receiving A: The communication setting is normal but no response from the Slave station (Time-out occurs) B: Abnormal communication				
D101 \$ D103	The working area is required for the system when this instruction is performed					

If any communication error occurs during the execution of the instruction, a code will be recorded in D100. Only when the content value of D100 is 0, the recording action can be executed.

Therefor, when there are possibilities of several errors, users can use the program to move out the content value of D100 then reset it to 0. This way allows the D100 to record the next error.

• To edit a communication table

Use the Ladder Master S to set up a CPUL communication table and through its interactive window can set up and edit a communication table easily.

In the structure of VS series PLC, the communication tables are a part of the project. When the programmer to copy or access the project, those tables will be duplicated automatically with the program.

• Application Example

In this example, those CP1's of three VS PLC's are connected by the RS-485 interface and execute the CPU Link communication.

In the following figure, let the first one from the left be the station #0 of the CPU Link communication to execute the "CPU Link" application type and set the baud rate to be 38400 bps. Add the CPUL instruction in the program and then edit the CPUL communication table, thereby to process data sharing between the all CPU Link PLC's. Another two are also the CPU Link PLC's, executing the "CPU Link" application type. The baud rate of those connected ports should be the same as the port of the Station #0. Then, individually set the station numbers of those become the #1 and #2. Afterward, write the relevant control programs into the PLC's.

Please follow the procedures below to operate the test:

1) Edit the project of VS PLC #0

Use the Ladder Master S to set the CP1's parameters of VS PLC #0, edit the communication table and compile relevant program. Then, connect to the USB programming port of VS PLC #0 and write the project into the PLC.

Open a new CPUL communication table at the VS PLC #0

Name this CPUL communication table as the "CPUL_TEST" first, and then compile its contents.

🔤 CPU	CPUL_TEST						
Edit		i 🕂 🗙 💿 🖉					
No	Station No.	Range	Word/Bit	Disable M			
1	0	D0 - D9	-	-			
2	1	D10 - D19	-	-			
3	2	D20 - D29	-	-			

Edit the program for the VS PLC #0.

By the USB programming port, the project is written into the VS PLC #0.

2) Edit the project of VS PLC #1

Use the Ladder Master S to set the CP1's parameters of VS PLC #1 and compile relevant program. Then, connect to the USB programming port of VS PLC #1 and write the project into the PLC.

	MOV K4X0 D10 Send D10 MOV D0 K4Y0 Send output	d the status of X0~X17 to the the content value of D0 to the t points Y0~Y17.
Set the station number: #1	By the USB programming port, the VS PLC #1 USB VSPC-200A	project is written into the

③ Edit the project of VS PLC #2

Use the Ladder Master S to set the CP1's parameters of VS PLC #2 and compile relevant program. Then, connect to the USB programming port of VS PLC #2 and write the project into the PLC.

COM Port Setup			The
Application: Baud Rate: Station Number:	CPU Link 38400 2	> >	
			By ti VS F
Set the	e station number: #2		

The program writes to the VS PLC #2.

By the USB programming port, the project is written into the VS PLC #2

- ④ After sequentially edit and load the projects to those PLC's, do the wiring jobs between three PLC's. Then, trigger the inputs and monitor the response at the other PLC's.
- (5) When the example is performing, the data at every PLC will follow its own program and the communication table to execute the operation below.

VS PLC #0: its statuses X0~X17 send to the D0, and the content value of D20 sends to the output points Y0~Y17.

VS PLC #1: its statuses X0~X17 send to the D10, and the content value of D0 sends to the output points Y0~Y17.

VS PLC #2: its statuses X0~X17 send to the D20, and the content value of D10 sends to the output points Y0~Y17.

By the CPU Link communication, the CPUL instruction and its table at the VS PLC #0 that produces the following results:

The statuses X0 \sim X17 of the VS PLC #0 is reflected to the points Y0 \sim Y17 of the VS PLC #1. The statuses X0 \sim X17 of the VS PLC #1 is reflected to the points Y0 \sim Y17 of the VS PLC #2. The statuses X0 \sim X17 of the VS PLC #2 is reflected to the points Y0 \sim Y17 of the VS PLC #0.

7-3-8 Non Protocol

When the VS PLC's communication port has been set to the application type of the "Non Protocol", the PLC does not execute any specified communication protocol. All communication procedures are operated by the PLC's user program. Then the RS instruction is used to receive and send out data in order to complete the communication operation. This application type is often applied to communicate between PLC and peripheral, such as temperature controllers, inverters and barcode readers.

ltem	Specification							
Communication Interface	RS-232	RS-485						
Communication Protocol	VS Compurter Link Protocol (hereby referred to	as VS Protocol)						
Commection Method	Half-duplex							
Communication Paramete	Bits-per-character: 8 bits; parity check: None; stop bit: 1 bit							
Baud Rate	Selectable: 300/600/1200/2400/4800/9600/19200/34800/57600/115200 bps.							
Distance	Up to 15 meters	Non-isolated: 50 m.; Isolated: 1 km.						
Linking Equipment	CP2~CP5: VS-D232-EC CP3, CP5: VS-D52A-EC(CH2)	CP1: Main Unit built-in CP2~CP5: VS-D485-EC, VS-D485A-EC CP2, CP4: VS-485-EC, VS-485A-EC, VS-D52A-EC(CH1)						
Available Model	VS series PLC (including VS1, VS2, VSM and VS3)							
Transferable Device	All the X, Y, M, S, T, C, D, R are included							

$\begin{array}{c c} NC \\ 30 \end{array} \qquad $										Receive/Send Communication Instruction							0	
Devices																		
Operand	Iperand X Y M S D.b R.b KnX KnM KnS T C D,R V,Z UnG K,H E													F	"\$"			
S	^	-	IVI	0	0.0	11.0				Kilo	1		•	♥,∠	0110	13,11		Ψ
m													0			0		
D													•			_		
n													0			0		
n1																0		
• m, n = 0	~4096		• For	the VS	S1, VS2	2 or VS	SM seri	es, n1	= 1~3	; for the	e VS3	series,	n1 = 1	~5		1		
• The VS se		KS	טט L	200	100	U20	<u>i K1</u>		D : th n : th n1 : to	ne hea ne lena o appo	ad reg gth of pint th	ister II the da e com	D num ata wa Imunio	iber fo int to r cation	or the r receive port,	receivi e 1~5 =	ing da = CP1	ita ∼CP5
 As many etc.) are between therefor the therefor the therefor the therefor the "Non the progr As showr VS series and relate of the period 	the se periph equipp the PL his RS ~CP5 its va Protoc ammir n in the PLC a ed par-	LC us erial co bed wi C anc instru are m rious f col". F ng soft e figure as the amete al equi	es thi ommu quipn th ser those totion ulti-functio Regard tware e belo "Non ers for pmen	s instr nication nents ial cor e perip is to a nction ons. V ding the Ladde W, use Proto each ts, co	uction on inte- mmun oheral idapt al cor Vhen f he apper Mas e the L col" a peript mpile	n to see erface marke ication s, a P with th nmun this in plication ster S _adde nd at neral. the pr	end ou to con et (e.g ns inte LC us nese c icatior structi on typ and a r Mas the sa Next, rogran	it or re mmun erfaces er nee commun ports ion is u e sele t the " ter S to ame pa in the n with	eceive licate v eters, b s and l ed to w unicati s. Eac using a ection a Projec o set t age to e VS se releva	the da with ex- parcocc have t vrite th on prot a port, and re ct" ' he con set ot eries P ant cor	le rea heir o e pro btocol can c shou lated COM mmur her re LC, a mmun	its Co I perip ders, o wn pro gram s. choose ld cho param Port S nicatio levant ccordi icatio	ommu oheral card re otocol with co e an a pose th heter s Setting n port parar ing to n.	nicatio equip eaders s. In commu pprop etting ". s "App meters the co	on Por ment. s, elec order t inicab oriate c oplicatio s, pleas olicatio s. Set	t CP1 tronic to tran le fund comm on typ se spe the sta nicatio	~CP5 displa sfer d ction unicat be:" b ecify it e:" of ation fo pro	i, and ays, ata tion ecome from the No. tocol

- Designate (m) to be K0 when there is not need to send out data and designate (n) to be K0 when there is not need to receive data.
- The data transmissions can be divided into the 16-bit mode (M9161 = "OFF") or 8-bit mode (M9161 = "ON") when the RS instruction is performed. Also, the mode flag M9161 should be set before the RS instruction is started.

• The related special devices are summarized below:

(■: Means read only.)

Relay ID No.	Description
M9100	CP1 RS instruction data sending out request flag.
M9101	CP1 RS instruction data receive completed flag.
M9102	CP1 RS instruction data receive time-out flag.
M9103	CP1 RS / LINK / MBUS instruction on communication abnormal flag.
M9110	CP2 RS instruction data sending out request flag.
M9111	CP2 RS instruction data receive completed flag.
M9112	CP2 RS instruction data receive time-out flag.
M9113	CP2 RS / LINK / MBUS instruction on communication abnormal flag.
M9120	CP3 RS instruction data sending out request flag.
M9121	CP3 RS instruction data receive completed flag.
M9122	CP3 RS instruction data receive time-out flag.
M9123	CP3 RS / LINK / MBUS instruction on communication abnormal flag.
M9130	CP4 RS instruction data sending out request flag.
M9131	CP4 RS instruction data receive completed flag.
M9132	CP4 RS instruction data receive time-out flag.
M9133	CP4 RS / LINK / MBUS instruction on communication abnormal flag.
M9140	CP5 RS instruction data sending out request flag.
M9141	CP5 RS instruction data receive completed flag.
M9142	CP5 RS instruction data receive time-out flag.
M9143	CP5 RS / LINK / MBUS instruction on communication abnormal flag.

Register ID No.	Description
■D9101	The CP1's amount of residual data to be sent out by the instruction RS.
■D9102	The CP1's amount of the data already received by the instruction RS.
■D9111	The CP2's amount of residual data to be sent out by the instruction RS.
■D9112	The CP2's amount of the data already received by the instruction RS.
■D9121	The CP3's amount of residual data to be sent out by the instruction RS.
■D9122	The CP3's amount of the data already received by the instruction RS.
■D9131	The CP4's amount of residual data to be sent out by the instruction RS.
■D9132	The CP4's amount of the data already received by the instruction RS.
■D9141	The CP5's amount of residual data to be sent out by the instruction RS.
■D9142	The CP5's amount of the data already received by the instruction RS.

	RS D0 D200 D100 D201 K1
	Fill the data string to be sent Length of data string is specified by the D200
A trigger pulse for to send data	The M9100 will turn "OFF" automatically when that data sending out is completed.
M9101	out request flag once
The data	Move the received data to the data storage area.
completed	RST M9101 Reset the data receive completed flag M9101 for preparing to receive the next data string set. Do not reset the M9101 consecutively in the program. Reset the data receive completed flag
he Related F	Flags and Data Registers
 D The Data \$ When the forces the will be ser will be res 	Sending Out Flag M9100: conditional contact X20 = "ON", the RS instruction is performed. At this time, if a pulse signal status of M9100 to be "ON", the content values of the registers which are beginning from D0 it out via the serial communication port CP1. After the data sending is completed, the M9100 et to "OFF" automatically.
 The Receir When the 	ve Completed Flag M9101: conditional contact X20 = "ON", the RS instruction is performed. The CP1 of PLC is ready to
 When the should be be ready f 	mmunication data. data receiving is completed, the M9101 = "ON". At this moment, the received data in the buffer moved to the data storage area, and then M9101 could be reset to "OFF". Afterwards, PLC will or the status of receiving immediately.
 When the "COM Por Completed The M910, then the N 	data of receiving is paused and the waiting time exceeds the Time-out duration (designated by the t Setting"), the M9102 will turn "ON" to represent the happening of Time-out also the Receive d flag M9101 will be forced "ON" to terminate the data receiving action. 2 will not reset automatically, must use an instruction in the program to reset the status of M9101 19102 will be reset too.
 By using the equipment 	he function of the Time-out flag, the PLC could receive the data of transferring from peripheral ts which without the particular length or "End of Text".
The Time- "COM Por	out duration is specified by using the programming software Ladder Master S – "Project" – t Setting".
	Receiving data
Receiving c	data Data
M9	102
M9	101 Reset by program
D The Comm	nunication Abnormal Flag M9103:
• When the will turn O	RS instruction occurs Parity error or Framing error, the Communication Abnormal Flag M9103
Will turn O	

• Application Example

In this example, two VS PLC's CP1 are connected by the RS-485 interface and execute the Non Protocol communication.

In the following figure, let the left one executes the "Non Protocol" application type and set the baud rate to be 19200 bps.

Let the right one executes the "VS Computer Link Slave" application type. The baud rate should be the same as the port of the left PLC also set the station number become the Slave #1.

Afterward, edit a relevant communication program and write that into the left PLC. The program uses the RS instruction and follows the "VS Compurter Link Protocol" (hereby referred to as VS Protocol) format to access the right side PLC's data.

Actually, there are simpler ways to exchange data between VS series PLC's in the real applications. This main purpose of this example is to demonstrate the usage of the "Non Protocol" and the RS instruction.

• The application example below briefly explains the relevant descriptions to the "VS Protocol". For the details about the protocol, please refer to the section "7-4 VS Series PLC Communication Protocol".

The parameters of the VS Protocol are --- bits-per-character: 8 bits ; parity check: NONE ; stop bit: 1bit.

The rule of the SUM Check code: Sum up the content values of data from the beginning of the station No. to the end of the data block. Convert the last two digits of the total HEX value into two ASCII	D L E	S T X	Station No.	Number of data Bytes	Function code	Device code	Hea of	d nun devic	nber es H	Nun c dev	nber of ices H	D L E	E T X	SUM Check	
codes to be the SUM Check code. Both the data sending and receiving devices should operate the same code-checking procedures that can ensure the data transmission to be co	10H	02H Sur 00	00H < n up th H+07	07H 00H ose HEX va H+00H+20	20H lues ar 0H+A0	A0H Id store	34H e at the H+12	12H e last 2 H+00	00H 2 digits 1H+05	05H by the H+00	00H	10H codes 12H	03H	31H 32	H

The communication command is to read the content value of the D1 from the Slave Station #1. (Assume the content value of the D1 is 0000H)

The command data string is sent to the Slave	D L E	S T X	Station No.	Num of d Byt	nber ata es	Function code	Device code	Hea of	d nun devic	nber es	Num o devi	iber f ces	D L E	E T X	SL Che	IM eck
Station #1	10H	02H	01H	L 07H	н 00н	20H	A0H	L 01H	~ 00Н	н 00Н	L 01H	Н 00Н	10H	03H	Н 43Н	L 41H
The feedback data	D L E	A C K	Station No.	Num of d Byt	nber ata es	Error coc	Con val of	tent ue D1	D L E	E T X	SU Che	M eck				
Slave Station #1	10H	06H	01H	L 03H	н 00Н	б 00Н	L 00H	н 00Н	10H	03H	Н 30Н	L 34H				

The communication command to write a value into the D0 in the Slave Station #1. (Assume the data to be written is 0000H)

The command data string is sent to the Slave	D L E	S T X	Station No.	Num of d Byt	nber lata tes	Function code	Device code	Hea of	d num devic	nber es	Num o devi	iber f ces	Data to	write D0	D L E	E T X	SL Che	M eck
Station #1	4.011			L	Н			L	\sim	Н	L	Н	L	Н	4.011		Н	L
	10H	02H	01H	09H	00H	28H	AUH	00H	00H	00H	01H	00H	00H	00H	10H	03H	44H	33H
											1							
	D	A	Stat No	Num of d	nber lata	Erro	D	E T	SL	JM Pock								
The feedback data	Ē	ĸ	D.	Byt	es	or co	Ē	X	One	501								
Slave Station #1						de												
				L	Н				Н	L								
	10H	06H	01H	01H	00H	00H	10H	03H	30H	32H								

- Please follow the procedures below to operate the test:
 - (1) Edit the project of Slave PLC #1

Use the Ladder Master S to set the CP1's parameters of Slave PLC #1 and compile relevant program. Then, connect to the USB programming port of Slave #1 and write the project into the PLC.

COM Port Setu)		
CP1			
Application:	VS Co	mputer Link Slave	\sim
Baud Rate:	19200)	\sim
Station Number	: 1	k	\sim
Answer Delay (1ms):	5	

Set the application type: VS Computer Link Slave

Set the baud rate: 19200 bps

Set the station number: #1

 Usually the default delay response time is not necessary to change, except that:
 When the communication mistake is caused by the signal collision in the circuit, try to extend the delay response time.

The program writes to the Slave PLC #1

By the USB programming port, the project is written into the Slave PLC #1

② Edit the project of the Master PLC (by the Non Protocol and the RS instruction) Use the Ladder Master S to set the CP1's parameters of Master PLC. Compile the RS instruction and relevant program. Then, connect to the USB programming port of Master and write the project into the PLC.

COM Port Setup

CP1	
Application:	Non Protocol 🗸 🗸
Baud Data Bits () 7	VS Computer Link Slave VS Computer Link Master VB Computer Link Slave MODBUS Slave (MODBUS Master CPUL Link
Parity	Non Protocol
None	O Odd O Even
1	O 2
🗌 Header (F	1 2 3 4 lex):
Terminato	r (Hex)
Receive Time	out (10ms): 5

Non Protocol

COM Port Setu	p	
CP1		
Application:	Non Protocol	~
Baud	19200	~
Data Bits		
07	8	
Parity		
None	Odd O Even	
Stop Bits	O 2	
	1 2 3 4	
🗌 Header (H	ex):	
Terminator	(Hex):	
Receive Time	out (10ms): 5	

According to the VS Protocol to set the parameters at the sheet of Non Protocol (8, None, 1).

Edit the program for the left PLC (Master).

le
ed, in
of
of
am block is to
he data mmand of
nple, it reads
D0 at the m #1.
ave's feedba
ring
H DLE
H ACK
H L Numbe
— of data)H H Bytes
H Error code
H L Conten
HH D1
UM SUM

By the USB programming port, the project is written into the Master PLC.

③ After sequentially edit and load the projects to those PLCs, do the wiring and testing jobs between two PLC's.

(4) When the example is performing, the data at every PLC will follow its own program and the communication table to execute the operation below.

The left PLC (Master): According to the format of the "VS Protocol" to edit the program using the RS instruction. The PLC Master reads the value of D1 at the right side Slave #1 via the communication and stores the value to the Master's D111.

Also, writes the content value of the Master's D110 to the D0 of Slave #1.

The right PLC (Slave #1): The content value of D0 is sent to its output points $Y0 \sim Y7$. Also, its content value of D0 will be added 100 up and stored to the D1.

Since the left PLC (Master) is based on the format of the "VS Protocol" to edit the program with the RS instruction, that can use the communication to access the data at the Slave #1. The operation produces the following results. 1. The content value of the Master's D110 is output to the points Y0~Y7 of the Slave #1.

2. The content value of the Master's D111 equals to the sum of the content value of its D110 and 100.

Try to change the content value of the left Master PLC's D110 and observe the changes of the content value of D111, also the output points $Y0 \sim Y7$ at the right PLC Slave #1 are related to the value.

7-4 VS Series PLC Communication Protocol

- A. The relevant communication parameters
 - Bits-per-character: 8 bits Parity check: None

Stop bit: 1 bit

Baud rate: 300/600/1200/2400/4800/9600/19200/34800/57600/115200 bps. selectable (default: 19200 bps.)

• Syntax of a communication character

• This communication protocol adopted the mixed method of ASCII and the HEX code to transmit data. This protocol adopts a few ASCII codes, the conversion table below shows those characters and the corresponding ASCII codes.

Character	ASCII Code
STX	02H
ETX	03H
ACK	06H
DLE	10H

Character	ASCIICode	0
0	30H	
1	31H	
2	32H	
3	33H	
4	34H	
5	35H	
6	36H	
7	37H	

Character	ASCII Code
8	38H
9	39H
A	41H
В	42H
С	43H
D	44H
E	45H
F	46H

• Communication station number:

The available station number is between $0\sim254$ (default: 0). If the communication command uses the station number 255, that is a broadcast command.

• Error code: When data string is feedback from a PLC, will include with an error code. The table lists the meaning of every error code.

Error Code	Description
00H	Communication is normal; no error
02H	Communication SUM Check Error
04H	The number of data bytes or the number of components is 0

Error Code	Description
06H	The number of data bits exceeds the range
08H	Error ASCII conversion
31H	The command / function code is not existed

B. Communication protocol data format

• The communication command string is sent to the Slave PLC

• The communication feedback string from the Slave PLC

- Header: The starting characters of the data string to be transferred. The characters of the header for command string sent to the Slave is DLE(10H) + STX(02H) by the ASCII code; the header of feedback string from the Slave is DLE(10H) + ACK(06H) by the ASCII code.
- Station No.: The Slave's identification number.

Every Slave PLC at the same communication circuit must have an unique station number, the Slave will respond to the command if its station number matches with the number in the command. Thus, the Master (computer) can use the station number to make a command for the particular Slave PLC.

- Number of data Bytes: Counting the number of bytes from the function or error code to the end of the data block.
- Function code: The Master PLC or computer commands the Slave PLC to do the appointed task.

Command	Function Code	Object of Device
Word Device Read	20H	D,SD,R,T,C
Word Device Write	28H	D,SD,R,T,C
Bit Device Read	21H	the coil or contact of X, Y, M, SM, S, T and C
Bit Device Write	29H	the coil or contact of X, Y, M, SM, S, T and C

- Data block: The contents in the data block may include the head number of devices, the number of devices, the content values of sending data and so forth.
- Terminator: The last characters of the data string to be transferred.
 - The characters of the terminator for command string is DLE(10H) + ETX(03H) by the ASCII code.
- SUM Check: Sum up the content values of HEX data from the beginning of station No. to the end of the data block. Use the accumulated last two digits (by the HEX format) and convert that into two ASCII codes to be the check code.

To operate the same code-checking procedures at both data sending and receiving ends can ensure the data transmission is correct.

C. Statement of the Device code

Mapping the head device's "Device code" is often needed for the data block access, following describes the coding rules.

The Device code takes four Bytes. The first Byte represents the device type and the second to fourth Bytes represent the number of the device.

• General the bit devices and word devices follow the coding rule below:

• The bit at a register (D.b or R.b) follows the coding rule below:

Device	Device ID	Device	Range of	Examp	bles of Device Code
Device	Device iD	Code	Device No.	Device ID	$Code\ L{\rightarrow}H$
External Input X	X0~X377(Octal)	90H	0~377	X15	90H,15H,00H,00H
External Output Y	Y0~Y377(Octal)	91H	0~377	Y123	91H,23H,01H,00H
Auxiliary Relay M	M0~M8191	92H	0~8191	M1234	92H,34H,12H,00H
Step Relay S	S0~S4095	93H	0~4095	S100	93H,00H,01H,00H
Special Relay M	M9000~M9511	94H	0~511	M9012	94H,12H,00H,00H
Register D's Bit D.b	D0~D8999 at D.0~D.F	95H	0~8999 0~F	D123.F	95H,3FH,12H,00H
Register R's Bit R.b	R0~R23999 at R.0~R.F	97H	0~23999 0~F	R23999.3	97H,93H,99H,23H
Coil of a timer T	T0~T511	98H	0~511	T25	98H,25H,00H,00H
Contact of a timer T	T0~T511	99H	0~511	T123	99H,23H,01H,00H
Coil of a counter C	C0~C255	9CH	0~255	CO	9CH,00H,00H,00H
Contact of a counter C	C0~C255	9DH	0~255	C200	9DH,00H,02H,00H
Register D (content value)	D0~D8999	A0H	0~8999	D1000	A0H,00H,10H,00H
Special Register SD (content value)	D9000~D9511	A1H	0~511	D9001	A1H,01H,00H,00H
Register R (content value)	R0~R23999	A2H	0~23999	R12345	A2H,45H,23H,01H
Timer T (Present Value)	T0~T511	A8H	0~511	T255	A8H,55H,02H,00H
16-bit Counter C (Present valur)	C0~C199	ACH	0~199	CO	ACH,00H,00H,00H
32-bit Counter C (Present valur)	C200~C255	ADH	200~255	C235	ADH,35H,02H,00H

- D. Statement of the communication command
 - The sending equipment will bind the codes together that includes the header, terminator and check code in a communication command string. Except those three special purpose codes, if the content data include with the code 10H in the string, the code 10H should be repeated once.

For example:

• When a receiving equipment gets two consecutive 10H codes, the second 10H code needs to be ignored. For example:

• Function code 20H: to read word devices (up to 64 words can be read at one command).

Command to PLC	D L E 10H	S T X 02H	$^{\rm Station}_{\rm No.}$ 00 $^{\rm H}$ FFH	Num of d Byt	nber lata res H	Function 20H	Device code	r of L	Head number of devices		Num o devi	nber f ces H	D E L T E X		SL Che	IM eck
Feedback from PLC (complete)	D L E	A C K	Station No.	Num of d Byl	nber lata tes	Error code	Da blo	Data block		•••	Da blo	ta ck	D L E	E T X	SL Che	IM eck
	10H	06H	As above	L	Н	00H	L	Н			L	Н	10H	03H	Н	L
											1					
Feedback from PLC (error)	D L E	A C K	Station No.	Num of d Byt	nber lata tes	Error code	D L E	E T X	SU Che	IM eck						
	10H	06H	As above	01H	00H	ххн	10H	03H	н	L						

Example 1: Read the content values of D1234~D1238 at the Salve #0. (five 16-bit word devices) Suppose D1234 = 89ABH, D1235 = 1000H, D1236 = 2345H, D1237 = 0H and D1238 = 3FH at the Salve #0.

Command to PLC	D L E	D S No. L E X			Number of data Bytes		Device code	Head number of devices			Num o devi	nber f ces	D L E	E T X	SUM Check	
				L	Н			L	\sim	Н	L	Н			н	L
	10H	02H	00H	07H	00H	20H	A0H	34H	12H	00H	05H	00H	10H	03H	31H	32H

Feedback from PLC	D L E	A C K	Station No.	Number of data Bytes		Error code	Value at D1234		Val a D12	Value at D1235		Value at D1236		Value at D1237		ue t 238	D L E	E T X	SUM Check	
(complete)				L	Н		L	Н	L	Н	L	Н	L	Н	L	Н			Н	L
	10H	06H	00H	0BH	00H	00H	ABH	89H	00H	10H	45H	23H	00H	00H	3FH	00H	10H	03H	46H	36H

Example 2: Read the Present Values of C235 and C236 at the Salve #0. (two 32-bit double word devices) Suppose C235 = 236B9H and C236 = 11253648H at the Salve #0. Since the C235 and C236 are 32-bit devices, each Present Value will be consisted of two words

(Low word and High word), so the data for these C235 and C236 will need 4 words.

Command to PLC	D L E	S T X	Station No.	Number of data Bytes		Function code	Device code	r of	Head number of devices		Number of devices		D L E	E T X	SL Ch	JM eck		
				L	Н		Û	L	\sim	Н	L	Н			н	L		
	10H	02H	00H	07H	00H	20H	ADH	35H	02H	00H	02H	00H	10H	03H	30H	44H		
Feedback	D L E	A C K	Station No.	Num of d Byt	nber lata tes	Error code	Pres	ent Val	ue at (C235	Pres	ent Va	lue at (236	D L E	E T X	SL Che	IM eck
(complete)	10H	06H	00Н	L 09H	н 00н	оон	LL B9H	LH 36H	HL 02H	НН 00Н	LL 48H	LH 36H	HL 25H	НН 11Н	10H	03H	H 41H	L 45H

• Function code 21H: to read bit devices (up to 1024 bits can be read at one command).

Command to PLC	D L E	S T X	Station No. $00H \sim H$	Num of c Byt	Number of data Bytes		Device code	r of	Head number of devices			nber of ices	D L E 10H	E T X	SU Che	M eck
	1011	0211		L		2111		L		11	L		1011	0011		
Feedback from PLC	D L E	A C K	Station No.	Num of c Byt	nber lata tes	Error		(Tra	Data nsmit	block unit: B	yte)		D L E	E T X	SU Che	M eck
(complete)			As						•••	•••						
	10H	06H	above	L	Н	00H	B0	B1				Bn	10H	03H	Н	L
Feedback from PLC (error)	D L E	A C K	Station No.	Num of d Byt	nber lata tes	Error code	D L E	E T X	SL Che	JM eck						
	10H	06H	As above	01H	00H	ххн	10H	03H	Н	L						

Example 1: Read the states of M10~M63 at the Salve #0 (total 54 bit devices) Suppose the states of M10~M63 at the Salve #0 are as below: (composed to Byte values)

• Function code 28H: to write word devices (up to 64 words can be write at one command).

Command to PLC	D L E	S T X	$_{\rm No.}^{\rm Station}~{\rm O0H}~{\sim}$	Num of d Byt	nber lata res	Function code	Device code	Head number of devices		Num of devic	ber ces	Data to be written		•••			Data to be written		E T X	S Cł	UM neck	
	10H	02H	FFH	L	Н	28H	ххн	L	\sim	Н	L	Н	L	Н			L	H	10H	03H	Н	L
Feedback from PLC (complete)	D L E	A C K	Station No.	Num of d Byt	nber lata ies	Error code	D L E	E T X	SU Che	M eck												
	10H	06H	As above	01H	00H	00Н	10H	03H	Н	L	The	errc	or coc	de in	feedb	back	string	g at a	succ	essfu	ul –	
		1									con that	nmui me	nicati ans e	on is rror l	600H	; but ened	if the	e errc er to tl	r cod ne list	e is r at th	iot 0 e	0Н,
Feedback from PLC (error)	D L E	A C K	Station No.	Num of d Byt	nber lata les	Error code	D L E	E T X	SU Che	M eck	beg	jinnir	ng of	this	sectio	on).	(rore				0	
	10H	06H	As above	01H	00H	ххн	10H	03H	Н	L												

Example 1: Write the values 2048H and 300H into the D7000 and D7001 at the Salve #0 (two 16-bit word devices)

Command to PLC	D L E	S T X	Station No.	Num of d Byt	nber lata tes	Function code	Device code	r of	Head number device	r es	Num C devi	nber of ices	Data to D70	write 0 000	Data to D70	write 0 001	D L E	E T X	SL Che	IM eck
	10H	02H	00H	L 0BH	Н 00Н	28H	A0H	L 00H	~ 70日	Н 00Н	L 02H	Н 00Н	L 48H	Н 20Н	L 00H	Н 03Н	10H	03H	H 42H	L 30H

Feedback from PLC	D L E	A C K	Station No.	Number of data Bytes	Error code	D L E	E T X	SUN Cheo	И ck
(complete)				LH				н	L
	10H	06H	00H	01H 00H	00H	10H	03H	30H 3	31H

Example 2:	Write the value 89AB1	234H into the C210 at the	e Salve #0 (a 32-bit doub	le word device)
------------	-----------------------	---------------------------	---------------------------	-----------------

Command to PLC	D L E	S T X	Station No.	Num of da Byte	ber ata es	Function code	Device code	r of	Head numbe device	r es	Num o devi	nber f ces	Dat	ta write	e to C2	210	D L E	E T X	SU Che	IM eck
				L	Н		(D	L	\sim	Н	L	Н	LL	LH	HL	ΗН			Н	L
	10H	02H	00H	0BH	00H	28H	ADH	10H	02H	00H	01H	00H	34H	12H	ABH	89H	10H	03H	36H	44H
Feedback from PLC (complete)	D L E	A C K	Station No.	Num of da Byte	ber ata es	Error code	D L E	E T X	SU Che	IM eck										
(complete)				L	Н				Н	L										
	10H	06H	00H	01H	00H	00H	10H	03H	30H	31H										

• Function code 29H: to write bit devices (up to 1024 bits can be write at one command).

Command to PLC	D L E	S T X	$_{\rm No.}^{\rm Station}~{\rm 00H}\sim$	Number of data Bytes	Function	Device code	r of	Head number of devices		Num of devic	ber f ces	Data block (Transmit unit: Byte)			3yte)		D L E	E T X	SI Ch	UM neck	
	10H	02H	FFH	L H	29H	ххн	L	\sim	Н	L	Н	B0	B1				Bn	10H	03H	Н	L
					1																
Feedback from PLC (complete)	D L E	A C K	Station No.	Number of data Bytes	Error code	D L E	E T X	SU Che	M eck												
	10H	06H	As above	01H 00H	оон	10H	03H	н	L	The	e errc	or coc	de iņ	feed	back	strin	g at a	succ	essfu	II	01.1
										cor tha	nmui t mei	nicati ans e	on is rror ł	HUU dabr	; bui ened	refe) (refe	e erro er to th	r coa 1e list	e is n at th	ot U e	UΗ,
Feedback from PLC (error)	D L E	A C K	Station No.	Number of data Bytes	Error code	D L E	E T X	SU Che	M eck	beç	ginnir	ng of	this	sectio	on).					-	
	10H	06H	As above	01H 00H	ххн	10H	03H	Н	L												

Example 1: Write the status below into the M100~M127 at the Salve #0 (total 28 bit devices)

8. Statement of Positioning Control Functions

The VS series PLC Main Unit provided with four high-speed pulse output points, and thus can operate four axis controls. In the multi-axis positioning control applications, it is very suitable and effective.

The pulse output frequency of the VS1 and VS2 series transistor PLCs can reach up to 50 kHz, can be used to complete various of basic positioning control.

The VSM Motion Control Main Unit is equipped with quick reaction high-speed I/O points, because it is special design for positioning control applications with complete positioning functions.

The VS3 High Performance Main Unit can satisfy the most diverse and the highest level of applications, the transistor model also possesses complete positioning control functions.

The pulse output frequency of the VSM and VS3 series PLCs can reach to 200 kHz, furthermore the VSM-28L can even reach to 1 MHz. All the VS series PLC can support 17 positioning instructions of complete functions and thus can complete various types of exquisite and smooth positioning control.

When using the positioning control functions of the VS series PLC Main Units, some common precautions are noted below:

- The VS1 and VS2 series transistor models are provided with four 50 kHz high-speed pulse outputs, the VSM and VS3 transistor models are provided with four 200 kHz high-speed pulse outputs. Moreover, the VSM-28L provides four 1 MHz high-speed line-driver output circuits.
- There is no limitation on the number of times that positioning instructions are wrote at the user program. However, must regard to that do not use two or more instructions to drive the same output point at the same time.
- The load voltage of transistor output points is DC5V~24V, and for the general output uses the current capacity is 0~0.5 A; but when a point Y0~Y3 is assigned for the high-speed pulse function, its current is 0~100 mA.
- About the positioning control method at the VS series PLC, its controlling output form is "Pulse train + Direction signal". The output points for the direction signals can use Y0~Y7 or internal auxiliary relays M. Nonetheless, those are better using Y0~Y7 to minimize output delay.

The VS series PLC's positioning control functions are achieved by the positioning instructions, parameters (by the Ladder Master S to configure) and relevant special devices, the following sections will introduce those respectively.

8-1 Positioning Parameter Setup

The Ladder Master S provides the Positioning Parameter Setup function to simplify the VS series PLC's process of setting relevant parameters. The contents of positioning parameters will be written onto the PLC with the project. After that, only the appropriate positioning control instructions are needed to complete the positioning control work easily.

In the most of cases, the Positioning Parameter Setup function can satisfy application requirements.

However, during the operation, some specific applications may need to change related parameters. Thus, a part of the positioning parameters are not only preset by the setting of the parameter setup page, but also can make changes at relevant special registers via the user program.

When PLC's power is turned from "OFF" to "ON" and the project had been written into the PLC, the corresponding parameters will be copied to relevant special registers. After that, if there is a demand to change positioning parameters during PLC is in operation, the user just needs to change the values in relevant special registers before to execute the positioning control instruction. Then, the positioning control instruction will base on the changed values in the special registers to execute the instruction. For example, to change the time of acceleration or deceleration.

To open the setup page, select the option "Positioning Parameter Setup" under the "Project" of the Ladder Master S. Hereby we illustrate the setting for each item on the page one by one.

🞧 Positioning Parameter Setup	
Y0 Axis Y1 Axis Y2 Axis Y3 Axis	
Basic Parameters Maximum speed (D9340): 200000 Hz (1~200,000)	Positioning Operation Setup Home Position Return
Bias speed (D9342): 0 Hz Acceleration time (D9343): 100 ms (0~32,000) Deceleration time (D9344): 100 ms (0~32,000)	Home Return mode: DOG Rear End with PG0 count home positioning Return direction: By the direction of present value decreasing Preset value of home position (D9346): 0 Plast value of home position (D9346): 0
Rotational direction: Increase present value when forward ~ Multiple ratio of speed (D9348): 1000 0.1% (1~30,000)	Number of PG0 signals (D9345): X1 ● ↓ ↓ Y10 CLEAR signal output [Y,M]: Y10
	Limit Switch ✓ Forward Linit Switch (LSF) [X,M]: X10 ○ ↓ ● ↓ ✓ Reverse Limit Switch (LSR) [X,M]: X11 ○ ↓ ● ↓
Default	Interrupt Input ✓ INT interrupt signal [X]: X2 ✓ ● ↓ · ○ ↓ · ✓ DV2I speed change signal [X,M]:

Press the "Default" button, that will reset the set contents to the default values about this axis.

8-1-1 Basic Parameters

The VS series PLC provides the positioning control with the acceleration and deceleration functions, as shown in the following diagram. It is necessary to set relevant parameters before to use the positioning control instructions, thus can perform the operation correctly. The parameters in the diagram below uses Y0 output axis as an example.

• Maximum speed

This value confines the highest limit of the positioning control speed at a certain axis. If its operation speed exceeds the limit of the maximum speed during the action of any positioning control instruction, the instruction will be operated according to the maximum speed.

The highest output frequency of the VS1 or VS2 series is 50 kHz. The acceptable value range is from 1 to 50 k (Hz). Any value less than 1 is regarded as 1 Hz; more than 50 k is regarded as 50 kHz. The default value is 50 kHz. The highest output frequency of the VSM or VS3 series is 200 kHz. The acceptable value range is from 1 to 200 k (Hz). Any value less than 1 is regarded as 1 Hz; more than 200 k is regarded as 200 kHz. The default value is 200 kHz.

The highest output frequency of the VSM-28ML series is 1 MHz. The acceptable value range is from 1 to 1 M (Hz). Any value less than 1 is regarded as 1 Hz; more than 1 M is regarded as 1 MHz. The default value is 1 MHz.

• Bias speed

This value confines the lowest limit of the positioning control speed at a certain axis. The main purpose is to avoid the low-frequency resonance area of a step motor. Thus, it is usually set to be 0 for a servo motor. If the operation speed is lower than the bias speed during the action of any positioning control instruction, the instruction will be operated according to the bias speed.

The acceptable value range is from 0 to 20 k (Hz). Any value less than 0 is regarded as 0 Hz; more than 20 k is regarded as 20 kHz. The default value is 0 Hz.

Acceleration timey

As shown in the diagram, the acceleration time refers to the time it takes for speeding up from the bias speed to the maximum speed (not the operating speed).

The acceptable value range is from 0 to 32,000 (ms). Any value less than 0 is regarded as 0 ms; more than 32,000 is regarded as 32,000 ms. The default value is 100 ms.

• Deceleration time

As shown in the diagram, the deceleration time refers to the time it takes for slowing down from the maximum speed (not the operating speed) to the bias speed.

The acceptable value range is from 0 to 32,000 (ms). Any value less than 0 is regarded as 0 ms; more than 32,000 is regarded as 32,000 ms. The default value is 100 ms.

Rotational direction

Users can select the direction control pattern: "Increase Present Value when forward" or "Increase Present Value when backward". That will affect to the direction output of the positioning control. The default is "Increase Present Value when forward".

If the "Increase Present Value when forward" is selected and the positioning instruction decides to increase its present value, then the direction control point will turn "ON" to drive the motor moving forward.

If the "Increase Present Value when backward" is selected and the positioning instruction decides to increase its Present Value, then the direction control point will turn "OFF" to drive the motor moving backward.

• Multiple ratio of speed:

This is used to change the operating speed when the positioning control is active. The default value is 1,000 (equal to 100.0%).

The jog speed, home position return speed, home position return creep speed and operating speed are affected by this parameter.

If this parameter value is changed during the positioning control instruction is active, the actual operating speed is changed accordingly.

The available range of the multiple ratio is from 1 to 30,000, in a unit of 0.1% (that means $0.1\% \sim 3000.0\%$).

8-1-2 Positioning Operation Setting Up

Demonstrated below is the brief configuration of a general positioning control system, which we will use to illustrate the related parameter settings for the positioning control.

• Home Position Return (Zero Return)

The VS PLC provides a variety of home position return modes when the ZRN instruction is used, which will be explained one by one below. The parameters in the setup sheet are decided on those different modes. Hence, to easily complete the setting, all the users need to do is to select the appropriate mode, and then fill in the relevant parameters.

• DOG Rear End home positioning

The DOG signal may use a X or M. Usually assigned to the X0 \sim X7, because by the interrupt input point can have the precise home position. On the other hand, if the signal for the DOG is not from X0 \sim X7, the home position after the return will have some inaccurate error. The CLR signal output can assign to a Y or M, the width of that "ON" signal is \geq 20ms.

• DOG Front End home positioning

The DOG signal may use a X or M. Usually assigned to the X0 \sim X7, because by the interrupt input point can have the precise home position. On the other hand, if the signal for the DOG is not from X0 \sim X7, the home position after the return will have some inaccurate error. The CLR signal output can assign to a Y or M, the width of that "ON" signal is \geq 20ms.

• DOG Rear End with PG0 count home positioning

For the PG0 signal input, must use X0~X7. The PLC processes the counting by the way of interrupt.

The CLR signal output can assign to a Y or M, the width of that "ON" signal is \geq 20ms.
• DOG Front End with PG0 count home positioning

• Data-set type home return

At this mode, the motor does not rotate because it is no actual moving position. When the function is operated, it will fill the preset value of the home position into the register which stores the Present Value also turn the home positioning complete flag "ON". If the CLR output is activated, the width of the signal pulse is \geq 20ms.

• Dog search home positioning

When the positioning system has installed with limit switches to provide the limiter signals for the VS PLC, by this mode that will give the automatic search capability for the home positioning. (the examples are using the DOG Rear End home positioning)

The diagram above illustrates the different actions from the starting points $(1) \sim (4)$ to complete the home positioning.

(1) If the starting point is located on the right of the DOG switch:

The home positioning is moving the sliding table by the home positioning speed and the direction of home positioning. Until the Front End of the DOG is reached, the speed decreases to the creep speed, then to finish the home positioning.

(2) If the starting point had been driving the DOG switch "ON": The home positioning is moving the sliding table by the home positioning speed and the opposite direction of home positioning. Until the Front End of the DOG is separated (the signal turns from "ON" to "OFF"), the speed slowing down and then stop. After that, it is moving the sliding table by the home positioning speed and the direction of home positioning. Until the Front End of the DOG is reached, the speed decreases to the creep speed, then to finish the home positioning. (3) If the starting point is located on the right of the DOG switch:

The home positioning is moving the sliding table by the home positioning speed and the direction of home positioning. Until the limit switch is reached, the speed slowing down and then stop. After that, moving the sliding table by the home positioning speed and the opposite direction of home positioning until the Rear End of the DOG is separated (the signal turns from "ON" to "OFF"), the speed slowing down and then stop. Furthermore, it uses the home positioning speed and the direction of home positioning to move the table again until the Rear End of the DOG is reached, the speed decreases to the creep speed then to finish the home positioning.

(4) If the starting point has caused the limit switch "ON":

The home positioning is moving the sliding table by the home positioning speed and the opposite direction of home positioning until the Rear End of the DOG is separated (the signal turns from "ON" to "OFF"), the speed slowing down and then stop. Furthermore, it uses the home positioning speed and the direction of home positioning again to move the table until the Front End of the DOG is reached, the speed decreases to the creep speed then to finish the home positioning.

- Limit Switches
 - Forward Limit Switch (LSF)

This is a limit switch for a motor which moves forward. When the forward limit switch is active, that limits all the forward actions. That makes the forward motor to slow down and stop. However, it is not interfering with reversed actions. The imit switch can be assigned to any external input X or internal auxiliary relay M.

• Reverse Limit Switch (LSR)

This is a limit switch for a motor which moves reversed. When the reverse limit switch is active, that limits all the reversed actions. That makes the reversed motor to slow down and stop. However, it is not interfering with forward actions. The imit switch can be assigned to any external input X or internal auxiliary relay M.

• Interrupt Signals for Positioning

Other interruption related positioning control instructions are introduced below:

• INT interrupt signal

When there is an interrupt signal input, the positioning instructions start pertinent control actions. The interruption signal must have instant response to reach a higher accuracy of positioning. Hence, the interruption signal through the external input $X0 \sim X7$ is necessary for the PLC to control that in the way of interruption.

DV2I speed change signal

To operate the DV2I 2 stages interrupt constant quantity positioning instruction, its speed change signal can be assigned to an external input X or internal auxiliary relay M.

8-2 Special Components Related to Positioning Control Instructions

In the tables below, the symbo "
 represents that the component is not allowed to use an instruction in the program to drive the relay or write data to the register.

Relay ID No.	Description	Series				
Y0 Axis's I	Positioning Control Flag	VS1	VS2	VSM	VS3	
■M9340	Y0 axis's status. "OFF" means the Y0 is in the READY status, it is available for a positioning instruction; while "ON" = BUSY, the Y0 has been occupying.	0	0	0	0	
■M9341	Y0 axis's pulse output monitor. "ON" means pulse is generating.	0	0	0	0	
■M9342	Y0 axis's positioning completed flag.	0	0	0	0	
■M9343	Y0 axis's positioning abnormal stop flag.	0	0	0	0	
■M9344	Y0 axis's zero home positioning has been completed.	0	0	0	0	
M9345	Y0 axis's stop flag (with gradually slow down).	0	0	0	0	
M9346	Y0 axis's immediately stop flag.	0	0	0	0	
M9347	Y0 axis's table positioning start signal.	0	0	0	0	
■M9348	Y0 axis's M-code active flag.	0	0	0	0	
M9349	Y0 axis's M-code clear command.	0	0	0	0	
M9350	Y0 axis's external interrupt trigger type. When M9350="OFF", the interrupt is triggered by a rising edge; when M9350="ON", that is triggered by a falling edge.	0	0	0	0	
Y1 Axis's F	Positioning Control Flag	VS1	VS2	VSM	VS3	
■M9360	Y1 axis's status. "OFF" means the Y1 is in the READY status, it is available for a positioning instruction; while "ON" = BUSY, the Y1 has been occupying.	0	0	0	0	
■M9361	Y1 axis's pulse output monitor. "ON" means pulse is generating.	0	0	0	0	
■M9362	Y1 axis's positioning completed flag.	0	0	0	0	
■M9363	Y1 axis's positioning abnormal stop flag.	0	0	0	0	
■M9364	Y1 axis's zero home positioning has been completed.	0	0	0	0	
M9365	Y1 axis's stop flag (with gradually slow down).	0	0	0	0	
M9366	Y1 axis's immediately stop flag.	0	0	0	0	
M9367	Y1 axis's table positioning start signal.	0	0	0	0	
■M9368	Y1 axis's M-code active flag.	0	0	0	0	
M9369	Y1 axis's M-code clear command.	0	0	0	0	
M9370	Y1 axis's external interrupt trigger type. When M9370="OFF", the interrupt is triggered by a rising edge; when M9370="ON", that is triggered by a falling edge.	0	0	0	0	
Y2 Axis's F	Positioning Control Flag	VS1	VS2	VSM	VS3	
■M9380	Y2 axis's status. "OFF" means the Y2 is in the READY status, it is available for a positioning instruction; while "ON" = BUSY, the Y2 has been occupying.	0	0	0	0	
■M9381	Y2 axis's pulse output monitor. "ON" means pulse is generating.	0	0	0	0	
■M9382	Y2 axis's positioning completed flag.	0	0	0	0	
■M9383	Y2 axis's positioning abnormal stop flag.	0	0	0	0	
■M9384	Y2 axis's zero home positioning has been completed.	0	0	0	0	
M9385	Y2 axis's stop flag (with gradually slow down).	0	0	0	0	
M9386	Y2 axis's immediately stop flag.	0	0	0	0	
M9387	Y2 axis's table positioning start signal.	0	0	0	0	
■M9388	Y2 axis's M-code active flag.	0	0	0	0	
M9389	Y2 axis's M-code clear command.	0	0	0	0	
M9390	Y2 axis's external interrupt trigger type. When M9390="OFF", the interrupt is triggered by a rising edge; when M9390="ON", that is triggered by a falling edge.	0	0	0	0	
Y3 Axis's F	Positioning Control Flag	VS1	VS2	VSM	VS3	
■M9400	Y3 axis's status. "OFF" means the Y3 is in the READY status, it is available for a positioning instruction; while "ON" = BUSY, the Y3 has been occupying.	0	0	0	0	
■M9401	Y3 axis's pulse output monitor. "ON" means pulse is generating.	0	0	0	0	
■M9402	Y3 axis's positioning completed flag.	0	0	0	0	
■M9403	Y3 axis's positioning abnormal stop flag.	0	0	0	0	
■M9404	Y3 axis's zero home positioning has been completed.	0	0	0	0	
M9405	Y3 axis's stop flag (with gradually slow down).	0	0	0	0	
M9406	Y3 axis's immediately stop flag.	0	0	0	0	
M9407	Y3 axis's table positioning start signal.	0	0	0	0	

Relay ID No.	Description	Series				
Y3 Axis's F	VS1	VS2	VSM	VS3		
■M9408	Y3 axis's M-code active flag.	0	0	0	0	
M9409	Y3 axis's M-code clear command.	0	0	0	0	
M9410	Y3 axis's external interrupt trigger type. When M9410="OFF", the interrupt is triggered by a rising edge; when M9410="ON", that is triggered by a falling edge.	0	0	0	0	

Register ID No.	Description		Series					
Y0 Axis's I	Positioning Control	VS1	VS2	VSM	VS3			
D9340	Lower 16 bits The Y0's maximum speed. Available range: VS1, VS2 is 1Hz~50kHz; VSM, VS3 is 1Hz~200kHz;	0	0	0	0			
D9342	The Y0's bias speed. Available range: 0~20kHz.	0	0	0	0			
D9343	The Y0's acceleration time, range = $0 \sim 32,000$ ms. If < 0, then equal to 0; if > 32,000, then equal to 32,000.	0	0	0	0			
D9344	The Y0's deceleration time, range = $0 \sim 32,000$ ms. If < 0, then equal to 0; if > 32,000, then equal to 32,000.	0	0	0	0			
D9345	The Y0's number of PG0 input when to execute the ZRN instruction, range = $1 \sim 32,767$. If out of the range, then equal to 1.	0	0	0	0			
D9346	Lower 16 bits Tthe Y0's preset value when the ZRN is finished.							
D9347	Upper 16 bits Available range: -2,147,483,648~+2,147,483,647.			0	0			
D9348	The Y0's pulse output speed multiple ratio, ranging from $1 \sim 30,000 = 0.1\% \sim 3,000.0\%$. If over the range, then equal to 1,000 (100.0%).	0	0	0	0			
■D9349	The Y0's M-code register.	0	0	0	0			
■D9350	Lower 16 bits The Y0's current speed.							
■D9351	Upper 16 bits (unit: Hz).							
D9352	Lower 16 bits The Y0's current location (Present Value, PV). The initial value is 0.							
D9353	Upper 16 bits For the PLSY or PLSR instruction, that is the amount of output pulses.							
D9354	Lower 16 bits The X0's current location (Present Value, PV) at positioning. The initial value is 0							
D9355	Upper 16 bits			0				
Y1 Axis's I	Positioning Control	VS1	VS2	VSM	VS3			
Y1 Axis's I D9360	Positioning Control Lower 16 bits The Y1's maximum speed. Available range: VS1, VS2 is 1Hz~50kHz; VSM, VS3 is 1Hz~200kHz;	VS1	VS2	VSM o	VS3			
Y1 Axis's I D9360 D9361	Positioning Control Lower 16 bits The Y1's maximum speed. Available range: VS1, VS2 is 1Hz~50kHz; VSM, VS3 is 1Hz~200kHz; Upper 16 bits VSM-28ML is 1Hz~1MHz.	VS1	VS2 O	VSM O	VS3			
Y1 Axis's I D9360 D9361 D9362	Positioning Control Lower 16 bits The Y1's maximum speed. Available range: VS1, VS2 is 1Hz~50kHz; VSM, VS3 is 1Hz~200kHz; VSM-28ML is 1Hz~1MHz. The Y1's bias speed. Available range: 0~20kHz.	VS1 0 0	VS2 ○	VSM O	VS3 ○			
Y1 Axis's I D9360 D9361 D9362 D9363	Positioning Control Lower 16 bits The Y1's maximum speed. Available range: VS1, VS2 is 1Hz~50kHz; VSM, VS3 is 1Hz~200kHz; VSM-28ML is 1Hz~1MHz. The Y1's bias speed. Available range: 0~20kHz. The Y1's acceleration time, range = 0~32,000ms. If <0, then equal to 0; if >32,000, then equal to 32,000.	VS1 0 0 0 0	VS2 ○ ○	VSM o o	VS3 ○			
Y1 Axis's I D9360 D9361 D9362 D9363 D9364	Positioning Control Lower 16 bits The Y1's maximum speed. Available range: VS1, VS2 is 1Hz~50kHz; VSM, VS3 is 1Hz~200kHz; VSM-28ML is 1Hz~1MHz. The Y1's bias speed. Available range: 0~20kHz. The Y1's acceleration time, range = 0~32,000ms. If <0, then equal to 0; if >32,000, then equal to 32,000. The Y1's deceleration time, range = 0~32,000ms. If <0, then equal to 0; if >32,000, then equal to 32,000.	VS1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VS2 0 0 0 0 0	VSM	VS3 0 0 0 0			
Y1 Axis's I D9360 D9361 D9362 D9363 D9364 D9365	Positioning Control Lower 16 bits The Y1's maximum speed. Available range: VS1, VS2 is 1Hz~50kHz; VSM, VS3 is 1Hz~200kHz; VSM-28ML is 1Hz~1MHz. The Y1's bias speed. Available range: 0~20kHz. The Y1's acceleration time, range = 0~32,000ms. If <0, then equal to 0; if >32,000, then equal to 32,000. The Y1's deceleration time, range = 0~32,000ms. If <0, then equal to 0; if >32,000, then equal to 32,000. The Y1's number of PG0 input when to execute the ZRN instruction, range = 1~32,767. If out of the range, then equal to 1.	VS1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VS2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VSM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VS3 0 0 0 0 0 0 0 0 0			
Y1 Axis's I D9360 D9361 D9362 D9363 D9364 D9365 D9366	Positioning Control Lower 16 bits The Y1's maximum speed. Available range: VS1, VS2 is 1Hz~50kHz; VSM, VS3 is 1Hz~200kHz; VSM-28ML is 1Hz~1MHz. The Y1's bias speed. Available range: 0~20kHz. The Y1's acceleration time, range = 0~32,000ms. If <0, then equal to 0; if >32,000, then equal to 32,000. The Y1's deceleration time, range = 0~32,000ms. If <0, then equal to 0; if >32,000, then equal to 32,000. The Y1's number of PG0 input when to execute the ZRN instruction, range = 1~32,767. If out of the range, then equal to 1. Lower 16 bits The Y1's preset value when the ZRN is finished.	VS1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VS2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VSM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VS3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Y1 Axis's I D9360 D9361 D9362 D9363 D9364 D9365 D9366 D9367	Positioning ControlLower 16 bitsThe Y1's maximum speed. Available range: VS1, VS2 is 1Hz~50kHz; VSM, VS3 is 1Hz~200kHz; VSM-28ML is 1Hz~1MHz.Upper 16 bitsVSM-28ML is 1Hz~1MHz.The Y1's bias speed. Available range: $0~20$ kHz.The Y1's acceleration time, range = $0~32,000$ ms. If <0, then equal to 0; if >32,000, then equal to 32,000.The Y1's deceleration time, range = $0~32,000$ ms. If <0, then equal to 0; if >32,000, then equal to 32,000.The Y1's number of PG0 input when to execute the ZRN instruction, range = $1~32,767$. If out of the range, then equal to 1.Lower 16 bitsThe Y1's preset value when the ZRN is finished. Available range: $-2,147,483,648 \sim +2,147,483,647$.	VS1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VS2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VSM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VS3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Y1 Axis's I D9360 D9361 D9362 D9363 D9364 D9365 D9366 D9366 D9367 D9368	Positioning Control Lower 16 bits The Y1's maximum speed. Available range: VS1, VS2 is 1Hz~50kHz; VSM, VS3 is 1Hz~200kHz; VSM-28ML is 1Hz~1MHz. The Y1's bias speed. Available range: 0~20kHz. The Y1's acceleration time, range = 0~32,000ms. If <0, then equal to 0; if >32,000, then equal to 32,000. The Y1's deceleration time, range = 0~32,000ms. If <0, then equal to 0; if >32,000, then equal to 32,000. The Y1's number of PG0 input when to execute the ZRN instruction, range = 1~32,767. If out of the range, then equal to 1. Lower 16 bits The Y1's preset value when the ZRN is finished. Available range: -2,147,483,648~+2,147,483,647. The Y1's pulse output speed multiple ratio, ranging from 1~30,000 = 0.1%~3,000.0%. If over the range, then equal to 1,000 (100.0%).	VS1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VS2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VSM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VS3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Y1 Axis's I D9360 D9361 D9362 D9363 D9364 D9365 D9365 D9366 D9367 D9368 ■D9369	Positioning Control Lower 16 bits The Y1's maximum speed. Available range: VS1, VS2 is 1Hz~50kHz; VSM, VS3 is 1Hz~200kHz; VSM-28ML is 1Hz~1MHz. The Y1's bias speed. Available range: 0~20kHz. The Y1's acceleration time, range = 0~32,000ms. If <0, then equal to 0; if >32,000, then equal to 32,000. The Y1's deceleration time, range = 0~32,000ms. If <0, then equal to 0; if >32,000, then equal to 32,000. The Y1's number of PG0 input when to execute the ZRN instruction, range = 1~32,767. If out of the range, then equal to 1. Lower 16 bits The Y1's preset value when the ZRN is finished. Available range: -2,147,483,648~+2,147,483,647. The Y1's pulse output speed multiple ratio, ranging from 1~30,000 = 0.1%~3,000.0%. If over the range, then equal to 1,000 (100.0%). The Y1's M-code register.	VS1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VS2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VSM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VS3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Y1 Axis's I D9360 D9361 D9362 D9363 D9364 D9365 D9366 D9366 D9367 D9368 D9369 D9369	Positioning Control Lower 16 bits The Y1's maximum speed. Available range: VS1, VS2 is 1Hz~50kHz; VSM, VS3 is 1Hz~200kHz; VSM-28ML is 1Hz~1MHz. The Y1's bias speed. Available range: 0~20kHz. The Y1's acceleration time, range = 0~32,000ms. If <0, then equal to 0; if >32,000, then equal to 32,000. The Y1's deceleration time, range = 0~32,000ms. If <0, then equal to 0; if >32,000, then equal to 32,000. The Y1's number of PG0 input when to execute the ZRN instruction, range = 1~32,767. If out of the range, then equal to 1. Lower 16 bits The Y1's preset value when the ZRN is finished. Available range: -2,147,483,648~+2,147,483,647. The Y1's pulse output speed multiple ratio, ranging from 1~30,000 = 0.1%~3,000.0%. If over the range, then equal to 1,000 (100.0%). The Y1's M-code register. Lower 16 bits The Y1's current speed. For the PL SY or PL SB instruction, that displays the current output frequency.	VS1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VS2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VSM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VS3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Y1 Axis's I D9360 D9361 D9362 D9363 D9364 D9365 D9366 D9366 D9367 D9368 ■D9369 ■D9370	Positioning Control Lower 16 bits The Y1's maximum speed. Available range: VS1, VS2 is 1Hz~50kHz; VSM, VS3 is 1Hz~200kHz; VSM-28ML is 1Hz~1MHz. The Y1's bias speed. Available range: 0~20kHz. The Y1's acceleration time, range = 0~32,000ms. If <0, then equal to 0; if >32,000, then equal to 32,000. The Y1's deceleration time, range = 0~32,000ms. If <0, then equal to 0; if >32,000, then equal to 32,000. The Y1's number of PG0 input when to execute the ZRN instruction, range = 1~32,767. If out of the range, then equal to 1. Lower 16 bits The Y1's preset value when the ZRN is finished. Available range: -2,147,483,648~+2,147,483,647. Upper 16 bits The Y1's preset multiple ratio, ranging from 1~30,000 = 0.1%~3,000.0%. If over the range, then equal to 1,000 (100.0%). The Y1's M-code register. The Y1's current speed. For the PLSY or PLSR instruction, that displays the current output frequency (unit: Hz).	VS1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VS2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VSM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VS3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Y1 Axis's I D9360 D9361 D9362 D9363 D9364 D9365 D9365 D9366 D9367 D9368 D9369 D9370 D9371 D9371	Positioning Control Lower 16 bits The Y1's maximum speed. Available range: VS1, VS2 is 1Hz~50kHz; VSM, VS3 is 1Hz~200kHz; VSM-28ML is 1Hz~1MHz. The Y1's bias speed. Available range: 0~20kHz. The Y1's cocceleration time, range = 0~32,000ms. If <0, then equal to 0; if >32,000, then equal to 32,000. The Y1's deceleration time, range = 0~32,000ms. If <0, then equal to 0; if >32,000, then equal to 32,000. The Y1's deceleration time, range = 0~32,000ms. If <0, then equal to 0; if >32,000, then equal to 32,000. The Y1's number of PG0 input when to execute the ZRN instruction, range = 1~32,767. If out of the range, then equal to 1. Lower 16 bits The Y1's preset value when the ZRN is finished. Available range: -2,147,483,648~+2,147,483,647. The Y1's pulse output speed multiple ratio, ranging from 1~30,000 = 0.1%~3,000.0%. If over the range, then equal to 1,000 (100.0%). The Y1's M-code register. Lower 16 bits The Y1's current speed. For the PLSY or PLSR instruction, that displays the current output frequency (unit: Hz). Lower 16 bits The Y1's current location (Present Value, PV). The initial value is 0.	VS1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VS2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VSM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VS3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Y1 Axis's I D9360 D9361 D9362 D9363 D9364 D9365 D9366 D9366 D9367 D9368 D9369 D9370 D9371 D9372 D9373	Positioning Control Lower 16 bits The Y1's maximum speed. Available range: VS1, VS2 is 1Hz~50kHz; VSM, VS3 is 1Hz~200kHz; VSM-28ML is 1Hz~1MHz. The Y1's bias speed. Available range: 0~20kHz. The Y1's acceleration time, range = 0~32,000ms. If <0, then equal to 0; if > 32,000, then equal to 32,000. The Y1's deceleration time, range = 0~32,000ms. If <0, then equal to 0; if > 32,000, then equal to 32,000. The Y1's number of PG0 input when to execute the ZRN instruction, range = 1~32,767. If out of the range, then equal to 1. Lower 16 bits The Y1's preset value when the ZRN is finished. Available range: -2,147,483,648~+2,147,483,647. The Y1's pubse output speed multiple ratio, ranging from 1~30,000 = 0.1%~3,000.0%. If over the range, then equal to 1,000 (100.0%). The Y1's M-code register. Lower 16 bits Upper 16 bits The Y1's current speed. For the PLSY or PLSR instruction, that displays the current output frequency (unit: Hz). Lower 16 bits Upper 16 bits The Y1's current location (Present Value, PV). The initial value is 0. For the PLSY or PLSR instruction, that is the amount of output pulses.	VS1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VS2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VSM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VS3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Y1 Axis's I D9360 D9361 D9362 D9363 D9364 D9365 D9365 D9365 D9366 D9367 D9368 D9369 D9370 D9371 D9372 D9373 D9374	Positioning Control Lower 16 bits The Y1's maximum speed. Available range: VS1, VS2 is 1Hz~50kHz; VSM, VS3 is 1Hz~200kHz; VSM-28ML is 1Hz~1MHz. The Y1's bias speed. Available range: 0~20kHz. The Y1's acceleration time, range = 0~32,000ms. If <0, then equal to 0; if >32,000, then equal to 32,000. The Y1's deceleration time, range = 0~32,000ms. If <0, then equal to 0; if >32,000, then equal to 32,000. The Y1's deceleration time, range = 0~32,000ms. If <0, then equal to 0; if >32,000, then equal to 32,000. The Y1's number of PG0 input when to execute the ZRN instruction, range = 1~32,767. If out of the range, then equal to 1. Lower 16 bits The Y1's preset value when the ZRN is finished. Available range: -2,147,483,648~+2,147,483,647. The Y1's pulse output speed multiple ratio, ranging from 1~30,000 = 0.1%~3,000.0%. If over the range, then equal to 1,000 (100.0%). The Y1's Current speed. Lower 16 bits The Y1's current speed. For the PLSY or PLSR instruction, that displays the current output frequency (unit: Hz). Lower 16 bits The Y1's current location (Present Value, PV). The initial value is 0. Upper 16 bits The Y1's current location (Present Value, PV). The initial value is 0. Upper 16 bits The Y1's current location (Present Value, PV). The initial value is 0. Lower 16 bits The Y1's current location (Present Value, PV). The initial value is 0. Upper 16 bits The Y1'	VS1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VS2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VSM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VS3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			

Register		Series					
Y2 Axis's I	Positioning Cont	rol	VS1	VS2	VSM	VS3	
D9380 D9381	Lower 16 bits Upper 16 bits	The Y2's maximum speed. Available range: VS1, VS2 is 1Hz~50kHz; VSM, VS3 is 1Hz~200kHz; VSM-28ML is 1Hz~1MHz	0	0	0	0	
D9382	The Y2's bias sp	0	0	0	0		
D9383	The Y2's accele If <0, then equa	ration time, range = $0 \sim 32,000$ ms. al to 0; if >32,000, then equal to 32,000.	0	0	0	0	
D9384	The Y2's decele If <0, then equa	ration time, range = $0 \sim 32,000$ ms. al to 0; if >32,000, then equal to 32,000.	0	0	0	0	
D9385	The Y2's number	or of PG0 input when to execute the ZRN instruction, range = $1 \sim 32,767$. ge, then equal to 1.	0	0	0	0	
D9386	Lower 16 bits	The Y2's preset value when the ZRN is finished.					
D9387	Upper 16 bits	Available range: -2,147,483,648~+2,147,483,647.	0	0		0	
D9388	The Y2's pulse of If over the range	butput speed multiple ratio, ranging from $1 \sim 30,000 = 0.1\% \sim 3,000.0\%$.	0	0	0	0	
■D9389	The Y2's M-cod	e register.	0	0	0	0	
D9390	Lower 16 bits	The Y2's current speed.					
■D9391	Upper 16 bits	(unit: Hz).	0	0			
D9392	Lower 16 bits	The Y2's current location (Present Value, PV). The initial value is 0.					
D9393	Upper 16 bits	For the PLSY or PLSR instruction, that is the amount of output pulses.	0	0	0	0	
D9394	Lower 16 bits			_			
D9395	Degree Territory of the Y2's current location (Present Value, PV) at positioning. The initial value is 0.			0			
Y3 Axis's I	Positioning Cont	rol	VS1	VS2	VSM	VS3	
D9400	Lower 16 bits	The Y3's maximum speed.					
D9401	Upper 16 bits	VSM-28ML is 1Hz \sim 1MHz.	0	0			
D9402	The Y3's bias sp	beed. Available range: 0~20kHz.	0	0	0	0	
D9403	The Y3's accele If <0, then equa	ration time, range = $0 \sim 32,000$ ms. al to 0; if >32,000, then equal to 32,000.	0	0	0	0	
D9404	The Y3's decele If <0, then equa	ration time, range = $0 \sim 32,000$ ms. al to 0; if $> 32,000$, then equal to 32,000.	0	0	0	0	
D9405	The Y3's number If out of the range	er of PG0 input when to execute the ZRN instruction, range = $1 \sim 32,767$. ge, then equal to 1.	0	0	0	0	
D9406	Lower 16 bits	The Y3's preset value when the ZRN is finished.					
D9407	Upper 16 bits	Available range: $-2,147,483,648 \sim +2,147,483,647$.					
D9408	The Y3's pulse of If over the range	butput speed multiple ratio, ranging from $1 \sim 30,000 = 0.1\% \sim 3,000.0\%$. e, then equal to 1,000 (100.0%).	0	0	0	0	
■D9409	The Y3's M-cod	e register.	0	0	0	0	
■D9410	Lower 16 bits	The Y3's current speed.					
■D9411	Upper 16 bits	(unit: Hz).					
D9412	Lower 16 bits	The Y3's current location (Present Value, PV). The initial value is 0.					
D9413	Upper 16 bits	For the PLSY or PLSR instruction, that is the amount of output pulses.					
D9414	Lower 16 bits	The V3's current location (Present Value, DV) at positioning. The initial value is 0					
D9415	Upper 16 bits						

8-3 Positioning Control Instructions

FNC	Mnomonic in Ladder Chart	Function Description	Ар	plica	VS	
No.			1	2	Μ	3
300	$\square \square $	Zero (Home Position) Return	0	0	0	0
301	$\vdash \vdash \blacksquare JOGF (S_1) (S_2) (D_1) (D_2)$	Jog Forward	0	0	0	0
302	$\vdash \vdash \blacksquare JOGR (S1) (S2) (D1) (D2)$	Jog Reverse	0	0	0	0
303	$\vdash \vdash \blacksquare DRVR (S1) (S2) (D1) (D2)$	Drive to Relative Position	0	0	0	0
304	$\vdash \vdash \blacksquare DRVA (S1) (S2) (D1) (D2)$	Drive to Absolute Position	0	0	0	0
305	$\vdash \vdash \blacksquare DV2R (S1) (S2) (D1) (D2)$	Drive to Relative Position by 2 Stages	0	0	0	0
306	$\vdash \vdash \blacksquare DV2A (S1) (S2) (D1) (D2)$	Drive to Absolute Position by 2 Stages	0	0	0	0
307	$\vdash \vdash \blacksquare DVIT (S1) (S2) (D1) (D2)$	Interrupt Constant Quantity Positioning	0	0	0	0
308	$\vdash \vdash \blacksquare DV2I (S1) (S2) (D1) (D2)$	2 Stages Interrupt Constant Quantity Positioning	0	0	0	0
309	$\vdash \vdash \blacksquare DVSR (S_1) (S_2) (D_1) (D_2)$	Interrupt to Stop or Drive to Relative Position	0	0	0	0
310	$\vdash \vdash \blacksquare DVSA (S1) (S2) (D1) (D2)$	Interrupt to Stop or Drive to Absolute Position	0	0	0	0
311	$\vdash \vdash \blacksquare PLSV (S) (D1 (D2)$	Variable Speed Pulse Output	0	0	0	0
312	$\vdash \vdash \Box TBL (S) (S_2) (D_1) (D_2)$	Data Table Positioning	0	0	0	0
313		Absolute Current Value Read	0	0	0	0
314	$\vdash \vdash \vdash MPG (S) (S_2 (D) (D_2)$	Handwheel Positioning	0	0	0	0
315		Relatively Linear Interpolation	0	0	0	0
316		Absolutely Linear Interpolation	0	0	0	0

- (S_2) is for to assign the creep speed when the DOG near point is triggered. The available range is from the bias speed (D9342) to 30k Hz. When $(S_2) <$ the bias speed, it will be regarded as the bias speed; when $(S_2) >$ 30k Hz, it will be regarded as 30k Hz.
- (\underline{D}) is for to assign the output point of generated pulse string. It can only appoint to a point between Y0~Y3, and must use a transistor or line driver output Main Unit.
- (D2) is for to assign the output point of direction control signal. When the output of direction control signal is "ON", the motor moves forward; conversely, "OFF" moves reverse.
 Besides, the "ON"/"OFF" status of the direction control signal is related to both the parameters of the rotational direction (increase Present Value when forward / backward) and the return direction (by the direction of present value increasing / decreasing).
- When the M0 turns from "OFF" to "ON", this ZRN instruction uses the parameters of the bias speed (D9342), the maximum speed (D9341, D9340), the acceleration time (D9343), the deceleration time (D9344), (S1) the home positioning speed, (S2) the home positioning creep speed, the speed multiple ratio (D9348) and the setup about home positioning to decide the home positioning procedures. During this instruction is in operation, to change any parameter above will be regarded as invalid. Which is different from other positioning instructions and should pay attention to this.
- When the return action is completed, that will let the zero home positioning has been completed flag M9344 = "ON".
- If the condition contact M0 turns "OFF" before it is finished, the movement will be gradually slow down then stop.
- The example below uses Y0 output axis for the description of this instruction since the output axes Y1~Y3 have the same function. The three devices between parentheses () indicate those are corresponding to Y1~Y3 respectively. M9340 indicates the Y0 is occupied by a positioning instruction. (M9360, M9380, M9400)

Any instruction uses the Y0 to generate pulse string and it is already activated, that will occupy the resource of Y0 axis consistently. However, turn the condition contact of this activated instruction "OFF" could release the resource. Thus, before to activate this instruction should confirm the state of M9340.

If the M9340 = "ON", that indicates the Y0 is BUSY to generate pulse string or other instruction still occupies the resource of the Y0. Even though, the condition contact of this instruction is "ON", the instruction will not execute. If the M9340 = "OFF", that indicates the Y0 is in the READY status (its resource is free to use), the Y0 can be used for this instruction.

- M9341 is the pulse output monitor of the Y0. (M9361, M9381, M9401)
- When the Y0 is generating pulses, M9341 = "ON".
- M9342 is the positioning completed flag of the Y0. (M9362, M9382, M9402)
- When the Y0's positioning instruction is completed, M9342 = "ON".
- Turn "OFF" the condition contact of the completed instruction will lead the flag M9342 "OFF".

M9343 is the positioning abnormal stop flag of the Y0. (M9363, M9383, M9403) Trigger any related compulsive stop flag during the unfinished positioning or the ZRN instruction could not find the DOG signal, that will cause Y0 stops to generate pulses and let the M9343 = "ON" to indicate this stop is abnormal. Turn "OFF" the condition contact of the activated instruction will lead the flag M9343 "OFF".

- M9344 is the home positioning completed flag of the Y0. (M9364, M9384, M9404) When the Y0's ZRN instruction has completed, M9344 = "ON". When the ZRN instruction is operated again, the M9344 will be reset to "OFF".
- M9345 is the flag to stop the Y0 generating pulse string (by gradually slow down). (M9365, M9385, M9405) When the M9345 is turned "ON", the pulse generating at the Y0 will gradually slow down then stop. After the stop signal is discontinued, to make it move must release the positioning instruction then restart.

M9346 is the flag to imminently stop the Y0 generating pulse string. (M9366, M9386, M9406) When the M9346 is turned "ON", the pulse generating at the Y0 will stop imminently (without to slow down). After the stop signal is discontinued, to make it move must release the positioning instruction then restart.

Forward / Reverse limit switch (under the "Positioning Parameter Setup" of the Ladder Master S). When the forward / reverse limit switch is active, that limits all the forward / reverse actions. That makes the forward / reverse motor to slow down and stop.

- At this moment, only the moving request of opposite direction can be accepted.
- D9348 is the multiple ratio of the Y0 positioning speed. (D9368, D9388, D9408)

The actual operating speed at Y0 positioning is equal to the operating speed designated by the positioning instruction multiplied by the value of the multiple ratio.

Before the ZRN instruction operates, the actual operating speed at Y0 positioning can be modified by changing the ratio. But, to change the ratio could not modify the actual operating speed during the ZRN instruction is operating. Its available value range to be set is $1 \sim 30,000$ (Unit: 0.1%), therefore the speed multiple ratio is $0.1\% \sim 3,000.0\%$.

D9351, D9350 display the positioning current speed of Y0. (DD9370, DD9390, DD9410)

When the instruction is active, this 32-bit special register shows the Present Value of operating speed.

D9355, D9354 display the positioning location (Present Value PV) of Y0. (DD9374, DD9394, DD9414) When the power is turned from "OFF" to "ON", the initial value of this 32-bit special register is 0. Afterward, to operate any related positioning control instruction will affect to its content, it shows the current location of Y0. When this ZRN instruction is operated and completed, the preset value of the home point will be filled in.

- When the M0 turns from "OFF" to "ON", the JOGF or JOGR instruction uses the parameters of the bias speed (D9342), the maximum speed (D9341, D9340), the acceleration time (D9343), the deceleration time (D9344), (S1) the start delay time, (S2) the operating speed and the speed multiple ratio (D9348) to decide the jog positioning procedures. During the instruction is in operation, could change the value of the (S2) operating speed or the speed multiple ratio (D9348) to modify the real operating speed, but to change other parameters above will be regarded as invalid.
- These instructions can be used as many times as required and the points Y0~Y3 can be used to generate pulses individually at the same time.
- The example below uses Y0 output axis for the description of this instruction since the output axes Y1~Y3 have the same function. The three devices between parentheses () indicate those are corresponding to Y1~Y3 respectively.

M9340 indicates the Y0 is occupied by a positioning instruction. (M9360, M9380, M9400) Any instruction uses the Y0 to generate pulse string and it is already activated, that will occupy the resource of Y0 axis consistently. However, turn the condition contact of this activated instruction "OFF" could release the resource. Thus, before to activate this instruction should confirm the state of M9340. If the M9340 = "ON", that indicates the Y0 is BUSY to generate pulse string or other instruction still occupies the resource of the Y0. Even though, the condition contact of this instruction is "ON", the instruction will not execute. If the M9340 = "OFF", that indicates the Y0 is in the READY status (its resource is free to use), the Y0 can be used for this instruction.

- M9341 is the pulse output monitor of the Y0. (M9361, M9381, M9401) When the Y0 is generating pulses, M9341 = "ON".
- M9345 is the flag to stop the Y0 generating pulse string (by gradually slow down). (M9365, M9385, M9405) When the M9345 is turned "ON", the pulse generating at the Y0 will gradually slow down then stop. After the stop signal is discontinued, to make it move must release the positioning instruction then restart.

M9346 is the flag to imminently stop the Y0 generating pulse string. (M9366, M9386, M9406) When the M9346 is turned "ON", the pulse generating at the Y0 will stop imminently (without to slow down). After the stop signal is discontinued, to make it move must release the positioning instruction then restart.

Forward / Reverse limit switch (under the "Positioning Parameter Setup" of the Ladder Master S). When the forward / reverse limit switch is active, that limits all the forward / reverse actions. That makes the forward / reverse motor to slow down and stop. At this moment, only the moving request of opposite direction can be accepted.

D9348 is the multiple ratio of the Y0 positioning speed. (D9368, D9388, D9408)

The actual operating speed at Y0 positioning speed. (D9308, D9308, D9408) instruction multiplied by the value of the multiple ratio. During the instruction is operating, to change the ratio could modify the Y0's actual operating speed.

Its available value range to be set is $1 \sim 30,000$ (Unit: 0.1%), therefore the speed multiple ratio is $0.1\% \sim 3,000.0\%$.

D9351, D9350 display the positioning current speed of Y0. (DD9370, DD9390, DD9410) When the instruction operating speed.

- When the M0 turns from "OFF" to "ON", this DRVR instruction uses the parameters of the bias speed (D9342), the maximum speed (D9341, D9340), the acceleration time (D9343), the deceleration time (D9344), (S1) the moving distance, (S2) the operating speed and the speed multiple ratio (D9348) to decide the positioning procedures. During the instruction is in operation, could change the value of the (S2) operating speed or the speed multiple ratio (D9348) to modify the real operating speed, but to change other parameters above will be regarded as invalid.
- When this instruction completes the (S1) specific distance move, that will let the positioning completed flag M9342 = "ON".
- If the condition contact M0 turns "OFF" during the pulse is output, the movement will be gradually slow down then stop. Thus, that will not to turn the positioning completed flag M9342 "ON".
- This instruction can be written as many times as required and the points Y0~Y3 can be used to generate pulses individually at the same time.
- The example below uses Y0 output axis for the description of this instruction since the output axes Y1~Y3 have the same function. The three devices between parentheses () indicate those are corresponding to Y1~Y3 respectively.

If the M9340 = "ON", that indicates the Y0 is BUSY to generate pulse string or other instruction still occupies the resource of the Y0. Even though, the condition contact of this instruction is "ON", the instruction will not execute. If the M9340 = "OFF", that indicates the Y0 is in the READY status (its resource is free to use), the Y0 can be used for this instruction.

- M9341 is the pulse output monitor of the Y0. (M9361, M9381, M9401) When the Y0 is generating pulses, M9341 = "ON".
- M9342 is the positioning completed flag of the Y0. (M9362, M9382, M9402) When the Y0's positioning instruction is completed, M9342 = "ON".

Turn "OFF" the condition contact of the completed instruction will lead the flag M9342 "OFF".

M9343 is the positioning abnormal stop flag of the Y0. (M9363, M9383, M9403) Trigger any related compulsive stop flag or the forward / reverse limit switch during the unfinished Y0 positioning function, will cause Y0 stops to generate pulses and let the M9343 = "ON" to indicate this stop is abnormal. Turn "OFF" the condition contact of the activated instruction will lead the flag M9343 "OFF".

M9345 is the flag to stop the Y0 generating pulse string (by gradually slow down). (M9365, M9385, M9405) When the M9345 is turned "ON", the pulse generating at the Y0 will gradually slow down then stop. After the stop signal is discontinued, to make it move must release the positioning instruction then restart.

M9346 is the flag to imminently stop the Y0 generating pulse string. (M9366, M9386, M9406) When the M9346 is turned "ON", the pulse generating at the Y0 will stop imminently (without to slow down). After the stop signal is discontinued, to make it move must release the positioning instruction then restart.

Forward / Reverse limit switch (under the "Positioning Parameter Setup" of the Ladder Master S). When the forward / reverse limit switch is active, that limits all the forward / reverse actions. That makes the forward / reverse motor to slow down and stop.

At this moment, only the moving request of opposite direction can be accepted.

D9348 is the multiple ratio of the Y0 positioning speed. (D9368, D9388, D9408)

The actual operating speed at Y0 positioning is equal to the operating speed designated by the positioning instruction multiplied by the value of the multiple ratio.

During the instruction is operating, to change the ratio could modify the Y0's actual operating speed. Its available value range to be set is $1 \sim 30,000$ (Unit: 0.1%), therefore the speed multiple ratio is $0.1\% \sim 3,000.0\%$.

D9351, D9350 display the positioning current speed of Y0. (DD9370, DD9390, DD9410) When the instruction is active, this 32-bit special register shows the Present Value of operating speed.

- When the M0 turns from "OFF" to "ON", this DRVA instruction uses the parameters of the bias speed (D9342), the maximum speed (D9341, D9340), the acceleration time (D9343), the deceleration time (D9344), the moving target (S1), the Present Value (PV, D9355, D9354), the operating speed (S2) and the speed multiple ratio (D9348) to decide the positioning procedures. During the instruction is in operation, could change the value of the operating speed (S2) or the speed multiple ratio (D9348) to modify the real operating speed, but to change other parameters above will be regarded as invalid.
- When this instruction completes the movement (generates pulses to make its Present Value PV equal to the (S)), that will let the positioning completed flag M9342 = "ON".
- If the condition contact M0 turns "OFF" during the pulse is output, the movement will be gradually slow down then stop. Thus, that will not to turn the positioning completed flag M9342 "ON".
- This instruction can be written as many times as required and the points Y0~Y3 can be used to generate pulses individually at the same time.
- The example below uses Y0 output axis for the description of this instruction since the output axes Y1~Y3 have the same function. The three devices between parentheses () indicate those are corresponding to Y1~Y3 respectively.

If the M9340 = "ON", that indicates the Y0 is BUSY to generate pulse string or other instruction still occupies the resource of the Y0. Even though, the condition contact of this instruction is "ON", the instruction will not execute. If the M9340 = "OFF", that indicates the Y0 is in the READY status (its resource is free to use), the Y0 can be used for this instruction.

M9341 is the pulse output monitor of the Y0. (M9361, M9381, M9401) When the Y0 is generating pulses, M9341 = "ON".

M9342 is the positioning completed flag of the Y0. (M9362, M9382, M9402) When the Y0's positioning instruction is completed, M9342 = "ON". Turn "OFF" the condition contact of the completed instruction will lead the flag M9342 "OFF".

- M9343 is the positioning abnormal stop flag of the Y0. (M9363, M9383, M9403) Trigger any related compulsive stop flag or the forward / reverse limit switch during the unfinished Y0 positioning function, will cause Y0 stops to generate pulses and let the M9343 = "ON" to indicate this stop is abnormal. Turn "OFF" the condition contact of the activated instruction will lead the flag M9343 "OFF".
- M9345 is the flag to stop the Y0 generating pulse string (by gradually slow down). (M9365, M9385, M9405) When the M9345 is turned "ON", the pulse generating at the Y0 will gradually slow down then stop. After the stop signal is discontinued, to make it move must release the positioning instruction then restart.

M9346 is the flag to imminently stop the Y0 generating pulse string. (M9366, M9386, M9406) When the M9346 is turned "ON", the pulse generating at the Y0 will stop imminently (without to slow down). After the stop signal is discontinued, to make it move must release the positioning instruction then restart.

Forward / Reverse limit switch (under the "Positioning Parameter Setup" of the Ladder Master S). When the forward / reverse limit switch is active, that limits all the forward / reverse actions. That makes the forward / reverse motor to slow down and stop. At this moment, only the moving request of opposite direction can be accepted.

D9348 is the multiple ratio of the Y0 positioning speed. (D9368, D9388, D9408) The actual operating speed at Y0 positioning is equal to the operating speed designated by the positioning instruction multiplied by the value of the multiple ratio.

During the instruction is operating, to change the ratio could modify the Y0's actual operating speed. Its available value range to be set is 1~30,000 (Unit: 0.1%), therefore the speed multiple ratio is 0.1%~3,000.0%.

D9351, D9350 display the positioning current speed of Y0. (DD9370, DD9390, DD9410) When the instruction is active, this 32-bit special register shows the Present Value of operating speed.

- When the M0 turns from "OFF" to "ON", this DV2R instruction uses the parameters of the bias speed (D9342), the maximum speed (D9341, D9340), the acceleration time (D9343), the deceleration time (D9344), the moving distances the operating speeds and the speed multiple ratio (D9348) to decide the positioning procedures. During the instruction is in operation, could change the value of the operating speeds or the speed multiple ratio (D9348) to modify the real operating speed, but to change other parameters above will be regarded as invalid.
- When this instruction completes the movement of the amount of two specific moving distances, that will let the positioning completed flag M9342 = "ON".
- If the condition contact M0 turns "OFF" during the pulse is output, the movement will be gradually slow down then stop. Thus, that will not to turn the positioning completed flag M9342 "ON".
- If the values of the moving distances #1 and #2 are +/- opposite, the positioning of the stage #1 will be executed first. After that, it will make a brief pause, then carry on the operation of the opposite direction immediately.
- This instruction can be written as many times as required and the points Y0~Y3 can be used to generate pulses individually at the same time.
- The example below uses Y0 output axis for the description of this instruction since the output axes Y1~Y3 have the same function. The three devices between parentheses () indicate those are corresponding to Y1~Y3 respectively.

If the M9340 = "ON", that indicates the Y0 is BUSY to generate pulse string or other instruction still occupies the resource of the Y0. Even though, the condition contact of this instruction is "ON", the instruction will not execute. If the M9340 = "OFF", that indicates the Y0 is in the READY status (its resource is free to use), the Y0 can be used for this instruction.

M9341 is the pulse output monitor of the Y0. (M9361, M9381, M9401) When the Y0 is generating pulses, M9341 = "ON".

M9342 is the positioning completed flag of the Y0. (M9362, M9382, M9402) When the Y0's positioning instruction is completed, M9342 = "ON". Turn "OFF" the condition contact of the completed instruction will lead the flag M9342 "OFF".

M9343 is the positioning abnormal stop flag of the Y0. (M9363, M9383, M9403) Trigger any related compulsive stop flag or the forward / reverse limit switch during the unfinished Y0 positioning function, will cause Y0 stops to generate pulses and let the M9343 = "ON" to indicate this stop is abnormal. Turn "OFF" the condition contact of the activated instruction will lead the flag M9343 "OFF".

M9345 is the flag to stop the Y0 generating pulse string (by gradually slow down). (M9365, M9385, M9405) When the M9345 is turned "ON", the pulse generating at the Y0 will gradually slow down then stop. After the stop signal is discontinued, to make it move must release the positioning instruction then restart.

M9346 is the flag to imminently stop the Y0 generating pulse string. (M9366, M9386, M9406) When the M9346 is turned "ON", the pulse generating at the Y0 will stop imminently (without to slow down). After the stop signal is discontinued, to make it move must release the positioning instruction then restart.

Forward / Reverse limit switch (under the "Positioning Parameter Setup" of the Ladder Master S). When the forward / reverse limit switch is active, that limits all the forward / reverse actions. That makes the forward / reverse motor to slow down and stop. At this moment, only the moving request of opposite direction can be accepted.

D9348 is the multiple ratio of the Y0 positioning speed. (D9368, D9388, D9408)

The actual operating speed at Y0 positioning is equal to the operating speed designated by the positioning instruction multiplied by the value of the multiple ratio. During the instruction is operating, to change the ratio could modify the Y0's actual operating speed.

Its available value range to be set is $1 \sim 30,000$ (Unit: 0.1%), therefore the speed multiple ratio is $0.1\% \sim 3,000.0\%$.

D9351, D9350 display the positioning current speed of Y0. (DD9370, DD9390, DD9410) When the instruction is active, this 32-bit special register shows the Present Value of operating speed.

- When the M0 turns from "OFF" to "ON", this DV2A instruction uses the parameters of the bias speed (D9342). the maximum speed (D9341, D9340), the acceleration time (D9343), the deceleration time (D9344), the moving targets, the Present Value (PV, D9355, D9354), the operating speeds and the speed multiple ratio (D9348) to decide the positioning procedures. During the instruction is in operation, could change the value of the operating speeds or the speed multiple ratio (D9348) to modify the real operating speed, but to change other parameters above will be regarded as invalid.
- When this instruction completes the movement (that generates pulses to make its Present Value PV equal to the moving target #1 and #2 sequentially), that will let the positioning completed flag M9342 = "ON".
- If the condition contact M0 turns "OFF" during the pulse is output, the movement will be gradually slow down then stop. Thus, that will not to turn the positioning completed flag M9342 "ON".
- This instruction can be written as many times as required and the points Y0~Y3 can be used to generate pulses individually at the same time.
- The example below uses Y0 output axis for the description of this instruction since the output axes Y1~Y3 have the same function. The three devices between parentheses () indicate those are corresponding to Y1~Y3 respectively.

If the M9340 = "ON", that indicates the Y0 is BUSY to generate pulse string or other instruction still occupies the resource of the Y0. Even though, the condition contact of this instruction is "ON", the instruction will not execute. If the M9340 = "OFF", that indicates the Y0 is in the READY status (its resource is free to use), the Y0 can be used for this instruction.

- M9341 is the pulse output monitor of the Y0. (M9361, M9381, M9401) When the Y0 is generating pulses, M9341 = "ON"
- M9342 is the positioning completed flag of the Y0. (M9362, M9382, M9402) When the Y0's positioning instruction is completed, M9342 = "ON". Turn "OFF" the condition contact of the completed instruction will lead the flag M9342 "OFF".
- M9343 is the positioning abnormal stop flag of the Y0. (M9363, M9383, M9403) Trigger any related compulsive stop flag or the forward / reverse limit switch during the unfinished Y0 positioning function, will cause Y0 stops to generate pulses and let the M9343 = "ON" to indicate this stop is abnormal. Turn "OFF" the condition contact of the activated instruction will lead the flag M9343 "OFF"
- M9345 is the flag to stop the Y0 generating pulse string (by gradually slow down). (M9365, M9385, M9405) When the M9345 is turned "ON", the pulse generating at the Y0 will gradually slow down then stop. After the stop signal is discontinued, to make it move must release the positioning instruction then restart.
- M9346 is the flag to imminently stop the Y0 generating pulse string. (M9366, M9386, M9406) When the M9346 is turned "ON", the pulse generating at the Y0 will stop imminently (without to slow down). After the stop signal is discontinued, to make it move must release the positioning instruction then restart.
- Forward / Reverse limit switch (under the "Positioning Parameter Setup" of the Ladder Master S). When the forward / reverse limit switch is active, that limits all the forward / reverse actions. That makes the forward / reverse motor to slow down and stop.
- At this moment, only the moving request of opposite direction can be accepted.
- D9348 is the multiple ratio of the Y0 positioning speed. (D9368, D9388, D9408) The actual operating speed at Y0 positioning is equal to the operating speed designated by the positioning instruction multiplied by the value of the multiple ratio.

During the instruction is operating, to change the ratio could modify the Y0's actual operating speed. Its available value range to be set is $1 \sim 30,000$ (Unit: 0.1%), therefore the speed multiple ratio is $0.1\% \sim 3,000.0\%$.

D9351, D9350 display the positioning current speed of Y0. (DD9370, DD9390, DD9410) When the instruction is active, this 32-bit special register shows the Present Value of operating speed.

When M0 = "ON", as the diagram above, the Y0 by the set operating speed (S₂) to generate pulses. Until the designated interrupt signal X0 is input ("OFF" → "ON"), it will continuously generate the corresponding number of pulses then stop. That pulse number comes from the set value of distance to be moved after the interrupt is input (S1). When the number of distance is finished, the positioning action is completed.

Assume that the rotational mode "Increase Present Value when forward" is selected. If the set value of the distance to be moved after the interrupt (\underline{S}_1) is a positive number, that needs to increase the Present Value, thus the instruction will turn the Y4 "ON" to drive motor moves forward. On the other hand, the set value of the distance to be moved after the interrupt (\underline{S}_1) is a negative number, that needs to decrease the Present Value, thus the instruction will turn the Y4 "OFF" to drive motor moves backward.

The interrupt signal in this instruction is appointed by the "Positioning Parameter Setup" under the Ladder Master S. Also, the signal must input from $X0 \sim X7$, so the PLC can have an instant interrupt reaction.

- Besides, the M9350 can be used to assign the interrupt trigger mode ("OFF" = rising edge; "ON" = falling edge).
- (S_1) is for to assign the distance to be moved after the interrupt is input. If the $(S_1) > 0$, it will move in the direction of increasing the Present Value. Conversely, if the $(S_1) < 0$, it will move in the direction of decreasing the Present Value.
- (\underline{S}_2) is for to assign the operating speed. The available range is from the bias speed (D9342) to the maximum speed (D9341, D9340). When $(\underline{S}_2) <$ the bias speed, it will be regarded as the bias speed; when $(\underline{S}_2) >$ the maximum speed, it will be regarded as the maximum speed.
- (D) is for to assign the output point of generated pulse string.
 It can only appoint to a point between Y0~Y3, and must use a transistor or line driver output Main Unit.

(D2) is for to assign the output point of direction control signal.

When the output of direction control signal is "ON", the motor moves forward; conversely, "OFF" moves reverse. Besides, the "ON"/"OFF" status of the direction control signal is decided by both the +/– numerical value of the (S1) and the parameter of the rotational direction (increase Present Value when forward / backward) are executed.

- When the M0 turns from "OFF" to "ON", this DVIT instruction uses the parameters of the bias speed (D9342), the maximum speed (D9341, D9340), the acceleration time (D9343), the deceleration time (D9344), the distance to be moved after the interrupt (\underline{S}_1) , the operating speedt (\underline{S}_2) and the speed multiple ratio (D9348) to decide the positioning procedures. During the instruction is in operation, could change the value of the (\underline{S}_2) operating speed or the speed multiple ratio (D9348) to modify the real operating speed, but to change other parameters above will be regarded as invalid.
- When this instruction has an interrupt input after it is active and it completes the (S1) specific distance move after the interrupt, that will let the positioning completed flag M9342 = "ON".
- If the condition contact M0 turns "OFF" during the pulse is output, the movement will be gradually slow down then stop. Thus, that will not to turn the positioning completed flag M9342 "ON".
- This instruction can be written as many times as required and the points Y0~Y3 can be used to generate pulses individually at the same time.
- The example below uses Y0 output axis for the description of this instruction since the output axes Y1~Y3 have the same function. The three devices between parentheses () indicate those are corresponding to Y1~Y3 respectively.
 - M9340 indicates the Y0 is occupied by a positioning instruction. (M9360, M9380, M9400) Any instruction uses the Y0 to generate pulse string and it is already activated, that will occupy the resource of Y0 axis consistently. However, turn the condition contact of this activated instruction "OFF" could release the resource. Thus, before to activate this instruction should confirm the state of M9340. If the M9340 = "ON", that indicates the Y0 is BUSY to generate pulse string or other instruction still occupies the resource of the Y0. Even though, the condition contact of this instruction is "ON", the instruction will not execute. If the M9340 = "OFF", that indicates the Y0 is in the READY status (its resource is free to use), the Y0 can be used for this instruction.
 - M9341 is the pulse output monitor of the Y0. (M9361, M9381, M9401) When the Y0 is generating pulses, M9341 = "ON".
 - M9342 is the positioning completed flag of the Y0. (M9362, M9382, M9402) When the Y0's positioning instruction is completed, M9342 = "ON". Turn "OFF" the condition contact of the completed instruction will lead the flag M9342 "OFF".
 - M9343 is the positioning abnormal stop flag of the Y0. (M9363, M9383, M9403) Trigger any related compulsive stop flag or the forward / reverse limit switch during the unfinished Y0 positioning function, will cause Y0 stops to generate pulses and let the M9343 = "ON" to indicate this stop is abnormal. Turn "OFF" the condition contact of the activated instruction will lead the flag M9343 "OFF".
 - M9345 is the flag to stop the Y0 generating pulse string (by gradually slow down). (M9365, M9385, M9405) When the M9345 is turned "ON", the pulse generating at the Y0 will gradually slow down then stop. After the stop signal is discontinued, to make it move must release the positioning instruction then restart.
 - M9346 is the flag to imminently stop the Y0 generating pulse string. (M9366, M9386, M9406) When the M9346 is turned "ON", the pulse generating at the Y0 will stop imminently (without to slow down). After the stop signal is discontinued, to make it move must release the positioning instruction then restart.
 - M9350 is the flag to assign the Y0 interrupt input trigger mode. (M9370, M9390, M9410) When the M9350 is "OFF", the interrupt will be triggered by the rising edge of the designated input point. When the M9350 is "ON", the interrupt will be triggered by the falling edge of the designated input point.
 - Forward / Reverse limit switch (under the "Positioning Parameter Setup" of the Ladder Master S). When the forward / reverse limit switch is active, that limits all the forward / reverse actions. That makes the forward / reverse motor to slow down and stop. At this moment, only the moving request of opposite direction can be accepted.
 - D9348 is the multiple ratio of the Y0 positioning speed. (D9368, D9388, D9408) The actual operating speed at Y0 positioning is equal to the operating speed designated by the positioning instruction multiplied by the value of the multiple ratio. During the instruction is operating, to change the ratio could modify the Y0's actual operating speed. Its available value range to be set is 1~30,000 (Unit: 0.1%), therefore the speed multiple ratio is 0.1%~3,000.0%. D9351, D9350 display the positioning current speed of Y0. (DD9370, DD9390, DD9410)
 - When the instruction is active, this 32-bit special register shows the Present Value of operating speed.
 - D9355, D9354 display the positioning location (Present Value PV) of Y0. (DD9374, DD9394, DD9414) When the power is turned from "OFF" to "ON", the initial value of this 32-bit special register is 0. Afterward, to operate any related positioning control instruction will affect to its content, it shows the current location of Y0.

• When M0 = "ON", as the diagram above, at the first stage, the Y0 uses the operating speed #1 (D20) to generate pulses. Since the designate speed change signal X10 is input ("OFF" → "ON"), it will uses the operating speed #2 (D21) to generate pulses. Until the designated interrupt signal X0 is input ("OFF" → "ON"), it will continuously generate the particular number of pulses then stop. That pulse number comes from the set value of distance to be moved after the interrupt is input (S1). When the number of distance is finished, the positioning action is completed. Assume that the rotational mode "Increase Present Value when forward" is selected. If the set value of the distance to be moved after the interrupt (S1) is a positive number, that needs to increase the Present Value, thus the instruction will turn the Y4 "ON" to drive motor moves forward. On the other hand, the set value of the distance to be moved after the interrupt (S1) is a negative number, that needs to decrease the Present Value, thus the instruction will turn the Y4 "OFF" to drive motor moves backward.

The interrupt signal and the speed change signal in this instruction are appointed by the "Positioning Parameter Setup" under the Ladder Master S. However, the interrupt signal must use $X0 \sim X7$ and the M9350 can be used to assign the interrupt trigger mode ("OFF" = rising edge; "ON" = falling edge).

 (S_1) is for to assign the distance to be moved after the interrupt is input. If the $(S_1) > 0$, it will move in the direction of increasing the Present Value. Conversely, if the $(S_1) < 0$, it will move in the direction of decreasing the Present Value.

 (\underline{S}_2) is for to assign the operating speed #1 and the following (\underline{S}_2) +1 is for to assign the operating speed #2. The available range is from the bias speed (D9342) to the maximum speed (D9341, D9340). When the content value of the operating speed < the bias speed, it will be regarded as the bias speed; when the content value of the operating speed > the maximum speed, it will be regarded as the maximum speed.

- $(\overline{D_1})$ is for to assign the output point of generated pulse string.
 - It can only appoint to a point between Y0~Y3, and must use a transistor or line driver output Main Unit.
- (D_2) is for to assign the output point of direction control signal.
- When the output of direction control signal is "ON", the motor moves forward; conversely, "OFF" moves reverse. Besides, the "ON"/"OFF" status of the direction control signal is decided by both the +/– numerical value of the distance (S) and the parameter of the rotational direction (increase Present Value when forward / backward) are executed.
- When the M0 turns from "OFF" to "ON", this DV2I instruction uses the parameters of the bias speed (D9342), the maximum speed (D9341, D9340), the acceleration time (D9343), the deceleration time (D9344), the distance to be moved after the interrupt (S1), the operating speeds and the speed multiple ratio (D9348) to decide the positioning procedures. During the instruction is in operation, could change the value of the operating speeds or the speed multiple ratio (D9348) to modify the real operating speed, but to change other parameters above will be regarded as invalid.
- When this instruction has an interrupt input after it changes to the operating speed #2 and it completes the (S1) specific distance move after the interrupt, that will let the positioning completed flag M9342 = "ON".
- If the condition contact M0 turns "OFF" during the pulse is output, the movement will be gradually slow down then stop. Thus, that will not to turn the positioning completed flag M9342 "ON".
- This instruction can be written as many times as required and the points Y0~Y3 can be used to generate pulses individually at the same time.
- The example below uses Y0 output axis for the description of this instruction since the output axes Y1~Y3 have the same function. The three devices between parentheses () indicate those are corresponding to Y1~Y3 respectively.

M9340 indicates the Y0 is occupied by a positioning instruction. (M9360, M9380, M9400) Any instruction uses the Y0 to generate pulse string and it is already activated, that will occupy the resource of Y0 axis consistently. However, turn the condition contact of this activated instruction "OFF" could release the resource. Thus, before to activate this instruction should confirm the state of M9340. If the M9340 = "ON", that indicates the Y0 is BUSY to generate pulse string or other instruction still occupies the resource of the Y0. Even though, the condition contact of this instruction is "ON", the instruction will not execute. If the M9340 = "OFF", that indicates the Y0 is in the READY status (its resource is free to use), the Y0 can be used for this instruction.

M9341 is the pulse output monitor of the Y0. (M9361, M9381, M9401) When the Y0 is generating pulses, M9341 = "ON".

M9342 is the positioning completed flag of the Y0. (M9362, M9382, M9402) When the Y0's positioning instruction is completed, M9342 = "ON". Turn "OFF" the condition contact of the completed instruction will lead the flag M9342 "OFF".

M9343 is the positioning abnormal stop flag of the Y0. (M9363, M9383, M9403) Trigger any related compulsive stop flag or the forward / reverse limit switch during the unfinished Y0 positioning function, will cause Y0 stops to generate pulses and let the M9343 = "ON" to indicate this stop is abnormal. Turn "OFF" the condition contact of the activated instruction will lead the flag M9343 "OFF".

M9345 is the flag to stop the Y0 generating pulse string (by gradually slow down). (M9365, M9385, M9405) When the M9345 is turned "ON", the pulse generating at the Y0 will gradually slow down then stop. After the stop signal is discontinued, to make it move must release the positioning instruction then restart.

M9346 is the flag to imminently stop the Y0 generating pulse string. (M9366, M9386, M9406) When the M9346 is turned "ON", the pulse generating at the Y0 will stop imminently (without to slow down). After the stop signal is discontinued, to make it move must release the positioning instruction then restart.

M9350 is the flag to assign the Y0 interrupt input trigger mode. (M9370, M9390, M9410) When the M9350 is "OFF", the interrupt will be triggered by the rising edge of the designated input point. When the M9350 is "ON", the interrupt will be triggered by the falling edge of the designated input point.

Forward / Reverse limit switch (under the "Positioning Parameter Setup" of the Ladder Master S). When the forward / reverse limit switch is active, that limits all the forward / reverse actions. That makes the forward / reverse motor to slow down and stop. At this moment, only the moving request of opposite direction can be accepted.

D9348 is the multiple ratio of the Y0 positioning speed. (D9368, D9388, D9408) The actual operating speed at Y0 positioning is equal to the operating speed designated by the positioning instruction multiplied by the value of the multiple ratio. During the instruction is operating, to change the ratio could modify the Y0's actual operating speed.

Its available value range to be set is 1~30,000 (Unit: 0.1%), therefore the speed multiple ratio is 0.1%~3,000.0%.

D9351, D9350 display the positioning current speed of Y0. (DD9370, DD9390, DD9410) When the instruction is active, this 32-bit special register shows the Present Value of operating speed.

 When M0 = "ON", as the diagram above, the Y0 uses operating speed (S₂) and the set value of moving distance (S₁) to generate the corresponding number of pulses. If the number of distance is finished, it stops to generate pulses, the positioning action is completed. However, the designated interrupt signal X0 is input ("OFF" → "ON") during the instruction generating pulses, it will immediately slow down then stop, also the positioning action is regarded as completed.

Assume that the rotational mode "Increase Present Value when forward" is selected. If the set value of the distance to be moved (\underline{S}_1) is a positive number, that needs to increase the Present Value, thus the instruction will turn the Y4 "ON" to drive motor moves forward. On the other hand, the set value of the moving distance (\underline{S}_1) is a negative number, that needs to decrease the Present Value, thus the instruction will turn the Y4 "OFF" to drive motor moves backward.

The interrupt signal in this instruction is appointed by the "Positioning Parameter Setup" under the Ladder Master S. Also, the interrupt signal must use an input between the $X0 \sim X7$ so the PLC can have an instant interrupt reaction. Besides, the M9350 can be used to assign the interrupt trigger mode ("OFF" = rising edge; "ON" = falling edge).

(S1) is for to assign the moving distance. If the $(S_1) > 0$, it will move in the direction of increasing the Present Value. Conversely, if the $(S_1) < 0$, it will move in the direction of decreasing the Present Value.

 (\underline{S}_2) is for to assign the operating speed. The available range is from the bias speed (D9342) to the maximum speed (D9341, D9340). When $(\underline{S}_2) <$ the bias speed, it will be regarded as the bias speed; when $(\underline{S}_2) >$ the maximum speed, it will be regarded as the maximum speed.

(D) is for to assign the output point of generated pulse string.
 It can only appoint to a point between Y0~Y3, and must use a transistor or line driver output Main Unit.

 $(\overline{D_2})$ is for to assign the output point of direction control signal.

When the output of direction control signal is "ON", the motor moves forward; conversely, "OFF" moves reverse.

Besides, the "ON"/"OFF" status of the direction control signal is decided by both the +/- numerical value of the distance (S) and the parameter of the rotational direction (increase Present Value when forward / backward) are executed.

- When the M0 turns from "OFF" to "ON", this DVSR instruction uses the parameters of the bias speed (D9342), the maximum speed (D9341, D9340), the acceleration time (D9343), the deceleration time (D9344), the moving distance (S1), the operating speed (S2) and the speed multiple ratio (D9348) to decide the positioning procedures. During the instruction is in operation, could change the value of the operating speed (S2) or the speed multiple ratio (D9348) to modify the real operating speed, but to change other parameters above will be regarded as invalid.
- When this instruction is completed by either the (S) specific moving distance or the designated interrupt signal is input during the process to cause it immediately into the procedure of gradually slow down then stop, that will let the positioning completed flag M9342 = "ON".
- If the condition contact M0 turns "OFF" during the pulse is output, the movement will be gradually slow down then stop. Thus, that will not to turn the positioning completed flag M9342 "ON".
- This instruction can be written as many times as required and the points Y0~Y3 can be used to generate pulses individually at the same time.
- The example below uses Y0 output axis for the description of this instruction since the output axes Y1~Y3 have the same function. The three devices between parentheses () indicate those are corresponding to Y1~Y3 respectively.

M9340 indicates the Y0 is occupied by a positioning instruction. (M9360, M9380, M9400) Any instruction uses the Y0 to generate pulse string and it is already activated, that will occupy the resource of Y0 axis consistently. However, turn the condition contact of this activated instruction "OFF" could release the resource. Thus, before to activate this instruction should confirm the state of M9340. If the M9340 = "ON", that indicates the Y0 is BUSY to generate pulse string or other instruction still occupies the

resource of the Y0. Even though, the condition contact of this instruction is "ON", the instruction will not execute. If the M9340 = "OFF", that indicates the Y0 is in the READY status (its resource is free to use), the Y0 can be used for this instruction.

M9341 is the pulse output monitor of the Y0. (M9361, M9381, M9401) When the Y0 is generating pulses, M9341 = "ON".

M9342 is the positioning completed flag of the Y0. (M9362, M9382, M9402) When the Y0's positioning instruction is completed by either the (S1) specific distance movement is ready or the designated interrupt signal is input to cause it gradually slow down then stop, M9342 = "ON". Turn "OFF" the condition contact of the completed instruction will lead the flag M9342 "OFF".

M9343 is the positioning abnormal stop flag of the Y0. (M9363, M9383, M9403) Trigger any related compulsive stop flag or the forward / reverse limit switch during the unfinished Y0 positioning function, will cause Y0 stops to generate pulses and let the M9343 = "ON" to indicate this stop is abnormal. Turn "OFF" the condition contact of the activated instruction will lead the flag M9343 "OFF".

M9345 is the flag to stop the Y0 generating pulse string (by gradually slow down). (M9365, M9385, M9405) When the M9345 is turned "ON", the pulse generating at the Y0 will gradually slow down then stop. After the stop signal is discontinued, to make it move must release the positioning instruction then restart.

M9346 is the flag to imminently stop the Y0 generating pulse string. (M9366, M9386, M9406) When the M9346 is turned "ON", the pulse generating at the Y0 will stop imminently (without to slow down). After the stop signal is discontinued, to make it move must release the positioning instruction then restart.

M9350 is the flag to assign the Y0 interrupt input trigger mode. (M9370, M9390, M9410) When the M9350 is "OFF", the interrupt will be triggered by the rising edge of the designated input point. When the M9350 is "ON", the interrupt will be triggered by the falling edge of the designated input point.

Forward / Reverse limit switch (under the "Positioning Parameter Setup" of the Ladder Master S). When the forward / reverse limit switch is active, that limits all the forward / reverse actions. That makes the forward / reverse motor to slow down and stop. At this moment, only the moving request of opposite direction can be accepted.

D9348 is the multiple ratio of the Y0 positioning speed. (D9368, D9388, D9408) The actual operating speed at Y0 positioning is equal to the operating speed designated by the positioning instruction multiplied by the value of the multiple ratio. During the instruction is operating, to change the ratio could modify the Y0's actual operating speed.

Its available value range to be set is 1~30,000 (Unit: 0.1%), therefore the speed multiple ratio is 0.1%~3,000.0%. D9351, D9350 display the positioning current speed of Y0. (DD9370, DD9390, DD9410)

When the instruction is active, this 32-bit special register shows the Present Value of operating speed.

D9355, D9354 = D11, D10), it stops to generate pulses, the positioning action is completed. However, the designated interrupt signal X0 is input ("OFF" \rightarrow "ON") during the instruction generating pulses, it will immediately slow down then stop, also the positioning action is regarded as completed.

Assume that the rotational mode "Increase Present Value when forward" is selected. If the error (distance to be moved) is a positive number (the moving target > the axis's Present Value), that needs to increase the Present Value, thus the instruction will turn the Y4 "ON" to drive motor moves forward. ON the other hand, the error (distance to be moved) is a negative number (the moving target < the axis's Present Value), that needs to decrease the present value, thus the instruction will turn the Y4 "OFF" to drive motor moves backward.

The interrupt signal in this instruction is appointed by the "Positioning Parameter Setup" under the Ladder Master S. However, the interrupt signal must use $X0 \sim X7$ and the M9350 can be used to assign the interrupt trigger mode ("OFF" = rising edge; "ON" = falling edge).

 (S_1) is for to assign the moving target.

This moving target is an absolute point relative to the zero point. If the error is a positive $((S_1 - PV > 0))$, it will move in the direction of increasing the Present Value. Conversely, if the error is a negative $((S_1 - PV < 0))$, it will move in the direction of decreasing the Present Value.

 (\underline{S}_2) is for to assign the operating speed.

The available range is from the bias speed (D9342) to the maximum speed (D9341, D9340). When $(\underline{S}_2) <$ the bias speed, it will be regarded as the bias speed; when $(\underline{S}_2) >$ the maximum speed, it will be regarded as the maximum speed.

(D) is for to assign the output point of generated pulse string. It can only appoint to a point between Y0~Y3, and must use a transistor or line driver output Main Unit.

- $(\overline{D_2})$ is for to assign the output point of direction control signal.
 - When the output of direction control signal is "ON", the motor moves forward; conversely, "OFF" moves reverse. Besides, the "ON"/"OFF" status of the direction control signal is decided by both the +/- numerical value of the error ($(S_1 - PV)$ and the parameter of the rotational direction (increase Present Value when forward / backward) are executed.
- When the M0 turns from "OFF" to "ON", this DVSA instruction uses the parameters of the bias speed (D9342), the maximum speed (D9341, D9340), the acceleration time (D9343), the deceleration time (D9344), the moving target (\$1), the Present Value (PV, D9355, D9354), the operating speed (\$2) and the speed multiple ratio (D9348) to decide the positioning procedures. During the instruction is in operation, could change the value of the operating speed (\$2) or the speed multiple ratio (D9348) to modify the real operating speed, but to change other parameters above will be regarded as invalid.
- When this instruction is completed by either the movement (generates pulses to make its Present Value PV equal to the (S1) or the designated interrupt signal is input during the process to cause it immediately into the procedure of gradually slow down then stop, that will let the positioning completed flag M9342 = "ON".
- If the condition contact M0 turns "OFF" during the pulse is output, the movement will be gradually slow down then stop. Thus, that will not to turn the positioning completed flag M9342 "ON".
- This instruction can be written as many times as required and the points Y0~Y3 can be used to generate pulses individually at the same time.
- The example below uses Y0 output axis for the description of this instruction since the output axes Y1~Y3 have the same function. The three devices between parentheses () indicate those are corresponding to Y1~Y3 respectively.

M9340 indicates the Y0 is occupied by a positioning instruction. (M9360, M9380, M9400) Any instruction uses the Y0 to generate pulse string and it is already activated, that will occupy the resource of Y0 axis consistently. However, turn the condition contact of this activated instruction "OFF" could release the resource. Thus, before to activate this instruction should confirm the state of M9340. If the M9340 = "ON", that indicates the Y0 is BUSY to generate pulse string or other instruction still occupies the resource of the Y0. Even though, the condition contact of this instruction is "ON", the instruction will not execute. If the M9340 = "OFF", that indicates the Y0 is in the READY status (its resource is free to use), the Y0 can be used for this instruction.

M9341 is the pulse output monitor of the Y0. (M9361, M9381, M9401) When the Y0 is generating pulses, M9341 = "ON".

M9342 is the positioning completed flag of the Y0. (M9362, M9382, M9402) When the Y0's positioning instruction is completed by either the move target is arrived (Present Value PV equal to the (\underline{S}_1)) or the designated interrupt signal is input to cause it gradually slow down then stop, M9342 = "ON". Turn "OFF" the condition contact of the completed instruction will lead the flag M9342 "OFF".

M9343 is the positioning abnormal stop flag of the Y0. (M9363, M9383, M9403) Trigger any related compulsive stop flag or the forward / reverse limit switch during the unfinished Y0 positioning function, will cause Y0 stops to generate pulses and let the M9343 = "ON" to indicate this stop is abnormal. Turn "OFF" the condition contact of the activated instruction will lead the flag M9343 "OFF".

M9345 is the flag to stop the Y0 generating pulse string (by gradually slow down). (M9365, M9385, M9405) When the M9345 is turned "ON", the pulse generating at the Y0 will gradually slow down then stop. After the stop signal is discontinued, to make it move must release the positioning instruction then restart.

M9346 is the flag to imminently stop the Y0 generating pulse string. (M9366, M9386, M9406) When the M9346 is turned "ON", the pulse generating at the Y0 will stop imminently (without to slow down). After the stop signal is discontinued, to make it move must release the positioning instruction then restart.

M9350 is the flag to assign the Y0 interrupt input trigger mode. (M9370, M9390, M9410) When the M9350 is "OFF", the interrupt will be triggered by the rising edge of the designated input point. When the M9350 is "ON", the interrupt will be triggered by the falling edge of the designated input point.

Forward / Reverse limit switch (under the "Positioning parameter setting" of the Ladder Master S). When the forward / reverse limit switch is active, that limits all the forward / reverse actions. That makes the forward / reverse motor to slow down and stop. At this moment, only the moving request of opposite direction can be accepted.

D9348 is the multiple ratio of the Y0 positioning speed. (D9368, D9388, D9408) The actual operating speed at Y0 positioning is equal to the operating speed designated by the positioning instruction multiplied by the value of the multiple ratio. During the instruction is operating, to change the ratio could modify the Y0's actual operating speed. Its available value range to be set is 1~30.000 (Unit: 0.1%), therefore the speed multiple ratio is 0.1%~3.000.0%.

D9351, D9350 display the positioning current speed of Y0. (DD9370, DD9390, DD9410) When the instruction is active, this 32-bit special register shows the Present Value of operating speed.

When the content absolute value of the operating speed (S) < the bias speed, it will be regarded as the bias speed; when the content absolute value of the operating speed (S) > the maximum speed, it will be regarded as the maximum speed.

(D1) is for to assign the output point of generated pulse string.

It can only appoint to a point between Y0~Y3, and must use a transistor or line driver output Main Unit.

(D2) is for to assign the output point of direction control signal. When the output of direction control signal is "ON", the motor moves forward; conversely, "OFF" moves reverse. Besides, the "ON"/"OFF" status of the direction control signal is decided by both the +/- numerical value of the operating speed (S) and the parameter of the rotational direction (increase Present Value when forward / backward) are executed.

When the M0 turns from "OFF" to "ON", this DLSV instruction uses the parameters of the bias speed (D9342), the maximum speed (D9341, D9340), the acceleration time (D9343), the deceleration time (D9344), the operating speed (S) and the speed multiple ratio (D9348) to decide the positioning procedures. During the instruction is in operation, could change the value of the operating speed (S) or the speed multiple ratio (D9348) to modify the real operating speed, but to change other parameters above will be regarded as invalid.

- If the operating speed (S) changes and that +/- numerical value through this change is opposite, it will gradually slow down then stop. After a brief pause, carry on the operation of the opposite direction immediately.
- This instruction can be written as many times as required and the points Y0~Y3 can be used to generate pulses individually at the same time.
- The example below uses Y0 output axis for the description of this instruction since the output axes Y1~Y3 have the same function. The three devices between parentheses () indicate those are corresponding to Y1~Y3 respectively.

M9340 indicates the Y0 is occupied by a positioning instruction. (M9360, M9380, M9400) Any instruction uses the Y0 to generate pulse string and it is already activated, that will occupy the resource of Y0 axis consistently. However, turn the condition contact of this activated instruction "OFF" could release the resource. Thus, before to activate this instruction should confirm the state of M9340. If the M9340 = "ON", that indicates the Y0 is BUSY to generate pulse string or other instruction still occupies the resource of the Y0. Even though, the condition contact of this instruction is "ON", the instruction will not execute. If the M9340 = "OFF", that indicates the Y0 is in the READY status (its resource is free to use), the Y0 can be used for this instruction.

M9341 is the pulse output monitor of the Y0. (M9361, M9381, M9401) When the Y0 is generating pulses, M9341 = "ON".

M9343 is the positioning abnormal stop flag of the Y0. (M9363, M9383, M9403) Trigger any related compulsive stop flag or the forward / reverse limit switch during the unfinished Y0 positioning function, will cause Y0 stops to generate pulses and let the M9343 = "ON" to indicate this stop is abnormal. Turn "OFF" the condition contact of the activated instruction will lead the flag M9343 "OFF".

M9345 is the flag to stop the Y0 generating pulse string (by gradually slow down). (M9365, M9385, M9405) When the M9345 is turned "ON", the pulse generating at the Y0 will gradually slow down then stop. After the stop signal is discontinued, to make it move must release the positioning instruction then restart.

M9346 is the flag to imminently stop the Y0 generating pulse string. (M9366, M9386, M9406) When the M9346 is turned "ON", the pulse generating at the Y0 will stop imminently (without to slow down). After the stop signal is discontinued, to make it move must release the positioning instruction then restart.

Forward / Reverse limit switch (under the "Positioning Parameter Setup" of the Ladder Master S). When the forward / reverse limit switch is active, that limits all the forward / reverse actions. That makes the forward / reverse motor to slow down and stop. At this moment, only the moving request of opposite direction can be accepted.

D9348 is the multiple ratio of the Y0 positioning speed. (D9368, D9388, D9408) The actual operating speed at Y0 positioning is equal to the operating speed designated by the positioning instruction multiplied by the value of the multiple ratio. During the instruction is operating, to change the ratio could modify the Y0's actual operating speed.

Its available value range to be set is $1 \sim 30,000$ (Unit: 0.1%), therefore the speed multiple ratio is $0.1\% \sim 3,000.0\%$.

D9351, D9350 display the positioning current speed of Y0. (DD9370, DD9390, DD9410) When the instruction is active, this 32-bit special register shows the Present Value of operating speed.

 When the M0 = "ON", the DTBL instruction starts to sequentially control the Y0 by the prepared positioning table "Y0_PROCEDURE_TBL". At the very beginning, that M-code register D9349 will be set to -1. Also the working area D100~D103 will be occupied to store the state of instruction execution.

(S1) is the procedure table to describe the positioning orders.

The example table below is a series of procedures for the data table positioning, that is provided by the programming tool Ladder Master S.

	Control Code	Position Data	Speed Data	M-code Data
Step No.	Could use K, D or R (by a 16-bit data)	Could use K, D or R (by a 32-bit data)	Could use K, D or R (by a 32-bit data)	Could use K, D or R (by a 16-bit data)
0	Continuous relative positioning Control Code (3)	Position #0 1,500	Speed #0 1,200	–1
1	Continuous relative positioning Control Code (3)	Position #1 1,000	Speed #1 1,800	-1
2	Continuous relative positioning Control Code (3)Position #2 1,200Speed #2 600		Speed #2 600	-1
3	END, Control Code (0)	-1	-1	-1

Control Code:

This code is to assign a positioning function for each step, which has 6 different functions to choose from.

Control Code	Control Function	Description
0	END	One procedure table can store many positioning steps (each step needs 4 components to describe), then the END is the finish code to close this table. When the END code is executed, the Execution Completed Flag M9029 will "ON" for a Scan Time to indicate all the steps in the procedure table are finished.
1	Single relative positioning	This relative positioning will stand-by when the step is completed, that moving distance is defined by the content value at the Position Data and its +/- numerical value decides the moving direction. During the instruction operates, could change its Speed Data to modify the operating speed, but to change Position Data is invalid.
2	Single absolute positioning	This absolute positioning will stand-by when the step's target is arrived, the target is defined by the content value at the Position Data. Since the target is an absolute point relative to the zero point, the moving distance = (Position Data – PV) and that calculated +/– numerical value decides the direction. During the instruction operates, could change its Speed Data to modify the operating speed, but to change Position Data is invalid.
3	Continuous relative positioning	This relative positioning will continue to the next step when the current step is completed. Each step has its own Position Data and Speed Data, to orderly perform a series of steps can become a multiple speed positioning. If a break is required during the continuous relative positioning, it will into stand-by when this step is finished, then waiting for the restart condition to perform the next step.
4	Continuous absolute positioning	This absolute positioning will continue to the next step when the target of current step is arrived. Each step has its own Position Data and Speed Data, to orderly perform a series of steps can become a multiple speed positioning. If a break is required during the continuous absolute positioning, it will into stand-by when this step is finished, then waiting for the restart condition to perform the next step.
5	JMP	Jump to the specific step to perform. At this function, its Position Data is used to appoint the destination step number.

To start a new step (not by continuous), it requires the M-code register D9349 = -1 (OFF) at the time. And at the beginning, should trigger the Table positioning start signal M9347 = "OFF" \rightarrow "ON".

- The Continuous Relative Positioning and Continuous Absolute Positioning Functions

	0			
Step No.	Control Code	Position Data	Speed Data	M-code Data
0	Continuous relative positioning (3)	D10	1,800	10,000
1	Continuous relative positioning (3)	2,000	1,200	100 [*]
2	Continuous relative positioning (3)	1,000	600	10,002
3	Continuous relative positioning (3)	3,000	D20	-1
4	END(0)	-1	-1	-1

This example is using the continuous relative positioning

When a step's M-code is assigned to the AFTER mode and it is finished, the positioning process is into the stand-by, will not go to the next step continuously. Must use the M-code clear command to clear its related active flag and register, then trigger the start signal again to go to the next step. Please refer to the M-code data on the next page for more details.

Position Data:

This data is related to the assigned Control Code. It is the moving distance for a relative positioning or the moving target for an absolute positioning.

At the relative positioning, it is used to assign the moving distance. If the moving distance > 0, will control the direction to increase the Present Value. If the moving distance < 0, will control the direction to decrease the Present Value.

At the absolute positioning, it is used to assign the moving target. This target is an absolute point relative to the zero point, thus the error = (moving target – Present Value PV). If the error > 0, will control the direction to increase the Present Value. If the error < 0, will control the direction to decrease the Present Value.

At the jump (JMP) function, this Position Data is used to appoint the step number of the jumping destination.

This Position Data is a 32-bit data, can use a constant number K or register D, R. When the register is used, that will occupy a pair of D or R. During the instruction is in operation, to change this data will be regarded as invalid.

Speed Data:

It is used to assign the operating speed. The available range is from the bias speed (D9342) to the maximum speed (D9341, D9340).

When the operating speed < the bias speed, it will be regarded as the bias speed; when the operating speed > the maximum speed, it will be regarded as the maximum speed.

This Speed Data is a 32-bit data, can use a constant number K or register D, R. When the register is used, that will occupy a pair of D or R. During the instruction is in operation, to change this data could modify the real operating speed.

M-code Data:

The M-code Data is the source of the M-code register, that mechanism can be used to connect the executive status of the DTBL instruction with other applications. The available range at the M-code Data is $-1 \sim 32,767$. The DTBL instruction can give a number into the M-code register and turn "ON" the M-code active flag to tell a new event happening. By this mechanism, the user program can do the related control. After the step is finished and stand-by, should trigger the M-code clear command "OFF" \rightarrow "ON" to clear the M-code register and the M-code active flag, hence the instruction is able to execute the next step. In order to meet the actual requirements, the timing to give the M-code register and active flag can be separated to the AFTER and WITH modes.

M-code Data	Description
-1	This step will let the M-code register = -1 (OFF). The mechanism of the M-code is disabled.
0~9,999	The step is using the AFTER mode. When this step is finished, will copy this M-code Data to the M-code register and turn "ON" the M-code active flag, then stand-by for a new start signal.
10,000~32,767	The step is using the WITH mode. When the step is started, will copy this M-code Data to the M-code register and turn "ON" the M-code active flag.

 (\overline{S}_2) is the working area for the instruction.

S 2	Description
D100	To appoint the starting step number of the DTBL instruction.
D101	Displays a step number at the table of the DTBL instruction which is being performed.
D102~D103	The working area is required for the system when this instruction is performed.

(D) is for to assign the output point of generated pulse string.
 It can only appoint to a point between Y0~Y3, and must use a transistor or line driver output Main Unit.

- (D2) is for to assign the output point of direction control signal. When the output of direction control signal is "ON", the motor moves forward; conversely, "OFF" moves reverse. Besides, the "ON"/"OFF" status of the direction control signal is decided by both the +/- numerical value of the distance to be move and the parameter of the rotational direction (increase Present Value when forward / backward) are executed.
- During the instruction is in operation, could change the value of the speed multiple ratio (D9348) to modify the real operating speed.
- When a single step or a series of continuous steps is finished, the Positioning completed flag M9342 will "ON". After that, trigger the start signal M9347 = "OFF" → "ON" or turn "OFF" the instruction's condition contact will lead the completed flag M9342 "OFF".
- If the condition contact M0 turns "OFF" during the pulse is output, the movement will be gradually slow down then stop. Thus, that will not to turn the positioning completed flag M9342 "ON".
- When the Control Code END (0) is executed, the Execution Completed Flag M9029 will "ON" for a Scan Time to indicate all the steps in this procedure table are finished. Therefore, the programmer can use the M9029 to turn "OFF" the condition contact of the DTBL instruction, then the output point could be used by another instruction.
- This instruction can be used as many times as required and the points Y0~Y3 can be used to generate pulses individually at the same time.
- The example below uses Y0 output axis for the description of this instruction since the output axes Y1~Y3 have the same function. The three devices between parentheses () indicate those are corresponding to Y1~Y3 respectively.

M9340 indicates the Y0 is occupied by a positioning instruction. (M9360, M9380, M9400) Any instruction uses the Y0 to generate pulse string and it is already activated, that will occupy the resource of Y0 axis consistently. However, turn the condition contact of this activated instruction "OFF" could release the resource. Thus, before to activate this instruction should confirm the state of M9340.

If the M9340 = "ON", that indicates the Y0 is BUSY to generate pulse string or other instruction still occupies the resource of the Y0. Even though, the condition contact of this instruction is "ON", the instruction will not execute. If the M9340 = "OFF", that indicates the Y0 is in the READY status (its resource is free to use), the Y0 can be used for this instruction.

M9341 is the pulse output monitor of the Y0. (M9361, M9381, M9401) When the Y0 is generating pulses, M9341 = "ON".

M9342 is the positioning completed flag of the Y0. (M9362, M9382, M9402)

When a single step or a series of continuous steps is finished, the Positioning completed flag M9342 will "ON". After that, trigger the start signal M9347 = "OFF" \rightarrow "ON" or turn "OFF" the instruction's condition contact will lead the completed flag M9342 "OFF".

M9343 is the positioning abnormal stop flag of the Y0. (M9363, M9383, M9403) Trigger any related compulsive stop flag or the forward / reverse limit switch before the Control Code END (0) is executed, that will cause Y0 stops to generate pulses and let the M9343 = "ON" to indicate this stop is abnormal. Turn "OFF" the condition contact of the activated instruction will lead the flag M9343 "OFF".

M9345 is the flag to stop the Y0 generating pulse string (by gradually slow down). (M9365, M9385, M9405) When the M9345 is turned "ON", the pulse generating at the Y0 will gradually slow down then stop. After the stop signal is discontinued, to make it move must release the positioning instruction then restart.

M9346 is the flag to imminently stop the Y0 generating pulse string. (M9366, M9386, M9406) When the M9346 is turned "ON", the pulse generating at the Y0 will stop imminently (without to slow down). After the stop signal is discontinued, to make it move must release the positioning instruction then restart.

M9347 is the start signal for the Y0 to process the table positioning. (M9368, M9388, M9408) To start a new (not by the continuous) step at the procedure table must trigger the Table positioning start signal M9347 = "OFF" \rightarrow "ON".

M9348 is the M-code active flag for to indicate the Y0's M-code is effective. (M9367, M9387, M9407) When a step's designated event is happening, the axis's M-code active flag will turn "ON". Therefore, should trigger the relative M-code clear command "OFF" → "ON" to clear the M-code active flag "OFF". M9349 is the M-code clear command of the Y0. (M9369, M9389, M9409)

Trigger the M-code clear command "OFF" \rightarrow "ON" can reset the M-code register become –1 (OFF) and the M-code active flag "OFF".

Forward / Reverse limit switch (under the "Positioning Parameter Setup" of the Ladder Master S). When the forward / reverse limit switch is active, that limits all the forward / reverse actions. That makes the forward / reverse motor to slow down and stop.

At this moment, only the moving request of opposite direction can be accepted.

D9348 is the multiple ratio of the Y0 positioning speed. (D9368, D9388, D9408)

The actual operating speed at Y0 positioning is equal to the operating speed designated by the positioning instruction multiplied by the value of the multiple ratio.

During the instruction is operating, to change the ratio could modify the Y0's actual operating speed.

Its available value range to be set is 1~30,000 (Unit: 0.1%), therefore the speed multiple ratio is 0.1%~3,000.0%. D9349 is the M-code register of the Y0. (D9369, D9389, D9409)

When the DTBL instruction is "OFF" \rightarrow "ON", the M-code register will become -1 to indicate there is not have a M-code.

When a step has a M-code Data and its indicated event is happening, the M-code Data will copy to the M-code register D9349, hence that provides a useful symbol for the related control.

After the additional control is finished and this instruction is stand-by, should trigger the relative M-code clear command "OFF" \rightarrow "ON" to clear the M-code register to -1 (OFF), then a new step is allowed.

D9351, D9350 display the positioning current speed of Y0. (DD9370, DD9390, DD9410)

When the instruction is active, this 32-bit special register shows the Present Value of operating speed.

F١	٩C			Б	VDC							Absolute Current Value Read					1	2	Μ	3		
3	13		1	P	ADS	<u> </u>						Absolute Culterit value Read				\bigcirc	\bigcirc	\bigcirc	0			
	Oper	and									Dev	ices										
	open	ana	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"	'	
	S					•	0	0														
	D	1			•	•	0	0														
	D2	2								•	•		٠	٠	•	0	•					
	• S o	ccupi	es 3 c	ompon	ients		• D1 oc	cupies	3 com	nponer	its	• D	2 occu	pies 2	compo	onents						
																					_	

S : the points to receive the signal from the servo drive

D1 : the points to send the request signal to the servo drive

D2 : the device to store the decoded data (32-bit)

• The actual wiring for the example above can be illustrated with the diagram below:

Programmable Controller

rogrammable Controller			Servo Drive -		
VSM-32MT	MR-J2(S)-A		MR-H-A	[MR-J3-A
ABS(bit0) DO1	4	PF	24	ABST	25
ABS(bit1) ZSP	19	ZSP	23	ABSB0	22
is ready to be sent TLC	6	TLC	25	ABSB1	23
S/S SG	10	SG	16	DOCOM	46
Y10 SERVO ON SON	5	SON	12	SON	15
Y11 transmission mode ABSM	8	DI3	44	ABSM	17
Y12 transmission request ABSR	9	DI4	45	ABSR	18

• This instruction is for to read the Present Value of the built-in absolute positioning facility from a Mitsubishi servo drive.

- When the M0 turns from "OFF" to "ON", this ABS instruction starts to process the Present Value reading operation. When the operation is completed, the M9029 will turn "ON" for a Scan Time. If the M0 turns "OFF" during the operation, that will discontinue the reading action.
- The reading result of this instruction is from the current position register (by the pulse unit) in the servo drive, which is corresponded to the Present Value of the connected axis (by the pulse unit). Therefore, the (D2) is often assigned to the D9352 (PV of Y0 axis), D9372 (PV of Y1 axis), D9392 (PV of Y2 axis) or D9412 (PV of Y3 axis). When the (D_2) is assigned to one of the PV special registers above, it will fill the read value into the appointed special register. As the example above, that (D2) D9352 is the lower 16-bit of the Y0's PV register. When the instruction is completed, the 32-bit position data read from the connected servo drive will be stored into (D9353, D9352) and (D9355, D9354). After that, the position data between the PLC's Y0 and the servo drive will be equal.
- This instruction is a 32-bit instruction. Therefore, be sure to input DABS in the program.
- This instruction can only be used once in the program.
- Program example: (assume this servo drive is connected with the Y0 axis)

M9000		Please use an always-ON condition contact for the instruction.																		
		DABS X10 Y10 D9352 If its condition turns "OFF", the SERVO ON signal will be cut thus																		
	M0	K50 K50																		
	-1/1	T0 The timer of reading operation time-out (5 sec.)																		
	T0	The reading process of the ADC instruction is showned																		
		M1 The reading process of the ABS instruction is abnormal.																		
	M9029	SET M0 The reading process of the ABS instruction is completed.																		
FNC 314		-	M	PG	S 1 (S2) (D	1) (D 2				Hand	whee	l Posit	ioning				1	2 M	V 3 0 0
---	-------	------------------	-------------------------------------	---------	--------------	---------	-----------------	--------------	-----------------------	---------	--------------	-----------	---------	--------	-------	-----------	---------	--------	------	-------------------
										_								-	· ·	1
Oper	rand									Dev	ices									
		Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"	
S	1																0			
S	2													0						1
D	1																			1
D	2		•	•	•	0	0													1
• S1	= 0~3		• S2		oies 3	compo	nents		• D1 =	- Y0~1	r3	• If	the Da	is ass	igned	to a Y, i	it must	use Y)~Y7	1
M0 (S1) (S2) (D1) (D2 MPG K0 D100 Y0 Y4 MPG K0 D100 Y0 Y4 S1 : to assign the combination of pulse input points S2 : to assign work parameters, occupying 3 registers in total D1 : the output point of generated pulse string D2 : the output point of direction control signal																				
		P P E p	-phase oulse 3-phase oulse	e				- X0 - X1	VS ser Pulse input	ries PI	Pulse output	CK DIR				Serv	/o driv	e)
• Whe	en M0	= "C)N". th	ie inst	ructio	n is ac	tivate	d. As	the di	aaram	1 abov	e. the	A/B n	hase	pulse	s from	an ele	ectror	ic	

When M0 = "ON", the instruction is activated. As the diagram above, the A/B phase pulses from an electronic handwheel are connected to a pair of the PLC's high speed input points (X0~X7). When the handwheel is rotated, this instruction is based on the input pulses' speed and quantity to multiply with the electronic gear ratio then generates a pulse string from the output point in proportion.

Number of pulses output = Number of pulses input \times (Electronic gear ratio's numerator divided by its denominator) = (Number of pulses input \times D101) / D102

 (S_1) is for to assign the combination of pulse input points. It can be appoint to a number between 0~3.

<u>(S1)</u>	K0	K1	K2	K3
A-phase pulses input point	XO	X3	X2	X6
B-phase pulses input point	X1	X4	X5	Х7

 (S_2) is the head register to assign the operational parameters of the instruction.

<u>(S2</u>)	Description
D100	The response time of the handwheel inputs. (Unit: ms.)
D101	The numerator of the electronic gear ratio
D102	The denominator of the electronic gear ratio

The response time: Can be appointed to 1~500 ms.; if the set value is exceeded, it will be regarded as 5 ms.

The response time refers to the delay between pulse input and pulse output. If the response time is set too short, it may cause machinery vibration. In this case, can adjust it to a longer response time to improve that. The electronic gear ratio:

Number of pulses output = Number of pulses input \times Electronic gear ratio

= Number of pulses input × The dependence of the electronic gear ratio

The denominator of the electronic gear ratio

The available range of the numerator of the electronic gear ratio is $1 \sim 32,767$; it will be regarded as 1 if the value exceeds the range.

The available range of the denominator of the electronic gear ratio is $1 \sim 32,767$; it will be regarded as 1 if the value exceeds the range.

(D) is for to assign the output point of generated pulse string.
 It can only appoint to a point between Y0~Y3, and must use a transistor or line driver output Main Unit.

 $(\overline{D_2})$ is for to assign the output point of direction control signal.

When the output of direction control signal is "ON", the motor moves forward; conversely, "OFF" moves reverse. Besides, the "ON"/"OFF" status of the direction control signal is decided by the input order of A/B phase signals. If the A-phase is input earlier than the B-phase, the direction control signal turns "ON" to make the motor forward.

- The pulse output frequency of this instruction is proportionate to the frequency of pulses input and the electronic gear ratio only, other parameters are ineffectual. The positioning speed multiple ratio will not affect to the output frequency.
- The number of output pulses of this instruction is proportionate to the number of input pulses and the electronic gear ratio only, other parameters are ineffectual.
- When the related forward / reverse limit switch is activated during the MPG instruction generates pulses, that will cause the imminently stop.
- The condition contact turns "OFF" during the MPG instruction generates pulses, it will slow down then stop.
- This instruction can be written as many times as required and the points Y0~Y3 can be used to generate pulses individually at the same time.
- The example below uses Y0 output axis for the description of this instruction since the output axes Y1~Y3 have the same function. The three devices between parentheses () indicate those are corresponding to Y1~Y3 respectively.

M9340 indicates the Y0 is occupied by a positioning instruction. (M9360, M9380, M9400) Any instruction uses the Y0 to generate pulse string and it is already activated, that will occupy the resource of Y0 axis consistently. However, turn the condition contact of this activated instruction "OFF" could release the resource. Thus, before to activate this instruction should confirm the state of M9340. If the M9340 = "ON", that indicates the Y0 is BUSY to generate pulse string or other instruction still occupies the resource of the Y0. Even though, the condition contact of this instruction is "ON", the instruction will not execute. If the M9340 = "OFF", that indicates the Y0 is in the READY status (its resource is free to use), the Y0 can be used for this instruction.

M9341 is the pulse output monitor of the Y0. (M9361, M9381, M9401) When the Y0 is generating pulses, M9341 = "ON".

Forward / Reverse limit switch (under the "Positioning Parameter Setup" of the Ladder Master S). When the forward / reverse limit switch is active, that limits all the forward / reverse actions. That makes the forward / reverse motor to slow down and stop. At this moment, only the moving request of opposite direction can be accepted.

D9351, D9350 display the positioning current speed of Y0. (DD9370, DD9390, DD9410) When the instruction is active, this 32-bit special register shows the Present Value of operating speed.

D9355, D9354 display the positioning location (Present Value PV) of Y0. (DD9374, DD9394, DD9414) When the power is turned from "OFF" to "ON", the initial value of this 32-bit special register is set as 0. Afterward, to operate any related positioning control instruction will affect to its content, it shows the current location of Y0.

• Program example:

This example uses an electronic handwheel which with an X/Y axis switch and an $\times 1 / \times 10 / \times 100$ switch to perform the 2-axis handwheel control.

Connect the MPG control operational switch to the input X7.

Connect the A-phase signal of the handwheel to the input X3.

Connect the B-phase signal of the handwheel to the input X4.

Connect the X or Y axis selecting switch to the input X10. If the X10 = ON, then the MPG instruction is used to drive the X axis, else the X10 = OFF is to drive the Y axis.

Connect the $\times 1 / \times 10 / \times 100$ gear ratio selecting switch to inputs X11, X12 and X13.

M9002	
	MOV K5 D100 To set the response time $= 5$ ms.
	- MOV K1 D102 To set the denominator of the electronic gear ratio = 1
X10	
	- MOV K0 Z0 When the X axis is selected, Z0 = 0 (let Y0 and Y4 to control the servo drive)
X10	
	MOV K1 Z0 When the Y axis is selected, $Z0 = 1$ (let Y1 and Y5 to control the servo drive)
X11	
	MOVP K1 D101 To set the numerator of the electronic gear ratio = 1
X12	
	MOVP K10 D101 To set the numerator of the electronic gear ratio = 10
X13	
	MOVP K100 D101 To set the numerator of the electronic gear ratio = 100
X7	
	MPG K1 D100 Y0Z0 Y4Z0 the X axis (by Y0/Y4) or Y axis (by Y1/Y5).

FNC	Belative Linear Interpolation	1	2	Μ	3
315	Helative Ellear Interpolation	\bigcirc	0	\bigcirc	0

Operand									Devi	ices								
oporana	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"
S																		
D																0		
The 16-bit instruction, S occupies 9 components The 32-bit instruction, S occupies 18 components																		
• D = 0 or 1 (it uses Y0, Y1, Y4 and Y5 if D = 0; it uses Y2, Y3, Y6 and Y7 if D = 1)																		

S : the head register of the parameter block

D : the parameter to set the executing output points

- This instruction is for to reach the linear interpolation positioning between related two axes at a transistor or line driver PLC. When the instruction starts to operate, the two axes start to generate pulses at the same time then those will respectively produce the correspond numbers of pulses to achieve the axes' distance to be moved. After the instruction reaches the target and stops the pulse generating, this positioning is completed.
- When the M0 turns "ON", this relative instruction will move the position from the start-up point (X⁰, Y⁰) to the target point (X⁰+D1003, Y⁰+D1004). Thus, the output points Y0 (pulse string for X axis) and Y1 (pulse string for Y axis) separately use the parameters of D1000 (Composite Initial speed), D1001 (Composite Operating speed) and D1002 (Acceleration / Deceleration time) to generate pulses simultaneously. Also, the points Y4 (direction signal for X axis) and Y5 (direction signal for Y axis) will control the moving directions of the axes.

Description of the parameter block(S):

16-bit Instruction	32-bit Instruction	Description	Input Method
S	S +1, S	Composite initial speed Available range: $0 \sim 20k$ (Hz). If the set value < 0, will be regarded as 0; if the set value > 20k, will be regarded as 20k.	
(S) +1	(S)+3, (S)+2	Composite operating speed Available range: 10 (Hz) ~ the maximum speed. If the set value < 10, will be regarded as 10Hz; if the set value > the maximum speed, will be regarded as the maximum speed. The maximum speed at the VS1/VS2 is 50kHz; VSM/VS3 is 200kHz; VSM-28ML is 1MHz.	Designated by user program
S +2	(S) + 5, (S) + 4	Acceleration / Deceleration time (Available range: 0~32,000 ms.)	
S +3	(S) + 7, (S) + 6	Distance to be moved at the X-axis	
S +4	S +9, S +8	Distance to be moved at the Y-axis	
S +5	S +11, S +10	Bias speed at the X-axis	
S +6	S +13, S +12	Operating speed at the X-axis	Result storage area, produced
S +7	S +15, S +14	Bias speed at the Y-axis	by the
S +8	S +17, S +16	Operating speed at the Y-axis	

The designated composite initial speed must less than or equal to the composite operating speed.

The axis will not generate pulse if that calculated operating speed is less than 1 Hz.

Description of the parameter D that is used to set the executing output points:

	X a	ixis	Y axis					
	Pulse string output	Direction signal output	Pulse string output	Direction signal output				
KO	YO	Y4	Y1	Y5				
K1	Y2	Y6	Y3	Y7				

When the output of direction control signal is "ON", the motor moves forward; conversely, "OFF" moves reverse. Besides, the "ON"/"OFF" status of the direction control signal is decided by both the +/- numerical value of the axis's distance to be moved and the parameter of the rotational direction (increase Present Value when forward / backward)

• For example, before the instruction executes, the current position CP of start-up point is (X⁰, Y⁰) = (2000,1000), D1000 = K1000 (Composite initial speed Hz), D1001 = K3000 (Composite operating speed Hz), D1002 = K300 (Acceleration / Deceleration time ms.), D1003 = K4000 (Distance to be moved at the X-axis) and D1004 = K3000 (Distance to be moved at the Y-axis). When the M0 turns from "OFF" to "ON", this LIR instruction will compute the further parameters and fill D1005~D1008 up, then all the related signals of X-axis and Y-axis will start to output. Those points use the data at the parameter block to move the positioning path from (2000,1000) to (6000,4000), as shown below. Yaxis (Y1) Target point $(X^{0}+D1003,Y^{0}+D1004)$ = (6000,4000) D1004 = K3000 Start-up point(X⁰,Y⁰) = (2000, 1000)(0,0)> X axis (Y0) D1003 = K4000 The formulas to get the data at D1005~D1008 and the relationship diagram between the X-axis, Y-axis and timing: (D1004) (D1003) $-; D1007 = D1000 \times D1005 = D1000 \times (D1003)^{2} + (D1004)^{2}$ $(D1003)^{2} + (D1004)^{2}$ (D1003) (D1004) $D1006 = D1001 \times -; D1008 = D1001 \times \sqrt{(D1003)^2 + (D1004)^2}$ $\sqrt{(D1003)^2 + (D1004)^2}$ Output speed of Acceleration / Acceleration / X-axis (Y0) Deceleration time Deceleration time (D1002) (D1002) Operating speed of X-axis (D1006) (D1003) Distance of X-axis to be moved Bias speed of X-axis (D1005) → Time Output speed of Y-axis (Y1) Operating speed of Y-axis (D1008) (D1004) Distance of Y-axis Bias speed of to be moved Y-axis (D1007) > Time MO Condition contact M9340 and M9360 **READY/BUSY Flag** M9341 and M9361 Pulse output monitor flag M9342 and M9362 Positioning completed flag

- During the instruction is in operation, to change any related parameter will be regarded as invalid. Therefore, all the necessary data at the parameter block (S) should be set up completely before it starts.
- When this instruction completes the movement of specific distances at both axes, that will let the positioning completed flag M9342 and M9362 both = "ON".
- If the condition contact M0 turns "OFF" during the pulses are output, the movement of both axes will be gradually slow down then stop. Thus, that will not to turn the positioning completed flag M9342 or M9362 "ON" neither.
- The operation of this instruction will not be affected by the content values of the D9340~D9344, D9348, D9360~D9364, D9368, D9380~D9384, D9388, D9400~D9404 and D9408.
- When the distance to be moved at the X-axis and Y-axis are both equal to zero, this instruction will not execute.
- The instruction will occupy two pulse output points at the same time (\bigcirc = K0 uses Y0+Y1; \bigcirc = K1 uses Y2+Y3). The example below uses (Y0+Y1) output axes for the description of this instruction. Since the output axes (Y2+Y3) have the same function, the devices between parentheses () indicate those are corresponding to (Y2+Y3).

M9340/M9360 indicates that Y0/Y1 is occupied by a positioning instruction. (M9380/M9400) Any instruction uses the Y0/Y1 to generate pulse string and it is already activated, that will occupy the resource of Y0/Y1 axis consistently. However, turn the condition contact of this activated instruction "OFF" could release the resource.

Thus, before to activate this instruction should confirm the states of M9340 and M9360 both. If the M9340 = "ON", that indicates the Y0 is BUSY to generate pulse string or other instruction still occupies the resource of the Y0. Even though, the condition contact of this instruction is "ON", the instruction will not execute. If the M9360 = "ON", that indicates the Y1 is BUSY to generate pulse string or other instruction still occupies the resource of the Y1. Even though, the condition contact of this instruction is "ON", the instruction will not execute. If both the M9340 and M9360 = "OFF", that indicates the Y0 and Y1 are in the READY status (these resources are free to use), the Y0+Y1 can be used for this instruction.

- M9341/M9361 is the pulse output monitor of the Y0/Y1. (M9381/M9401) When the Y0/Y1 is generating pulses, both of the M9341/M9361 = "ON".
- M9342/M9362 is the positioning completed flag of the Y0/Y1. (M9382/M9402) When the positioning instruction is completed, both of the M9342/M9362 = "ON". Turn "OFF" the condition contact of the completed instruction will lead the flag M9342/M9362 "OFF".
- M9343/M9363 is the positioning abnormal stop flag of the Y0/Y1. (M9383/M9403) Trigger any related compulsive stop flag or the forward / reverse limit switch during the unfinished Y0+Y1 positioning function, will cause both the Y0 and Y1 stop to generate pulses and let the M9343/M9363 = "ON" to indicate this stop is abnormal.

Turn "OFF" the condition contact of the activated instruction will lead the flag M9343/M9363 "OFF".

M9345/M9365 is the flag to stop the Y0 and Y1 generating pulse string (by gradually slow down). (M9385/M9405) When either the M9345 or M9365 is turned "ON", the pulse generating at both the Y0 and Y1 will gradually slow down then stop.

After the stop signal is discontinued, to make the axes move must release the positioning instruction then restart.

- M9346/M9366 is the flag to imminently stop the Y0 and Y1 generating pulse string. (M9386/M9406) When either the M9346 or M9366 is turned "ON", the pulse generating at both the Y0 and Y1 will stop imminently (without to slow down).
- After the stop signal is discontinued, to make the axes move must release the positioning instruction then restart.
- Forward / Reverse limit switch (under the "Positioning Parameter Setup" of the Ladder Master S). When either one of the related forward / reverse limit switch is activated, that limits both the actions of the Y0 and Y1 to make the motors slow down and stop.

DD9350/DD9370 display the positioning current speed of the Y0/Y1. (DD9390/DD9410) When the instruction is active, those 32-bit special registers show the Present Value of operating speeds.

DD9354/DD9374 display the positioning location (Present Value PV) of the Y0/Y1. (DD9394/DD9414) When the power is turned from "OFF" to "ON", the initial value of those 32-bit special registers are 0. Afterward, to operate any related positioning control instruction will affect to the contents, they indicate the location of the Y0 and Y1.

FNC	Absolute Linear Internolation	1	2	Μ	3
316	Absolute Ellear Interpolation	0	\bigcirc	\bigcirc	0

Operand									Dev	ices								
oporaria	Х	Y	М	S	D.b	R.b	KnX	KnY	KnM	KnS	Т	С	D,R	V,Z	UnG	K,H	Е	"\$"
s																		
D																0		
The 16-bit instruction, S occupies 9 components The 32-bit instruction, S occupies 18 components																		
• D = 0 or 1 (it uses Y0, Y1, Y4 and Y5 if D = 0; it uses Y2, Y3, Y6 and Y7 if D = 1)																		

S : the head register of the parameter block

D : the parameter to set the executing output points

- This instruction is for to reach the linear interpolation positioning between related two axes at a transistor or line driver PLC. When the instruction starts to operate, the two axes start to generate pulses at the same time then those will respectively produce the correspond numbers of pulses to achieve the X/Y axes location (Present Values) equal to target point. After the instruction reaches the target and stops the pulse generating, this positioning is completed.
- When the M0 turns "ON", this absolute instruction will move the position from the start-up point (X⁰, Y⁰) to the target point (D1003, D1004). Thus, the points Y2 (pulse string for X axis) and Y3 (pulse string for Y axis) separately use the parameters of D1000 (Composite Initial speed), D1001 (Composite Operating speed) and D1002 (Acceleration / Deceleration time) to generate pulses simultaneously. Also, the points Y6 (direction signal for X axis) and Y7 (direction signal for Y axis) will control the moving directions of the axes.

16-bit Instruction	32-bit Instruction	Description	Input Method
S	(S) + 1, (S)	Composite initial speed Available range: $0 \sim 20k$ (Hz). If the set value < 0, will be regarded as 0; if the set value > 20k, will be regarded as 20kHz.	
(S) +1	(S) + 3, (S) + 2	Composite operating speed Available range: 10 (Hz) ~ the maximum speed. If the set value < 10, will be regarded as 10Hz; if the set value > the maximum speed, will be regarded as the maximum speed. The maximum speed at the VS1/VS2 is 50kHz; VSM/VS3 is 200kHz; VSM-28ML is 1MHz.	Designated by user program
S +2	S +5, S +4	Acceleration / Deceleration time (Available range: 0~32,000 ms.)	
S +3	S +7, S +6	Target point at the X-axis The target is an absolute position that is related to the zero point.	
S +4	(S) +9, (S) +8	Target point at the Y-axis The target is an absolute position that is related to the zero point.	
S +5	S +11, S +10	Bias speed at the X-axis	
S +6	(S) +13, (S) +12	Operating speed at the X-axis	Result storage area, produced
S +7	S +15, S +14	Bias speed at the Y-axis	by the
(S) +8	(S) + 17, (S) + 16	Operating speed at the Y-axis	

Description of the parameter block $\overline{(S)}$:

The designated composite initial speed must less than or equal to the composite operating speed. The axis will not generate pulse if that calculated operating speed is less than 1 Hz.

Description of the parameter (D) that is used to set the executing output points:

	X a	xis	Y axis					
	Pulse string output	Direction signal output	Pulse string output	Direction signal output				
KO	YO	Y4	Y1	Y5				
K1	Y2	Y6	Y3	Y7				

When the output of direction control signal is "ON", the motor moves forward; conversely, "OFF" moves reverse. Besides, the "ON"/"OFF" status of the direction control signal is decided by both the +/- numerical value of the axis's distance to be moved (Target point - Present value, PV) and the parameter of the rotational direction (increase Present Value when forward / backward) are executed.

- During the instruction is in operation, to change any related parameter will be regarded as invalid. Therefore, all the necessary data at the parameter block (S) should be set up completely before it starts.
- When this instruction completes the movement to the target point at both axes, that will let the positioning completed flag M9382 and M9402 both = "ON".
- If the condition contact M0 turns "OFF" during the pulses are output, the movement of both axes will be gradually slow down then stop. Thus, that will not to turn the positioning completed flag M9382 or M9402 "ON" neither.
- The operation of this instruction will not be affected by the content values of the D9380~D9384, D9388, D9400~D9404, D9408, D9420~D9424, D9428, D9440~D9444 and D9448.
- When the distance to be moved at the X-axis and Y-axis are both equal to zero (Start-up point = Target point), this instruction will not execute.
- The instruction will occupy two pulse output points at the same time (D = K0 uses Y0+Y1; D = K1 uses Y2+Y3). The example below uses (Y0+Y1) output axes for the description of this instruction. Since the output axes (Y2+Y3) have the same function, the devices between parentheses () indicate those are corresponding to (Y2+Y3).

M9340/M9360 indicates that Y0/Y1 is occupied by a positioning instruction. (M9380/M9400)

Any instruction uses the Y0/Y1 to generate pulse string and it is already activated, that will occupy the resource of Y0/Y1 axis consistently. However, turn the condition contact of this activated instruction "OFF" could release the resource.

Thus, before to activate this instruction should confirm the states of M9340 and M9360 both.

If the M9340 = "ON", that indicates the Y0 is BUSY to generate pulse string or other instruction still occupies the resource of the Y0. Even though, the condition contact of this instruction is "ON", the instruction will not execute. If the M9360 = "ON", that indicates the Y1 is BUSY to generate pulse string or other instruction still occupies the resource of the Y1. Even though, the condition contact of this instruction is "ON", the instruction will not execute. If both the M9340 and M9360 = "OFF", that indicates the Y0 and Y1 are in the READY status (these resources are free to use), the Y0+Y1 can be used for this instruction.

M9341/M9361 is the pulse output monitor of the Y0/Y1. (M9381/M9401) When the Y0/Y1 is generating pulses, both of the M9341/M9361 = "ON".

M9342/M9362 is the positioning completed flag of the Y0/Y1. (M9382/M9402) When the positioning instruction is completed, both of the M9342/M9362 = "ON". Turn "OFF" the condition contact of the completed instruction will lead the flag M9342/M9362 "OFF".

M9343/M9363 is the positioning abnormal stop flag of the Y0/Y1. (M9383/M9403) Trigger any related compulsive stop flag or the forward / reverse limit switch during the unfinished Y0+Y1 positioning function, will cause both the Y0 and Y1 stop to generate pulses and let the M9343/M9363 = "ON" to indicate this stop is abnormal.

Turn "OFF" the condition contact of the activated instruction will lead the flag M9343/M9363 "OFF".

M9345/M9365 is the flag to stop the Y0 and Y1 generating pulse string (by gradually slow down). (M9385/M9405) When either the M9345 or M9365 is turned "ON", the pulse generating at both the Y0 and Y1 will gradually slow down then stop.

After the stop signal is discontinued, to make the axes move must release the positioning instruction then restart.

M9346/M9366 is the flag to imminently stop the Y0 and Y1 generating pulse string. (M9386/M9406) When either the M9346 or M9366 is turned "ON", the pulse generating at both the Y0 and Y1 will stop imminently (without to slow down).

After the stop signal is discontinued, to make the axes move must release the positioning instruction then restart.

Forward / Reverse limit switch (under the "Positioning Parameter Setup" of the Ladder Master S). When either one of the related forward / reverse limit switch is activated, that limits both the actions of the Y0 and Y1 to make the motors slow down and stop.

DD9350/DD9370 display the positioning current speed of the Y0/Y1. (DD9390/DD9410) When the instruction is active, those 32-bit special registers show the Present Value of operating speeds.

DD9354/DD9374 display the positioning location (Present Value PV) of the Y0/Y1. (DD9394/DD9414) When the power is turned from "OFF" to "ON", the initial value of those 32-bit special registers are 0. Afterward, to operate any related positioning control instruction will affect to the contents, they indicate the location of the Y0 and Y1.

8-4 Positioning Program Example

8-4-1 Positioning Program Example for the VS1 or VS2 Series PLC

This example uses the combination of the VS1 or VS2 transistor Main Unit and a stepper motor drive to complete a positioning control system. This control example carries out the home position return, forward JOG, reverse JOG and single-speed positioning functions. The brief diagram of the system is shown below.

Use the "Positioning Parameter Setup" function which is provided by the programming tools Ladder Master S to set the relevant parameters about the Y0 axis. Select the "DOG Rear End home positioning" as the home return mode. Then the settings will be written onto the PLC with the project.

🔓 Positioning Parameter Setup		
Y0 Axis Y1 Axis Y2 Axis Y3 Axis		
Basic Parameters Maximum speed (D9340): 50000 H	z (1~50,000) - Home Position Return Home Return mode: DOG Rear End home po	ositioning ~
Acceleration time (D9343): 100 m Deceleration time (D9344): 100 m Rotational direction: Increase present value Multiple ratio of speed (D9348): 1000 0	Return direction: By the direction of press is (0~32,000) Preset value of home position (D9346): when forward V .1% (1~30,000) PG0 (Z phase) signal [X]:	sent value decreasing v PLS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
	Number of PG0 signals (D9345): 1 CLEAR signal output [Y,M]:	PLS (1~32,767)
	Forward Linit Switch (LSF) [X,M]: X16 Reverse Limit Switch (LSR) [X,M]: X17 Interrupt Input INT interrupt signal [X]:	
Default	DV2I speed change signal [X,M]:	● +F ○ +/ -

The wiring example between the VS1 transistor Main Unit and a stepper servo drive

X15				(M9345) Prevent the Y0 to generate the pulse string (by gradually slow down)
M9340	X10 ↑	M9342		-ZRN K30000 K1000 Y0 Y1 The Home Position Return function
				- MO The Home Position Return function is operating (self holding contact)
	<u>.</u>			DDRVR K2147483647 K10000 Y0 Y1 The JOG+ action
				DDRVR K-2147483648 K10000 Y0 Y1 The JOG- action
M9344	M9340	X13 — ↑ —	M9342	DDRVA K0 K10000 Y0 Y1 The function to move back to the zero point $(= \text{ home position when the D9346} = 0)$
				- M1 The function to move back to the zero point is operating (self holding contact)
	M9340	X14 — ↑ —	M9342	DDRVR K50000 K10000 Y0 Y1 The function of single-speed positioning
	M2 			- M2 The function of single-speed positioning is operating (self holding contact)
M9343				SET Y10 The positioning function has been stopped abnormally

8-4-2 Positioning Program Example for the VSM or VS3 Series PLC

This example uses the combination of the VSM or VS3 transistor Main Unit and a Mitsubishi servo drive (MR-J2) to complete a positioning control system. This control example carries out the home position return, forward JOG, reverse JOG and single-speed positioning functions. The brief diagram of the system is shown below.

Use the "Positioning Parameter Setup" function which is provided by the programming tools Ladder Master S to set the relevant parameters about the Y0 axis. Select the "DOG Rear End home positioning" as the home return mode. Then the settings will be written onto the PLC with the project.

🞧 Positioning Parameter Setup	
YO Axis Y1 Axis Y2 Axis Y3 Axis	
Basic Parameters	Positioning Operation Setup
Maximum speed (D9340): 200000 Hz (1~200,000)	Home Position Return
Bias speed (D9342):	Home Return mode: DOG Rear End home positioning \sim
	Return direction: By the direction of present value decreasing \sim
Acceleration time (D9343):	Preset value of home position (D9346): 0 PLS
Deceleration time (D9344): 100 ms (0~32,000)	
Rotational direction: Increase present value when forward v	Near-point (DOG) signal [X,M]:
Multiple ratio of speed (D9348): 1000 0.1% (1~30.000)	PGO (Z phase) signal [X]:
	Number of PG0 signals (D9345): 3 PLS (1~32,767)
	CLEAR signal output [VM]:
	Limit Switch
	Forward Linit Switch (LSF) [X,M]: X16 OH I OH
	Interrupt Input
	□ INT interrupt signal [X]:
Default	DV2I speed change signal [X,M]:

The wiring example between the VSM transistor Main Unit & Mitsubishi servo drive (MR-J2)

X15	M9345 Prevent the Y0 to generate the pulse string (by gradually slow down)
M9340 X10	SET M0 Set the condition contact of the Home Position Return function
M9344 X13	SET M1 Set the condition contact for to move back to the zero point
	SET M2 Set the condition contact of the single-speed positioning
	JOGF K300 K10000 Y0 Y1 The JOG+ function
	JOGR K300 K10000 Y0 Y1 The JOG – function
	DZRN K100000 K1000 Y0 Y1 The Home Position Return function
M1	DDRVA K0 K100000 Y0 Y1 The function to move back to the zero point $(= \text{ home position when the } D9346 = 0)$
M2	DDRVR K500000 K100000 Y0 Y1 The function of single-speed positioning
M9342	ZRST M0 M2 To clear all the function condition contacts when one of those is finished
M9343	– SET Y10 The positioning function has been stopped abnormally

8-4-3 8 Axes Positioning Program Example

One VS series transistor or line driver Main Unit can support 4 axes position control. If the control is required more than 4 axes, one unit is not enough. However, we can use the character of the CPU LINK communication to immediately transfer data to other PLCs. At the following example, that links two VS series PLCs to perform an 8 axes positioning. In the same way, to control more axes are available.

The master station #0 is the main PLC to handle the communication procedure and make the positioning command, the Station No. 1 become the real output PLC to control #5~#8 axes.

There are 3 sections to explame the control system.

- Section 1: To plan the components which will be used for the data transfer between PLCs.
 - At the project of the master Station No. 0 to establish the CPU LINK communication table. The table is to designate components to send the data from Station No. 0 to 1 and some are about to send data from No. 1 to 0. This example uses the D100~D114 to send the data from Station No. 0 to 1 for the #5 axis, and the D115~D119 to send the feedback data from Station No. 1 to 0. The list below shows the related components will be used by the $#5 \sim #8$ axes.

The configuration for $#5 \sim #8$ axes:

By the purposes to establish the communication table "CPUL0":

Axis No.	From No. 0 to 1	From No. 1 to 0	
#5 axis	D100~D114	D115~D119	
#6 axis	D120~D134	D135~D139	
#7 axis	D140~D154	D155~D159	
#8 axis	D160~D174	D175~D179	

ltem No.	Station No.	Device Range	Word / Bit	Disable Contact
1	0	D100 – D114	_	_
2	1	D115 – D119	—	—
3	0	D120 – D134	_	—
4	1	D135 – D139	_	_
5	0	D140 – D154	_	
6	1	D155 – D159		—
7	0	D160 – D174	—	—
8	1	D175 – D179	—	—

The transfer purposes of related components: (below are for the #5 axis only, the rest may be inferred by analogy) (D101, D100) — Set JOG speed

(D103, D102) — Set ZRN (Home Positioning) speed

(D105, D104) — Set ZRN (Home Positioning) creep speed

(D107, D106) — Set target position #1

(D109, D108) — Set target position #2

(D111, D110) — Set operation speed #1

(D113, D112) — Set operation speed #2

D114 — Operation command

D115 — Operation status feedback

(D117, D116) — Current speed feedback (D119, D118) — Current location feedback Section 2: To complete the related setting at the Station No. 1 for the #5~#8 axes. According to the positioning mission to fill in the parameters of the Y0~Y3 (#5~#8 axes). The diagram and picture are the brief wiring and setup example for the Y0 (#5 axis).

0 Axis Y1 Axis Y2 Axis Y3 Axis	
Basic Parameters Maximum speed (D9340): 200000 Hz (1~200,000) Bias speed (D9342): 0 Hz Acceleration time (D9343): 100 ms (0~32,000) Deceleration time (D9344): 100 ms (0~32,000) Rotational direction: Increase present value when forward V Multiple ratio of speed (D9348): 100 0.1% (1~30,000)	Positioning Operation Setup Home Position Return Home Return mode: DOG Rear End home positioning Return direction: By the direction of present value decreasing Preset value of home position (D9346): 0 PLS Near-point (DOG) signal [X,M]: X0 • H O H PG0 (Z phase) signal [X]: • I O H Number of PG0 signals (D9345): 3 PLS (1~32,767) Fig CLEAD signal whethe NMI: V10
Default	Limit Switch ✓ Forward Linit Switch (LSF) [X,M]: X10 O+F ●+/+ ✓ Reverse Limit Switch (LSF) [X,M]: X11 O+F ●+/+ Interrupt Input INT interrupt signal [X]: ●+F O+/+ DV2I speed change signal [X,M]: ●+F O+/+

And then, edit the user program to control each axis. Since the control procedure is according to the command from the Station No. 0, the program in this Station No. 1 is to receive the command then generates the real control pulses. Also, the construct for all the Y0 \sim Y3 are the same, the tiny differences are the allocated components (please refer to the previous Section 1). This brief positioning example is for to control the Y0 (#5 axis) only, but user can use the same shape to finish other positioning axis.

Y0 uses D100~D1 DD100=JOG spd; DD110=Spd#1; D	19 DD102=ZRN spd; DD104=ZRN creep spd; DD106=Target#1; DD108=Target#2; D112=Spd#2; D114=Command; D115=Status; DD116=Current spd; DD118=Current location			
D115 delivers the ope b0=READY/BUSY fla b3=Positioning abno	eration status of Y0 g; b1=Pulse output status flag; b2=Positioning completed flag; rmal stop flag; b4=Zero home positioning had been completed			
D114 transfers the op b0=STOP; b1=JOGI b8=DVIT; b9=DV2I; I	peration command for the Y0 positioning F; b2=JOGR; b3=ZRN; b4=DRVR; b5=DRVA; b6=DV2R; b7=DV2A; b10=DVSR; b11=DVSA; b12=PLSV			
M9340	— (D115.0) For to deliver the READY/BUSY flag feedback to the master station			
M9341	— (D115.1) For to deliver the pulse output status flag feedback to the master station			
M9342	- D115 2) For to deliver the positioning completed flag feedback to the master station			
M9343	D115.2 For to deliver the positioning abnormal stop flag feedback to the master station			
M9344	Diff. To to deliver the ZDN exampleted flag foodback to the master station			
M9000	- D115.4 For to deliver the ZRN completed flag feedback to the master station			
M100	MOV D114 K4M100 Transfer the commands from the master station to individual function contacts			
M101	— M9346 Force the Y0 axis immediately stop			
M102	DJOGF K300 D100 Y0 Y4 Use the JOG speed from the master to perform the JOG+ operation			
	DJOGR K300 D100 Y0 Y4 Use the JOG speed from the master to perform the JOG – operation			
	DZRN D102 D104 Y0 Y4 Use the ZRN speed & ZRN creep speed from the master to perform the ZRN operation			
M104	DDRVR D106 D110 Y0 Y4 Use the target #1 and speed #1 from the master to perform			
M105	DDRVA D106 D110 Y0 Y4 Use the target #1 and speed #1 from the master to perform			
M106	DDV2R D106 D110 Y0 Y4 Use the targets and speeds from the master to perform			
M107	DDV2A D106 D110 Y0 Y4 the 0 stargets and speeds from the master to perform			
M108	Use the target #1 and speed #1 from the master to perform			
M109	Use the target #1 and speeds from the master to perform			
M110	Use the target #1 and speed #1 from the master to perform			
M111	DVSR D106 D110 Y0 Y4 the interrupt to stop or drive to relative positioning			
M112	DVSA D106 D110 Y0 Y4 the interrupt to stop or drive to absolute positioning			
M9000	DPLSV D110 Y0 Y4 Use the speed #1 from the master to perform the variable speed pulse output			
	DMOV D9350 D116 For to deliver the current speed feedback to the master station			
	DMOV D9354 D118 For to deliver the current location feedback to the master station			

Section 3: To edit the related program and setting at the master Station No. 0. Create the communication table "CPUL0" for the CPU LINK and add the CPUL instruction into the program of the master Station No. 0, thus the station No. 0 and No. 1 will transfer the related data to each other automatically.

#5 axis uses D100~119 DD100=JOG spd; DD102=ZRN spd; DD104=ZRN creep spd; DD106=Target#1; DD108=Target#2 DD110=Spd#1; DD112=Spd#2; D114=Command; D115=Status; DD116=Current spd; DD118=Current location
#6 axis uses D120~139 DD120=JOG spd; DD122=ZRN spd; DD124=ZRN creep spd; DD126=Target#1; DD128=Target#2 DD130=Spd#1; DD132=Spd#2; D134=Command; D135=Status; DD136=Current spd; DD138=Current location
#7 axis uses D140~159 DD140=JOG spd; DD142=ZRN spd; DD144=ZRN creep spd; DD146=Target#1; DD148=Target#2 DD150=Spd#1; DD152=Spd#2; D154=Command; D155=Status; DD156=Current spd; DD158=Current location
#8 axis uses D160~179 DD160=JOG spd; DD162=ZRN spd; DD164=ZRN creep spd; DD166=Target#1; DD168=Target#2 DD170=Spd#1; DD172=Spd#2; D174=Command; D175=Status; DD176=Current spd; DD178=Current location
M9000 — CPUL CPULO DO K1

Next, edit the control program for the #5 axis. The following example program carries out the home position return, forward JOG, reverse JOG and single-speed positioning functions.

User can try to edit a complex positioning program for study and test, also can use the same shape to add up control program for the $#6 \sim #8$ axes.

The brief diagram of the #5 axes is shown below.

This brief positioning example is in the master Station No. 0 to control the #5 axis at the Station No. 1.

#5 axis uses D100~119 DD100=JOG spd; DD102=ZRN DD110=Spd#1; DD112=Spd#	l spd; DD104=ZRN creep spd; DD106=Target#1; DD108=Target#2; 2; D114=Command; D115=Status; DD116=Current spd; DD118=Current location
D115 delivers the operation statt b0=READY/BUSY flag; b1=Puls b3=Positioning abnormal stop f	us of #5 se output status flag; b2=Positioning completed flag; lag; b4=Zero home positioning had been completed
D114 transfers the operation cor b0=STOP; b1=JOGF; b2=JOG b8=DVIT; b9=DV2I; b10=DVSR	nmand for the #5 positioning R; b3=ZRN; b4=DRVR; b5=DRVA; b6=DV2R; b7=DV2A; ; b11=DVSA; b12=PLSV
X15	M100 Force the #5 axis immediately stop
D115.0 X10	DMOV K100000 D102 Set the ZRN speed for the #5 axis
	DMOV K1000 D104 Set the ZRN creep speed for the #5 axis
	ET M103 Trigger the #5 axis to perform the ZRN operation
	DMOV K10000 D100 Set the JOG speed for the #5 axis
	M101 Trigger the #5 axis to perform the JOG+ operation
	M102 Trigger the #5 axis to perform the JOG- operation
	DMOVP K0 D106 Set the target position for the absolute positioning at #5 axis
	DMOVP K100000 D110 Set the operation speed for the absolute positioning at #5 axis
X14	SET M105 Trigger the #5 axis to perform the absolute positioning
	DMOV K500000 D106 Set the target position for the relative positioning at #5 axis
-	DMOV K100000 D110 Set the operation speed for the relative positioning at #5 axis
D115.2	SET M104 Trigger the #5 axis to perform the relative positioning
D115.3	ZRST M103 M111 IO clear all the #5 axis's function trigger contacts when one of those is finished
M9000	SET Y14 The #5 axis's positioning function has been stopped abnormally
	MOV K4M100 D114 Iransfer the trigger commands from the master Station No. 0 to the Station No. 1 for the #5 axis's positioning function contacts

Index of Application Instructions

Initia	Mnemonic			Page No.
	D	ADD	Ρ	154
		ANS		176
		ANR	Р	176
	D	ABSD		199
		ALT	Р	204
		ASC		216
		ASCI	Р	228
	D	ASIN	Р	280
А	D	ACOS	Р	281
	D	ATAN	Р	282
	D	AND=		346
	D	AND>		346
	D	AND<		346
	D	AND<>		346
	D	AND < =		346
	D	AND>=		346
	D	ABS		462
		BMOV	Р	149
	D	BCD	Р	152
	D	BIN	Р	152
	D	BON	P	174
		BTOW	P	288
	П	BK+	P	322
	ם	BK-	P	323
R	ם	BKCMP=	P	324
D	ם		P	324
		BKCMP<	P	324
			P	3/9
		BINDA	P	354
			P	136
			P	137
		CMP		144
		CMI	D	1/19
С			D	220
			r	230
		C09	D	201
		CRC	P	210
				ວ I Ծ 120
				150
				157
				158
				1/1
		DSW	P	213
				248
D	<u> </u>	DRMK		249
		DTRD	Р -	257
	D	DEG	P	284
		DIS	P	290
		DUTY		317
	D	DABIN	Р	353
	D	DRVR		438
	D	DRVA		440

Initial	ſ	Mnemonio	;	Page No.
	D	DV2R		442
	D	DV2A		444
	D	DVIT		446
D	D	DV2I		448
	D	DVSR		450
	D	DVSA		452
		DTBL		456
		EI		138
		ENCO	Р	172
	D	ECMP	Р	260
	D	EZCP	Ρ	261
	D	EMOV	Ρ	262
	D	ESTR	Ρ	263
	D	EVAL	Ρ	265
F	D	EBCD	Ρ	266
	D	EBIN	Р	266
	D	EADD	Ρ	267
	D	ESUB	Р	268
	D	EMUL	Ρ	269
	D	EDIV	Ρ	270
	D	EXP	Ρ	271
	D	ESQR	Р	274
	D	ENEG	Р	275
		FEND		139
		FOR		141
_	D	FMOV	Р	150
F	D	FLT	P	179
	D	FROM	P	218
		FDEL	P	340
		FINS		341
G		GRY		309
			Р	105
		наса		100
		HSCK		107
				211
н		HEY	P	279
	П	HTOS	P	302
	D	HOUR		308
	D	ннсму	Р	319
	D	HSCT		355
	-	IRET		138
	D	INC	Р	158
Ι		INCD		201
	D	INT	Р	276
		INSTR	Р	337
	D	JOGF		436
J	D	JOGR		436
		LINK		244
	D	LOGE	Ρ	272
	D	LOG10	Ρ	273
L		LEN	Ρ	331
		LEFT	Ρ	333
	D	LD=		346

Initial	Mnemonic			Page No.
L	D	LD>		346
	D	LD<		346
	D	LD < >		346
	D	LD < =		346
	D	LD > =		346
	D	LIMIT	Ρ	348
	D	LIR		466
	D	LIA		469
	D	MOV	Ρ	146
	D	MUL	Ρ	156
	D	MEAN	Ρ	175
		MTR		184
IVI		MBUS		294
		MIDR	Ρ	334
		MIDW	Ρ	335
		MPG		463
		NEXT		141
Ν	D	NEG	Р	160
	D	OR=		346
	D	OR>		346
~	D	OR<		346
0	D	OR<>		346
	D	OR < =		346
	D	OR>=		346
	D	PLSY		191
		PWM		193
Ρ	D	PLSR		194
		PR		217
	D	PRUN	Р	227
		PID		233
		POP	Р	342
	D	PLSV		454
	D	ROR	Р	162
	D	ROL	Р	162
	D	RCR	Р	163
R	D	RCL	Р	163
		REF	Р	182
		REFF	Р	183
		RAMP		205
		RS		222
	D	RAD	Р	283
		RND	Р	316
		RIGHT	Р	332
S		SRET		137
		SMOV	Р	147
	D	SUB	Р	155
		SFTR	Р	164
		SFTL	Р	164
		SFWR	Р	167
		SFRD	Р	168
	D	SUM	Р	173
	D	SQR	Р	178
	D	SPD		190
	D	SER	Р	198
		1		

ImageSTMRImage203SORTImage207SEGDP214SEGLImage215DSINP291DSORT2Image292DSORT2Image292DSORT2Image292DSORT4P303DSTRP343DSFRP343DSCLP351DSCL2P351DSCL2P351DTKY2100DTKY210DTCMPP298ITCMPP299ITANP279ITCMPP298ITCMPP300ITRDP300ITRDP300ITFT311ITFK313IITFK313IITFK313IWDTP140DWANDP159DWARRP159DWSFRP165IWSFRP165IWSIMP286	Initial	Mnemonic			Page No.
SORT 207 SEGD P 214 SEGL 215 D SIN P 277 D SUN P 291 D SUN P 291 D SUN P 292 D SUN P 292 D SCNT P 303 D STR P 343 D SCL P 343 D SCL P 351 D SCL2 P 351 D TCMP P 210 D TCMP P 210 D TAN P 279 TCMP P 298 301 TRD P 300 301 TRD P 304 311 TRD P 304 313 U UNI P 328 WDT P<			STMR		203
SEGD P 214 SEGL 215 D SIN P 277 D SUNP P 291 D SORT2 292 D SORT2 292 D SORT2 292 D SORT2 292 D STR P 303 D SFR P 343 SFL P 343 D SCL P 351 D SCL2 P 351 D TTMR 202 D D TCM P 219 TAN P 219 TCMP P 298 TZCP P 299 TADD P 300 TRU TRD 9 304 TFT 311 312 314 TFK 313 314 314 TFK 313 314 </td <td></td> <td></td> <td>SORT</td> <td></td> <td>207</td>			SORT		207
SEGL 215 D SIN P 277 D SWAP P 291 D SORT2 292 D STOH P 303 D STR P 343 D SFR P 343 D SCL P 351 D TKY 210 202 D TKY 210 250 D TCM P 293 TZCP P 299 301 TTRD P 300 301 TRD P 304 312 TFT 311 312 313 U UNI P 289			SEGD	Ρ	214
DSINP277DSWAPP291DSORT2292DSTOHP303DSTRP343DSFRP343DSCLP351DSCL2P351DSCL2P351DTTMR202DTKY210DTC2P250DTANP279TCMPP298TZCPP300TSUBP300TKRDP304TWRP305TFT311TFK313UUNIP289VDVALPQWDTP140DWANDP159DWORP159DWSFRP165WSFLP166DWSUMP286			SEGL		215
D SWAP P 291 D SORT2 292 D STOH P 303 D STR P 326 I SFR P 343 D SCL P 343 D SCL P 343 D SCL P 351 D SCL2 P 351 D SCL2 P 351 D TTMR 202 D D TCMP P 219 TAN P 279 TCMP P 298 TZCP P 299 TAND P 300 TSUB P 301 TRD P 304 TWR P 305 TFT 311 TTFK 313 11 TFK 313 U UNI P 289 V D VAL P		D	SIN	Ρ	277
S D SORT2 292 D STOH P 303 D STR P 326 SFR P 343 D SFR P 343 D SCL P 351 D SCL2 P 351 D SCL2 P 351 D SCL2 P 351 D TTMR 202 D TKY 210 D TO P 219 TPID 250 D D TAN P 279 TCMP P 298 TZCP P 299 TADD P 300 TRD P 304 TWR P 305 TFT 311 312 U UNI P 289 V D VAL P 328 WDT<		D	SWAP	Ρ	291
D STOH P 303 D STR P 326 SFR P 343 SFL P 343 D SCL P 351 D SCL P 351 D SCL2 P 351 D SCL2 P 351 D SCL2 P 351 D TKY 210 D TKY 210 D TO P 219 TPID 250 D TAN P 279 TCMP P 298 TZCP P 300 TSUB P 300 TSUB P 301 TRD P 304 TWR P 305 TFT 311 TFK 313 U U UNI P 289 V D VAL P 328 U U	S	D	SORT2		292
D STR P 326 SFR P 343 SFL P 343 D SCL P 351 D SCL2 P 351 D TKY 210 D TKY 210 D TKY 219 TPID 250 D TAN P TZCP P 299 TADD P 300 TSUB P 301 TRD P 304 TWR P 305 TFT 311 311 TFK 313 31 U UNI P 289 V D VAL P 328 WD		D	STOH	Ρ	303
SFR P 343 SFL P 343 D SCL P 351 D SCL2 P 351 D SCL2 P 351 D SCL2 P 351 D SCL2 P 351 D TTMR 202 D D TKY 210 D D TO P 219 TPID 250 D TAN P 279 TCMP P 298 TZCP P 299 TADD P 300 TSUB P 301 TRD P 304 TWR P 305 TFT 311 TFK 313 11 TFK 313 12 14 140 V U VAL P 328 W D WAND P 159 D <		D	STR	Ρ	326
SFL P 343 D SCL P 351 D SCL2 P 351 D SCL2 P 351 D TTMR 202 D TKY 210 D TCMP P 219 TPID 250 D TAN P 279 TCMP P 298 TZCP P 299 TADD P 300 TSUB P 301 TRD P 304 TWR P 304 TFT 311 TFH 312 11 TFH 313 U UNI P 289 V D VAL P 328 WDT P 140 D WAND P 159 D WOR P 159 D WSFR P 165 WSFL P 166			SFR	Ρ	343
D SCL P 351 D SCL2 P 351 TTMR 202 D TKY 210 D TKY 210 D TKY 210 D TO P 219 TPID 250 D TAN P 279 TCMP P 298 TZCP P 299 TADD P 300 TSUB P 300 TRD P 304 TWR P 305 TFT 311 TFK 313 11 TFFK 313 11 TFK 313 U UNI P 289 V D VAL P 328 WDT P 140 D WOR P 159 D WOR P 159 D WSFR P 165 WSFL			SFL	Ρ	343
D SCL2 P 351 TTMR 202 D TKY 210 D TKY 219 D TO P 219 TPID 250 D TAN P 279 TCMP P 298 TZCP P 299 TADD P 300 TSUB P 300 TRD P 301 TRN P 304 TWR P 305 TFT 311 TFFH 312 TFK 313 U UNI P 289 V D VAL P 328 WDT P 140 D WAND P 159 D WOR P 159 D WSFR P 165 WSFL P 166 D WSUM P 286		D	SCL	Ρ	351
TTMR 202 D TKY 210 D TO P 219 TPID 250 TPID 250 D TAN P 279 TCMP P 298 TZCP P 299 TADD P 300 TSUB P 301 TRD P 304 TWR P 305 TFT 311 312 TFH 312 313 U UNI P 289 V D VAL P 328 WD VAL P 328 WOT P 159 159 D WOR P 159 D WSFR P 165 WSFL P 166 D WSUM P 286		D	SCL2	Ρ	351
D TKY 210 D TO P 219 TPID 250 D TAN P 279 TCMP P 299 TCMP P 299 TADD P 300 TSUB P 301 TRD P 304 TWR P 305 TFT 311 TFH 312 U UNI P 289 V D VAL P 328 WDT P 140 D WAND P 159 D WOR P 159 D WSFR P 165 WSFL P 166 D WSUM P 286			TTMR		202
D TO P 219 TPID 250 D TAN P 279 TCMP P 298 TZCP P 299 TADD P 300 TSUB P 301 TRD P 304 TWR P 305 TFT 311 TFH 312 TFK 313 U UNI P 289 V D VAL P 328 WDT P 140 D WAND P 159 D WOR P 159 D WSFR P 165 WSFL P 166 D WSUM P 286		D	TKY		210
TPID 250 D TAN P 279 TCMP P 298 TZCP P 299 TADD P 300 TSUB P 301 TRD P 304 TWR P 305 TFT 311 TFH 312 TFK 313 U UNI P V VAL P WWDT P 140 D WAND P D WOR P D WOR P D WSFR P D WSFL P D WSUM P		D	то	Р	219
D TAN P 279 TCMP P 298 TZCP P 299 TADD P 300 TSUB P 301 TRD P 304 TWR P 305 TFT 311 TFH 312 TFK 313 U UNI P 289 V D VAL P 328 WDT P 140 D WAND P 159 D WOR P 159 D WSFR P 165 WSFL P 166 D WSUM P 286			TPID		250
TCMP P 298 TZCP P 299 TADD P 300 TSUB P 301 TRD P 304 TFT 311 312 TFH 312 313 U UNI P 289 V D VAL P 328 WDT P 140 D WAND P 159 D WOR P 159 D WSOR P 159 WSFL P 166 D WSUM P 286		D	TAN	Р	279
TZCP P 299 TADD P 300 TSUB P 301 TRD P 304 TFT 311 312 TFK 313 312 U UNI P 289 V D VAL P 328 WDT P 140 D WOR P 159 D WOR P 159 WSFR P 165 WSFL P 166 D WSUM P 286 166 166			TCMP	Р	298
I TADD P 300 TSUB P 301 TRD P 304 TRD P 304 TWR P 305 TFT 311 TFH 312 TFK 313 U UNI P 289 V D VAL P 328 WDT P 140 D WAND P 159 D WOR P 159 D WSFR P 165 WSFL P 166 D WSUM P 286	-		TZCP	Р	299
TSUB P 301 TRD P 304 TWR P 305 TFT 311 TFH 312 TFK 313 U UNI P 289 V D VAL P 328 WDT P 140 D WAND P 159 D WOR P 159 D WSFR P 165 WSFL P 166 D WSUM P 286			TADD	Р	300
TRD P 304 TWR P 305 TFT 311 TFH 312 TFK 313 U UNI P 289 V D VAL P 328 WDT P 140 D WAND P 159 D WOR P 159 D WSFR P 165 WSFL P 166 D WSUM P 286			TSUB	Р	301
TWR P 305 TFT 311 TFH 312 TFK 313 U UNI P V D VAL P WDT P 140 D WAND P 159 D WOR P 159 D WSFR P 165 WSFL P 166 D WSUM P 286			TRD	Р	304
TFT 311 TFH 312 TFK 313 U UNI P V D VAL P WDT P 140 D WAND P 159 D WOR P 159 D WXOR P 159 D WSFR P 165 WSFL P 166 D WSUM P 286			TWR	Ρ	305
TFH 312 TFK 313 U UNI P 289 V D VAL P 328 WDT P 140 D WAND P 159 D WOR P 159 D WSFR P 165 WSFL P 166 D WSUM P 286			TFT		311
TFK 313 U UNI P 289 V D VAL P 328 WDT P 140 D WAND P 159 D WOR P 159 D WSFR P 165 WSFL P 166 D WSUM P 286			TFH		312
U UNI P 289 V D VAL P 328 WDT P 140 D WAND P 159 D WOR P 159 D WXOR P 159 D WSFR P 165 WSFL P 166 D WSUM P 286			TFK		313
V D VAL P 328 WDT P 140 D WAND P 159 D WOR P 159 D WXOR P 159 D WSFR P 165 WSFL P 166 D WSUM P 286	U		UNI	Ρ	289
WDT P 140 D WAND P 159 D WOR P 159 D WXOR P 159 D WSFR P 165 WSFL P 166 D WSUM P 286	V	D	VAL	Ρ	328
D WAND P 159 D WOR P 159 D WXOR P 159 W WSFR P 165 WSFL P 166 D WSUM P 286			WDT	Ρ	140
D WOR P 159 D WXOR P 159 WSFR P 165 WSFL P 166 D WSUM P 286	W	D	WAND	Ρ	159
D WXOR P 159 WSFR P 165 WSFL P 166 D WSUM P 286		D	WOR	Ρ	159
WSFR P 165 WSFL P 166 D WSUM P 286		D	WXOR	Ρ	159
WSFL P 166 D WSUM P 286			WSFR	Ρ	165
D WSUM P 286			WSFL	Ρ	166
		D	WSUM	Ρ	286
WTOB P 287			WTOB	Ρ	287
X D XCH P 151	Х	D	ХСН	Ρ	151
D ZCP P 145		D	ZCP	Ρ	145
ZRST P 170			ZRST	Ρ	170
ZPUSH P 258	7		ZPUSH	Ρ	258
ZPOP P 258	2		ZPOP	Ρ	258
D ZONE P 350		D	ZONE	Ρ	350
D ZRN 434		D	ZRN		434
\$ \$ + P 330	¢		\$+	Ρ	330
* \$MOV P 338	φ		\$MOV	Ρ	338